/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/quantize.h" #include "aom_dsp/x86/quantize_x86.h" static INLINE __m128i highbd_invert_sign_64bit_sse2(__m128i a, __m128i sign) { a = _mm_xor_si128(a, sign); return _mm_sub_epi64(a, sign); } static INLINE void highbd_mul_shift_sse2(const __m128i *x, const __m128i *y, __m128i *p, const int shift) { __m128i sign = _mm_srai_epi32(*y, 31); __m128i sign_lo = _mm_unpacklo_epi32(sign, sign); __m128i sign_hi = _mm_unpackhi_epi32(sign, sign); __m128i abs_y = invert_sign_32_sse2(*y, sign); __m128i prod_lo = _mm_mul_epu32(*x, abs_y); __m128i prod_hi = _mm_srli_epi64(*x, 32); const __m128i mult_hi = _mm_srli_epi64(abs_y, 32); prod_hi = _mm_mul_epu32(prod_hi, mult_hi); prod_lo = highbd_invert_sign_64bit_sse2(prod_lo, sign_lo); prod_hi = highbd_invert_sign_64bit_sse2(prod_hi, sign_hi); prod_lo = _mm_srli_epi64(prod_lo, shift); const __m128i mask = _mm_set_epi32(0, -1, 0, -1); prod_lo = _mm_and_si128(prod_lo, mask); prod_hi = _mm_srli_epi64(prod_hi, shift); prod_hi = _mm_slli_epi64(prod_hi, 32); *p = _mm_or_si128(prod_lo, prod_hi); } static INLINE void highbd_calculate_qcoeff(__m128i *coeff, const __m128i *round, const __m128i *quant, const __m128i *shift, const int *log_scale) { __m128i tmp, qcoeff; qcoeff = _mm_add_epi32(*coeff, *round); highbd_mul_shift_sse2(&qcoeff, quant, &tmp, 16); qcoeff = _mm_add_epi32(tmp, qcoeff); highbd_mul_shift_sse2(&qcoeff, shift, coeff, 16 - *log_scale); } static INLINE void highbd_update_mask1(__m128i *cmp_mask0, const int16_t *iscan_ptr, int *is_found, __m128i *mask) { __m128i temp_mask = _mm_setzero_si128(); if (_mm_movemask_epi8(*cmp_mask0)) { __m128i iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); __m128i mask0 = _mm_and_si128(*cmp_mask0, iscan0); temp_mask = mask0; *is_found = 1; } *mask = _mm_max_epi16(temp_mask, *mask); } static INLINE void highbd_update_mask0(__m128i *qcoeff0, __m128i *qcoeff1, __m128i *threshold, const int16_t *iscan_ptr, int *is_found, __m128i *mask) { __m128i coeff[2], cmp_mask0, cmp_mask1; coeff[0] = _mm_slli_epi32(*qcoeff0, AOM_QM_BITS); cmp_mask0 = _mm_cmpgt_epi32(coeff[0], threshold[0]); coeff[1] = _mm_slli_epi32(*qcoeff1, AOM_QM_BITS); cmp_mask1 = _mm_cmpgt_epi32(coeff[1], threshold[1]); cmp_mask0 = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask0, iscan_ptr, is_found, mask); } static INLINE __m128i highbd_calculate_dqcoeff(__m128i qcoeff, __m128i dequant, const int log_scale) { __m128i coeff_sign = _mm_srai_epi32(qcoeff, 31); __m128i abs_coeff = invert_sign_32_sse2(qcoeff, coeff_sign); highbd_mul_shift_sse2(&abs_coeff, &dequant, &abs_coeff, log_scale); return invert_sign_32_sse2(abs_coeff, coeff_sign); } void aom_highbd_quantize_b_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 8; const int log_scale = 0; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi32(1); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1, cmp_mask; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); __m128i zbin_sign = _mm_srai_epi16(zbin, 15); __m128i round_sign = _mm_srai_epi16(round, 15); __m128i quant_sign = _mm_srai_epi16(quant, 15); __m128i dequant_sign = _mm_srai_epi16(dequant, 15); __m128i shift_sign = _mm_srai_epi16(shift, 15); zbin = _mm_unpacklo_epi16(zbin, zbin_sign); round = _mm_unpacklo_epi16(round, round_sign); quant = _mm_unpacklo_epi16(quant, quant_sign); dequant = _mm_unpacklo_epi16(dequant, dequant_sign); shift = _mm_unpacklo_epi16(shift, shift_sign); zbin = _mm_sub_epi32(zbin, one); // Do DC and first 15 AC. coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); // Reinsert signs qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); } // AC only loop. while (index < n_coeffs) { coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); index += 8; continue; } highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); index += 8; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif } void aom_highbd_quantize_b_32x32_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 8; const int log_scale = 1; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi32(1); const __m128i log_scale_vec = _mm_set1_epi32(log_scale); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1, cmp_mask; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); __m128i zbin_sign = _mm_srai_epi16(zbin, 15); __m128i round_sign = _mm_srai_epi16(round, 15); __m128i quant_sign = _mm_srai_epi16(quant, 15); __m128i dequant_sign = _mm_srai_epi16(dequant, 15); __m128i shift_sign = _mm_srai_epi16(shift, 15); zbin = _mm_unpacklo_epi16(zbin, zbin_sign); round = _mm_unpacklo_epi16(round, round_sign); quant = _mm_unpacklo_epi16(quant, quant_sign); dequant = _mm_unpacklo_epi16(dequant, dequant_sign); shift = _mm_unpacklo_epi16(shift, shift_sign); // Shift with rounding. zbin = _mm_add_epi32(zbin, log_scale_vec); round = _mm_add_epi32(round, log_scale_vec); zbin = _mm_srli_epi32(zbin, log_scale); round = _mm_srli_epi32(round, log_scale); zbin = _mm_sub_epi32(zbin, one); // Do DC and first 15 AC. coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); // Reinsert signs qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); } // AC only loop. while (index < n_coeffs) { coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); index += 8; continue; } highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); index += 8; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif } void aom_highbd_quantize_b_64x64_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 8; const int log_scale = 2; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi32(1); const __m128i log_scale_vec = _mm_set1_epi32(log_scale); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1, cmp_mask; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); __m128i zbin_sign = _mm_srai_epi16(zbin, 15); __m128i round_sign = _mm_srai_epi16(round, 15); __m128i quant_sign = _mm_srai_epi16(quant, 15); __m128i dequant_sign = _mm_srai_epi16(dequant, 15); __m128i shift_sign = _mm_srai_epi16(shift, 15); zbin = _mm_unpacklo_epi16(zbin, zbin_sign); round = _mm_unpacklo_epi16(round, round_sign); quant = _mm_unpacklo_epi16(quant, quant_sign); dequant = _mm_unpacklo_epi16(dequant, dequant_sign); shift = _mm_unpacklo_epi16(shift, shift_sign); // Shift with rounding. zbin = _mm_add_epi32(zbin, log_scale_vec); round = _mm_add_epi32(round, log_scale_vec); zbin = _mm_srli_epi32(zbin, log_scale); round = _mm_srli_epi32(round, log_scale); zbin = _mm_sub_epi32(zbin, one); // Do DC and first 15 AC. coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); // Reinsert signs qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); } // AC only loop. while (index < n_coeffs) { coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); coeff0_sign = _mm_srai_epi32(coeff0, 31); coeff1_sign = _mm_srai_epi32(coeff1, 31); qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); index += 8; continue; } highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); index += 8; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif }