/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/av1_rtcd.h" #include "aom_dsp/x86/intrapred_x86.h" #include "aom_dsp/x86/intrapred_utils.h" #include "aom_dsp/x86/lpf_common_sse2.h" static INLINE __m256i dc_sum_64(const uint8_t *ref) { const __m256i x0 = _mm256_loadu_si256((const __m256i *)ref); const __m256i x1 = _mm256_loadu_si256((const __m256i *)(ref + 32)); const __m256i zero = _mm256_setzero_si256(); __m256i y0 = _mm256_sad_epu8(x0, zero); __m256i y1 = _mm256_sad_epu8(x1, zero); y0 = _mm256_add_epi64(y0, y1); __m256i u0 = _mm256_permute2x128_si256(y0, y0, 1); y0 = _mm256_add_epi64(u0, y0); u0 = _mm256_unpackhi_epi64(y0, y0); return _mm256_add_epi16(y0, u0); } static INLINE __m256i dc_sum_32(const uint8_t *ref) { const __m256i x = _mm256_loadu_si256((const __m256i *)ref); const __m256i zero = _mm256_setzero_si256(); __m256i y = _mm256_sad_epu8(x, zero); __m256i u = _mm256_permute2x128_si256(y, y, 1); y = _mm256_add_epi64(u, y); u = _mm256_unpackhi_epi64(y, y); return _mm256_add_epi16(y, u); } static INLINE void row_store_32xh(const __m256i *r, int height, uint8_t *dst, ptrdiff_t stride) { for (int i = 0; i < height; ++i) { _mm256_storeu_si256((__m256i *)dst, *r); dst += stride; } } static INLINE void row_store_32x2xh(const __m256i *r0, const __m256i *r1, int height, uint8_t *dst, ptrdiff_t stride) { for (int i = 0; i < height; ++i) { _mm256_storeu_si256((__m256i *)dst, *r0); _mm256_storeu_si256((__m256i *)(dst + 32), *r1); dst += stride; } } static INLINE void row_store_64xh(const __m256i *r, int height, uint8_t *dst, ptrdiff_t stride) { for (int i = 0; i < height; ++i) { _mm256_storeu_si256((__m256i *)dst, *r); _mm256_storeu_si256((__m256i *)(dst + 32), *r); dst += stride; } } static DECLARE_ALIGNED(16, uint8_t, HighbdLoadMaskx[8][16]) = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, { 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, { 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }, }; static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx4[4][16]) = { { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }, { 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 4, 5, 8, 9, 12, 13 }, { 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 0, 1, 6, 7, 10, 11 }, { 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 0, 1, 8, 9 } }; static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx[8][32]) = { { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }, { 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }, { 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27 }, { 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25 }, { 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19, 22, 23 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17, 20, 21 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15, 18, 19 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 16, 17 } }; static DECLARE_ALIGNED(32, uint16_t, HighbdBaseMask[17][16]) = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0 }, { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff } }; static INLINE void highbd_transpose16x4_8x8_sse2(__m128i *x, __m128i *d) { __m128i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; r0 = _mm_unpacklo_epi16(x[0], x[1]); r1 = _mm_unpacklo_epi16(x[2], x[3]); r2 = _mm_unpacklo_epi16(x[4], x[5]); r3 = _mm_unpacklo_epi16(x[6], x[7]); r4 = _mm_unpacklo_epi16(x[8], x[9]); r5 = _mm_unpacklo_epi16(x[10], x[11]); r6 = _mm_unpacklo_epi16(x[12], x[13]); r7 = _mm_unpacklo_epi16(x[14], x[15]); r8 = _mm_unpacklo_epi32(r0, r1); r9 = _mm_unpackhi_epi32(r0, r1); r10 = _mm_unpacklo_epi32(r2, r3); r11 = _mm_unpackhi_epi32(r2, r3); r12 = _mm_unpacklo_epi32(r4, r5); r13 = _mm_unpackhi_epi32(r4, r5); r14 = _mm_unpacklo_epi32(r6, r7); r15 = _mm_unpackhi_epi32(r6, r7); r0 = _mm_unpacklo_epi64(r8, r9); r1 = _mm_unpackhi_epi64(r8, r9); r2 = _mm_unpacklo_epi64(r10, r11); r3 = _mm_unpackhi_epi64(r10, r11); r4 = _mm_unpacklo_epi64(r12, r13); r5 = _mm_unpackhi_epi64(r12, r13); r6 = _mm_unpacklo_epi64(r14, r15); r7 = _mm_unpackhi_epi64(r14, r15); d[0] = _mm_unpacklo_epi64(r0, r2); d[1] = _mm_unpacklo_epi64(r4, r6); d[2] = _mm_unpacklo_epi64(r1, r3); d[3] = _mm_unpacklo_epi64(r5, r7); d[4] = _mm_unpackhi_epi64(r0, r2); d[5] = _mm_unpackhi_epi64(r4, r6); d[6] = _mm_unpackhi_epi64(r1, r3); d[7] = _mm_unpackhi_epi64(r5, r7); } static INLINE void highbd_transpose4x16_avx2(__m256i *x, __m256i *d) { __m256i w0, w1, w2, w3, ww0, ww1; w0 = _mm256_unpacklo_epi16(x[0], x[1]); // 00 10 01 11 02 12 03 13 w1 = _mm256_unpacklo_epi16(x[2], x[3]); // 20 30 21 31 22 32 23 33 w2 = _mm256_unpackhi_epi16(x[0], x[1]); // 40 50 41 51 42 52 43 53 w3 = _mm256_unpackhi_epi16(x[2], x[3]); // 60 70 61 71 62 72 63 73 ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31 ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71 d[0] = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70 d[1] = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71 ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33 ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73 d[2] = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72 d[3] = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73 } static INLINE void highbd_transpose8x16_16x8_avx2(__m256i *x, __m256i *d) { __m256i w0, w1, w2, w3, ww0, ww1; w0 = _mm256_unpacklo_epi16(x[0], x[1]); // 00 10 01 11 02 12 03 13 w1 = _mm256_unpacklo_epi16(x[2], x[3]); // 20 30 21 31 22 32 23 33 w2 = _mm256_unpacklo_epi16(x[4], x[5]); // 40 50 41 51 42 52 43 53 w3 = _mm256_unpacklo_epi16(x[6], x[7]); // 60 70 61 71 62 72 63 73 ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31 ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71 d[0] = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70 d[1] = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71 ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33 ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73 d[2] = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72 d[3] = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73 w0 = _mm256_unpackhi_epi16(x[0], x[1]); // 04 14 05 15 06 16 07 17 w1 = _mm256_unpackhi_epi16(x[2], x[3]); // 24 34 25 35 26 36 27 37 w2 = _mm256_unpackhi_epi16(x[4], x[5]); // 44 54 45 55 46 56 47 57 w3 = _mm256_unpackhi_epi16(x[6], x[7]); // 64 74 65 75 66 76 67 77 ww0 = _mm256_unpacklo_epi32(w0, w1); // 04 14 24 34 05 15 25 35 ww1 = _mm256_unpacklo_epi32(w2, w3); // 44 54 64 74 45 55 65 75 d[4] = _mm256_unpacklo_epi64(ww0, ww1); // 04 14 24 34 44 54 64 74 d[5] = _mm256_unpackhi_epi64(ww0, ww1); // 05 15 25 35 45 55 65 75 ww0 = _mm256_unpackhi_epi32(w0, w1); // 06 16 26 36 07 17 27 37 ww1 = _mm256_unpackhi_epi32(w2, w3); // 46 56 66 76 47 57 67 77 d[6] = _mm256_unpacklo_epi64(ww0, ww1); // 06 16 26 36 46 56 66 76 d[7] = _mm256_unpackhi_epi64(ww0, ww1); // 07 17 27 37 47 57 67 77 } static INLINE void highbd_transpose16x16_avx2(__m256i *x, __m256i *d) { __m256i w0, w1, w2, w3, ww0, ww1; __m256i dd[16]; w0 = _mm256_unpacklo_epi16(x[0], x[1]); w1 = _mm256_unpacklo_epi16(x[2], x[3]); w2 = _mm256_unpacklo_epi16(x[4], x[5]); w3 = _mm256_unpacklo_epi16(x[6], x[7]); ww0 = _mm256_unpacklo_epi32(w0, w1); // ww1 = _mm256_unpacklo_epi32(w2, w3); // dd[0] = _mm256_unpacklo_epi64(ww0, ww1); dd[1] = _mm256_unpackhi_epi64(ww0, ww1); ww0 = _mm256_unpackhi_epi32(w0, w1); // ww1 = _mm256_unpackhi_epi32(w2, w3); // dd[2] = _mm256_unpacklo_epi64(ww0, ww1); dd[3] = _mm256_unpackhi_epi64(ww0, ww1); w0 = _mm256_unpackhi_epi16(x[0], x[1]); w1 = _mm256_unpackhi_epi16(x[2], x[3]); w2 = _mm256_unpackhi_epi16(x[4], x[5]); w3 = _mm256_unpackhi_epi16(x[6], x[7]); ww0 = _mm256_unpacklo_epi32(w0, w1); // ww1 = _mm256_unpacklo_epi32(w2, w3); // dd[4] = _mm256_unpacklo_epi64(ww0, ww1); dd[5] = _mm256_unpackhi_epi64(ww0, ww1); ww0 = _mm256_unpackhi_epi32(w0, w1); // ww1 = _mm256_unpackhi_epi32(w2, w3); // dd[6] = _mm256_unpacklo_epi64(ww0, ww1); dd[7] = _mm256_unpackhi_epi64(ww0, ww1); w0 = _mm256_unpacklo_epi16(x[8], x[9]); w1 = _mm256_unpacklo_epi16(x[10], x[11]); w2 = _mm256_unpacklo_epi16(x[12], x[13]); w3 = _mm256_unpacklo_epi16(x[14], x[15]); ww0 = _mm256_unpacklo_epi32(w0, w1); ww1 = _mm256_unpacklo_epi32(w2, w3); dd[8] = _mm256_unpacklo_epi64(ww0, ww1); dd[9] = _mm256_unpackhi_epi64(ww0, ww1); ww0 = _mm256_unpackhi_epi32(w0, w1); ww1 = _mm256_unpackhi_epi32(w2, w3); dd[10] = _mm256_unpacklo_epi64(ww0, ww1); dd[11] = _mm256_unpackhi_epi64(ww0, ww1); w0 = _mm256_unpackhi_epi16(x[8], x[9]); w1 = _mm256_unpackhi_epi16(x[10], x[11]); w2 = _mm256_unpackhi_epi16(x[12], x[13]); w3 = _mm256_unpackhi_epi16(x[14], x[15]); ww0 = _mm256_unpacklo_epi32(w0, w1); ww1 = _mm256_unpacklo_epi32(w2, w3); dd[12] = _mm256_unpacklo_epi64(ww0, ww1); dd[13] = _mm256_unpackhi_epi64(ww0, ww1); ww0 = _mm256_unpackhi_epi32(w0, w1); ww1 = _mm256_unpackhi_epi32(w2, w3); dd[14] = _mm256_unpacklo_epi64(ww0, ww1); dd[15] = _mm256_unpackhi_epi64(ww0, ww1); for (int i = 0; i < 8; i++) { d[i] = _mm256_insertf128_si256(dd[i], _mm256_castsi256_si128(dd[i + 8]), 1); d[i + 8] = _mm256_insertf128_si256(dd[i + 8], _mm256_extracti128_si256(dd[i], 1), 0); } } void aom_dc_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i sum_above = dc_sum_32(above); __m256i sum_left = dc_sum_32(left); sum_left = _mm256_add_epi16(sum_left, sum_above); const __m256i thirtytwo = _mm256_set1_epi16(32); sum_left = _mm256_add_epi16(sum_left, thirtytwo); sum_left = _mm256_srai_epi16(sum_left, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum_left, zero); row_store_32xh(&row, 32, dst, stride); } void aom_dc_top_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_32(above); (void)left; const __m256i sixteen = _mm256_set1_epi16(16); sum = _mm256_add_epi16(sum, sixteen); sum = _mm256_srai_epi16(sum, 5); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_32xh(&row, 32, dst, stride); } void aom_dc_left_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_32(left); (void)above; const __m256i sixteen = _mm256_set1_epi16(16); sum = _mm256_add_epi16(sum, sixteen); sum = _mm256_srai_epi16(sum, 5); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_32xh(&row, 32, dst, stride); } void aom_dc_128_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_32xh(&row, 32, dst, stride); } void aom_v_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row = _mm256_loadu_si256((const __m256i *)above); (void)left; row_store_32xh(&row, 32, dst, stride); } // There are 32 rows togeter. This function does line: // 0,1,2,3, and 16,17,18,19. The next call would do // 4,5,6,7, and 20,21,22,23. So 4 times of calling // would finish 32 rows. static INLINE void h_predictor_32x8line(const __m256i *row, uint8_t *dst, ptrdiff_t stride) { __m256i t[4]; __m256i m = _mm256_setzero_si256(); const __m256i inc = _mm256_set1_epi8(4); int i; for (i = 0; i < 4; i++) { t[i] = _mm256_shuffle_epi8(*row, m); __m256i r0 = _mm256_permute2x128_si256(t[i], t[i], 0); __m256i r1 = _mm256_permute2x128_si256(t[i], t[i], 0x11); _mm256_storeu_si256((__m256i *)dst, r0); _mm256_storeu_si256((__m256i *)(dst + (stride << 4)), r1); dst += stride; m = _mm256_add_epi8(m, inc); } } void aom_h_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; const __m256i left_col = _mm256_loadu_si256((__m256i const *)left); __m256i u = _mm256_unpacklo_epi8(left_col, left_col); __m256i v = _mm256_unpacklo_epi8(u, u); h_predictor_32x8line(&v, dst, stride); dst += stride << 2; v = _mm256_unpackhi_epi8(u, u); h_predictor_32x8line(&v, dst, stride); dst += stride << 2; u = _mm256_unpackhi_epi8(left_col, left_col); v = _mm256_unpacklo_epi8(u, u); h_predictor_32x8line(&v, dst, stride); dst += stride << 2; v = _mm256_unpackhi_epi8(u, u); h_predictor_32x8line(&v, dst, stride); } // ----------------------------------------------------------------------------- // Rectangle void aom_dc_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m128i top_sum = dc_sum_32_sse2(above); __m128i left_sum = dc_sum_16_sse2(left); left_sum = _mm_add_epi16(top_sum, left_sum); uint16_t sum = (uint16_t)_mm_cvtsi128_si32(left_sum); sum += 24; sum /= 48; const __m256i row = _mm256_set1_epi8((int8_t)sum); row_store_32xh(&row, 16, dst, stride); } void aom_dc_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i sum_above = dc_sum_32(above); __m256i sum_left = dc_sum_64(left); sum_left = _mm256_add_epi16(sum_left, sum_above); uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left)); sum += 48; sum /= 96; const __m256i row = _mm256_set1_epi8((int8_t)sum); row_store_32xh(&row, 64, dst, stride); } void aom_dc_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i sum_above = dc_sum_64(above); __m256i sum_left = dc_sum_64(left); sum_left = _mm256_add_epi16(sum_left, sum_above); uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left)); sum += 64; sum /= 128; const __m256i row = _mm256_set1_epi8((int8_t)sum); row_store_64xh(&row, 64, dst, stride); } void aom_dc_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i sum_above = dc_sum_64(above); __m256i sum_left = dc_sum_32(left); sum_left = _mm256_add_epi16(sum_left, sum_above); uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left)); sum += 48; sum /= 96; const __m256i row = _mm256_set1_epi8((int8_t)sum); row_store_64xh(&row, 32, dst, stride); } void aom_dc_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i sum_above = dc_sum_64(above); __m256i sum_left = _mm256_castsi128_si256(dc_sum_16_sse2(left)); sum_left = _mm256_add_epi16(sum_left, sum_above); uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left)); sum += 40; sum /= 80; const __m256i row = _mm256_set1_epi8((int8_t)sum); row_store_64xh(&row, 16, dst, stride); } void aom_dc_top_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_32(above); (void)left; const __m256i sixteen = _mm256_set1_epi16(16); sum = _mm256_add_epi16(sum, sixteen); sum = _mm256_srai_epi16(sum, 5); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_32xh(&row, 16, dst, stride); } void aom_dc_top_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_32(above); (void)left; const __m256i sixteen = _mm256_set1_epi16(16); sum = _mm256_add_epi16(sum, sixteen); sum = _mm256_srai_epi16(sum, 5); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_32xh(&row, 64, dst, stride); } void aom_dc_top_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_64(above); (void)left; const __m256i thirtytwo = _mm256_set1_epi16(32); sum = _mm256_add_epi16(sum, thirtytwo); sum = _mm256_srai_epi16(sum, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_64xh(&row, 64, dst, stride); } void aom_dc_top_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_64(above); (void)left; const __m256i thirtytwo = _mm256_set1_epi16(32); sum = _mm256_add_epi16(sum, thirtytwo); sum = _mm256_srai_epi16(sum, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_64xh(&row, 32, dst, stride); } void aom_dc_top_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_64(above); (void)left; const __m256i thirtytwo = _mm256_set1_epi16(32); sum = _mm256_add_epi16(sum, thirtytwo); sum = _mm256_srai_epi16(sum, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_64xh(&row, 16, dst, stride); } void aom_dc_left_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m128i sum = dc_sum_16_sse2(left); (void)above; const __m128i eight = _mm_set1_epi16(8); sum = _mm_add_epi16(sum, eight); sum = _mm_srai_epi16(sum, 4); const __m128i zero = _mm_setzero_si128(); const __m128i r = _mm_shuffle_epi8(sum, zero); const __m256i row = _mm256_inserti128_si256(_mm256_castsi128_si256(r), r, 1); row_store_32xh(&row, 16, dst, stride); } void aom_dc_left_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_64(left); (void)above; const __m256i thirtytwo = _mm256_set1_epi16(32); sum = _mm256_add_epi16(sum, thirtytwo); sum = _mm256_srai_epi16(sum, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_32xh(&row, 64, dst, stride); } void aom_dc_left_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_64(left); (void)above; const __m256i thirtytwo = _mm256_set1_epi16(32); sum = _mm256_add_epi16(sum, thirtytwo); sum = _mm256_srai_epi16(sum, 6); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_64xh(&row, 64, dst, stride); } void aom_dc_left_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i sum = dc_sum_32(left); (void)above; const __m256i sixteen = _mm256_set1_epi16(16); sum = _mm256_add_epi16(sum, sixteen); sum = _mm256_srai_epi16(sum, 5); const __m256i zero = _mm256_setzero_si256(); __m256i row = _mm256_shuffle_epi8(sum, zero); row_store_64xh(&row, 32, dst, stride); } void aom_dc_left_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m128i sum = dc_sum_16_sse2(left); (void)above; const __m128i eight = _mm_set1_epi16(8); sum = _mm_add_epi16(sum, eight); sum = _mm_srai_epi16(sum, 4); const __m128i zero = _mm_setzero_si128(); const __m128i r = _mm_shuffle_epi8(sum, zero); const __m256i row = _mm256_inserti128_si256(_mm256_castsi128_si256(r), r, 1); row_store_64xh(&row, 16, dst, stride); } void aom_dc_128_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_32xh(&row, 16, dst, stride); } void aom_dc_128_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_32xh(&row, 64, dst, stride); } void aom_dc_128_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_64xh(&row, 64, dst, stride); } void aom_dc_128_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_64xh(&row, 32, dst, stride); } void aom_dc_128_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; (void)left; const __m256i row = _mm256_set1_epi8((int8_t)0x80); row_store_64xh(&row, 16, dst, stride); } void aom_v_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row = _mm256_loadu_si256((const __m256i *)above); (void)left; row_store_32xh(&row, 16, dst, stride); } void aom_v_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row = _mm256_loadu_si256((const __m256i *)above); (void)left; row_store_32xh(&row, 64, dst, stride); } void aom_v_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row0 = _mm256_loadu_si256((const __m256i *)above); const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32)); (void)left; row_store_32x2xh(&row0, &row1, 64, dst, stride); } void aom_v_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row0 = _mm256_loadu_si256((const __m256i *)above); const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32)); (void)left; row_store_32x2xh(&row0, &row1, 32, dst, stride); } void aom_v_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i row0 = _mm256_loadu_si256((const __m256i *)above); const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32)); (void)left; row_store_32x2xh(&row0, &row1, 16, dst, stride); } // ----------------------------------------------------------------------------- // PAETH_PRED // Return 16 16-bit pixels in one row (__m256i) static INLINE __m256i paeth_pred(const __m256i *left, const __m256i *top, const __m256i *topleft) { const __m256i base = _mm256_sub_epi16(_mm256_add_epi16(*top, *left), *topleft); __m256i pl = _mm256_abs_epi16(_mm256_sub_epi16(base, *left)); __m256i pt = _mm256_abs_epi16(_mm256_sub_epi16(base, *top)); __m256i ptl = _mm256_abs_epi16(_mm256_sub_epi16(base, *topleft)); __m256i mask1 = _mm256_cmpgt_epi16(pl, pt); mask1 = _mm256_or_si256(mask1, _mm256_cmpgt_epi16(pl, ptl)); __m256i mask2 = _mm256_cmpgt_epi16(pt, ptl); pl = _mm256_andnot_si256(mask1, *left); ptl = _mm256_and_si256(mask2, *topleft); pt = _mm256_andnot_si256(mask2, *top); pt = _mm256_or_si256(pt, ptl); pt = _mm256_and_si256(mask1, pt); return _mm256_or_si256(pt, pl); } // Return 16 8-bit pixels in one row (__m128i) static INLINE __m128i paeth_16x1_pred(const __m256i *left, const __m256i *top, const __m256i *topleft) { const __m256i p0 = paeth_pred(left, top, topleft); const __m256i p1 = _mm256_permute4x64_epi64(p0, 0xe); const __m256i p = _mm256_packus_epi16(p0, p1); return _mm256_castsi256_si128(p); } static INLINE __m256i get_top_vector(const uint8_t *above) { const __m128i x = _mm_load_si128((const __m128i *)above); const __m128i zero = _mm_setzero_si128(); const __m128i t0 = _mm_unpacklo_epi8(x, zero); const __m128i t1 = _mm_unpackhi_epi8(x, zero); return _mm256_inserti128_si256(_mm256_castsi128_si256(t0), t1, 1); } void aom_paeth_predictor_16x8_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m128i x = _mm_loadl_epi64((const __m128i *)left); const __m256i l = _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1); const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]); __m256i rep = _mm256_set1_epi16((short)0x8000); const __m256i one = _mm256_set1_epi16(1); const __m256i top = get_top_vector(above); int i; for (i = 0; i < 8; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i row = paeth_16x1_pred(&l16, &top, &tl16); _mm_store_si128((__m128i *)dst, row); dst += stride; rep = _mm256_add_epi16(rep, one); } } static INLINE __m256i get_left_vector(const uint8_t *left) { const __m128i x = _mm_load_si128((const __m128i *)left); return _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1); } void aom_paeth_predictor_16x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i l = get_left_vector(left); const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]); __m256i rep = _mm256_set1_epi16((short)0x8000); const __m256i one = _mm256_set1_epi16(1); const __m256i top = get_top_vector(above); int i; for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i row = paeth_16x1_pred(&l16, &top, &tl16); _mm_store_si128((__m128i *)dst, row); dst += stride; rep = _mm256_add_epi16(rep, one); } } void aom_paeth_predictor_16x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i l = get_left_vector(left); const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]); __m256i rep = _mm256_set1_epi16((short)0x8000); const __m256i one = _mm256_set1_epi16(1); const __m256i top = get_top_vector(above); int i; for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i row = paeth_16x1_pred(&l16, &top, &tl16); _mm_store_si128((__m128i *)dst, row); dst += stride; rep = _mm256_add_epi16(rep, one); } l = get_left_vector(left + 16); rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i row = paeth_16x1_pred(&l16, &top, &tl16); _mm_store_si128((__m128i *)dst, row); dst += stride; rep = _mm256_add_epi16(rep, one); } } void aom_paeth_predictor_16x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]); const __m256i one = _mm256_set1_epi16(1); const __m256i top = get_top_vector(above); for (int j = 0; j < 4; ++j) { const __m256i l = get_left_vector(left + j * 16); __m256i rep = _mm256_set1_epi16((short)0x8000); for (int i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i row = paeth_16x1_pred(&l16, &top, &tl16); _mm_store_si128((__m128i *)dst, row); dst += stride; rep = _mm256_add_epi16(rep, one); } } } // Return 32 8-bit pixels in one row (__m256i) static INLINE __m256i paeth_32x1_pred(const __m256i *left, const __m256i *top0, const __m256i *top1, const __m256i *topleft) { __m256i p0 = paeth_pred(left, top0, topleft); __m256i p1 = _mm256_permute4x64_epi64(p0, 0xe); const __m256i x0 = _mm256_packus_epi16(p0, p1); p0 = paeth_pred(left, top1, topleft); p1 = _mm256_permute4x64_epi64(p0, 0xe); const __m256i x1 = _mm256_packus_epi16(p0, p1); return _mm256_permute2x128_si256(x0, x1, 0x20); } void aom_paeth_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i l = get_left_vector(left); const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); __m256i rep = _mm256_set1_epi16((short)0x8000); const __m256i one = _mm256_set1_epi16(1); int i; for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m256i r = paeth_32x1_pred(&l16, &t0, &t1, &tl); _mm256_storeu_si256((__m256i *)dst, r); dst += stride; rep = _mm256_add_epi16(rep, one); } } void aom_paeth_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { __m256i l = get_left_vector(left); const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); __m256i rep = _mm256_set1_epi16((short)0x8000); const __m256i one = _mm256_set1_epi16(1); int i; for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); dst += stride; rep = _mm256_add_epi16(rep, one); } l = get_left_vector(left + 16); rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); dst += stride; rep = _mm256_add_epi16(rep, one); } } void aom_paeth_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); const __m256i one = _mm256_set1_epi16(1); int i, j; for (j = 0; j < 4; ++j) { const __m256i l = get_left_vector(left + j * 16); __m256i rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); dst += stride; rep = _mm256_add_epi16(rep, one); } } } void aom_paeth_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i t2 = get_top_vector(above + 32); const __m256i t3 = get_top_vector(above + 48); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); const __m256i one = _mm256_set1_epi16(1); int i, j; for (j = 0; j < 2; ++j) { const __m256i l = get_left_vector(left + j * 16); __m256i rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl); const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); _mm_store_si128((__m128i *)(dst + 32), r2); _mm_store_si128((__m128i *)(dst + 48), r3); dst += stride; rep = _mm256_add_epi16(rep, one); } } } void aom_paeth_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i t2 = get_top_vector(above + 32); const __m256i t3 = get_top_vector(above + 48); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); const __m256i one = _mm256_set1_epi16(1); int i, j; for (j = 0; j < 4; ++j) { const __m256i l = get_left_vector(left + j * 16); __m256i rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl); const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); _mm_store_si128((__m128i *)(dst + 32), r2); _mm_store_si128((__m128i *)(dst + 48), r3); dst += stride; rep = _mm256_add_epi16(rep, one); } } } void aom_paeth_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const __m256i t0 = get_top_vector(above); const __m256i t1 = get_top_vector(above + 16); const __m256i t2 = get_top_vector(above + 32); const __m256i t3 = get_top_vector(above + 48); const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]); const __m256i one = _mm256_set1_epi16(1); int i; const __m256i l = get_left_vector(left); __m256i rep = _mm256_set1_epi16((short)0x8000); for (i = 0; i < 16; ++i) { const __m256i l16 = _mm256_shuffle_epi8(l, rep); const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl); const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl); const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl); const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl); _mm_store_si128((__m128i *)dst, r0); _mm_store_si128((__m128i *)(dst + 16), r1); _mm_store_si128((__m128i *)(dst + 32), r2); _mm_store_si128((__m128i *)(dst + 48), r3); dst += stride; rep = _mm256_add_epi16(rep, one); } } #define PERM4x64(c0, c1, c2, c3) c0 + (c1 << 2) + (c2 << 4) + (c3 << 6) #define PERM2x128(c0, c1) c0 + (c1 << 4) static AOM_FORCE_INLINE void highbd_dr_prediction_z1_4xN_internal_avx2( int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((N + 4) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16; __m256i diff, c3f; __m128i a_mbase_x, max_base_x128, base_inc128, mask128; __m128i a0_128, a1_128; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm_set1_epi16(above[max_base_x]); max_base_x128 = _mm_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } a0_128 = _mm_loadu_si128((__m128i *)(above + base)); a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1)); if (upsample_above) { a0_128 = _mm_shuffle_epi8(a0_128, *(__m128i *)HighbdEvenOddMaskx4[0]); a1_128 = _mm_srli_si128(a0_128, 8); base_inc128 = _mm_setr_epi16(base, base + 2, base + 4, base + 6, base + 8, base + 10, base + 12, base + 14); shift = _mm256_srli_epi16( _mm256_and_si256( _mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), _mm256_set1_epi16(0x3f)), 1); } else { base_inc128 = _mm_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, base + 5, base + 6, base + 7); shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); } a0 = _mm256_castsi128_si256(a0_128); a1 = _mm256_castsi128_si256(a1_128); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); res1 = _mm256_castsi256_si128(res); mask128 = _mm_cmpgt_epi16(max_base_x128, base_inc128); dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); x += dx; } } static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_4xN_internal_avx2( int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((N + 4) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16; __m256i diff; __m128i a_mbase_x, max_base_x128, base_inc128, mask128; a16 = _mm256_set1_epi32(16); a_mbase_x = _mm_set1_epi16(above[max_base_x]); max_base_x128 = _mm_set1_epi32(max_base_x); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); if (upsample_above) { a0 = _mm256_permutevar8x32_epi32( a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1)); base_inc128 = _mm_setr_epi32(base, base + 2, base + 4, base + 6); shift = _mm256_srli_epi32( _mm256_and_si256( _mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above), _mm256_set1_epi32(0x3f)), 1); } else { base_inc128 = _mm_setr_epi32(base, base + 1, base + 2, base + 3); shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); } diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); res1 = _mm256_castsi256_si128(res); res1 = _mm_packus_epi32(res1, res1); mask128 = _mm_cmpgt_epi32(max_base_x128, base_inc128); mask128 = _mm_packs_epi32(mask128, mask128); // goto 16 bit dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); x += dx; } } static void highbd_dr_prediction_z1_4xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx, int bd) { __m128i dstvec[16]; if (bd < 12) { highbd_dr_prediction_z1_4xN_internal_avx2(N, dstvec, above, upsample_above, dx); } else { highbd_dr_prediction_32bit_z1_4xN_internal_avx2(N, dstvec, above, upsample_above, dx); } for (int i = 0; i < N; i++) { _mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]); } } static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_8xN_internal_avx2( int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((8 + N) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a0_1, a1_1, a32, a16; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi32(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi32(max_base_x); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res, res1, shift; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values } return; } a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); if (upsample_above) { a0 = _mm256_permutevar8x32_epi32( a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1)); a0_1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8))); a0_1 = _mm256_permutevar8x32_epi32( a0_1, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); a1_1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0_1, 1)); a0 = _mm256_inserti128_si256(a0, _mm256_castsi256_si128(a0_1), 1); a1 = _mm256_inserti128_si256(a1, _mm256_castsi256_si128(a1_1), 1); base_inc256 = _mm256_setr_epi32(base, base + 2, base + 4, base + 6, base + 8, base + 10, base + 12, base + 14); shift = _mm256_srli_epi32( _mm256_and_si256( _mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above), _mm256_set1_epi32(0x3f)), 1); } else { base_inc256 = _mm256_setr_epi32(base, base + 1, base + 2, base + 3, base + 4, base + 5, base + 6, base + 7); shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); } diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); res1 = _mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); mask256 = _mm256_cmpgt_epi32(max_base_x256, base_inc256); mask256 = _mm256_packs_epi32( mask256, _mm256_castsi128_si256( _mm256_extracti128_si256(mask256, 1))); // goto 16 bit res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); dst[r] = _mm256_castsi256_si128(res1); x += dx; } } static AOM_FORCE_INLINE void highbd_dr_prediction_z1_8xN_internal_avx2( int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((8 + N) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16, c3f; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; __m128i a0_x128, a1_x128; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res, res1, shift; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values } return; } a0_x128 = _mm_loadu_si128((__m128i *)(above + base)); if (upsample_above) { __m128i mask, atmp0, atmp1, atmp2, atmp3; a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 8)); atmp0 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx[0]); atmp1 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdEvenOddMaskx[0]); atmp2 = _mm_shuffle_epi8(a0_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16)); atmp3 = _mm_shuffle_epi8(a1_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16)); mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[0], _mm_set1_epi8(15)); a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[0] + 16), _mm_set1_epi8(15)); a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); base_inc256 = _mm256_setr_epi16(base, base + 2, base + 4, base + 6, base + 8, base + 10, base + 12, base + 14, 0, 0, 0, 0, 0, 0, 0, 0); shift = _mm256_srli_epi16( _mm256_and_si256( _mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), c3f), 1); } else { a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 1)); base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, base + 5, base + 6, base + 7, 0, 0, 0, 0, 0, 0, 0, 0); shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); } a0 = _mm256_castsi128_si256(a0_x128); a1 = _mm256_castsi128_si256(a1_x128); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); res1 = _mm256_blendv_epi8(a_mbase_x, res, mask256); dst[r] = _mm256_castsi256_si128(res1); x += dx; } } static void highbd_dr_prediction_z1_8xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx, int bd) { __m128i dstvec[32]; if (bd < 12) { highbd_dr_prediction_z1_8xN_internal_avx2(N, dstvec, above, upsample_above, dx); } else { highbd_dr_prediction_32bit_z1_8xN_internal_avx2(N, dstvec, above, upsample_above, dx); } for (int i = 0; i < N; i++) { _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); } } static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_16xN_internal_avx2( int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((16 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a0_1, a1, a1_1, a32, a16; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi32(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res[2], res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 16 values } return; } __m256i shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[0] = _mm256_add_epi32(a32, b); res[0] = _mm256_srli_epi32(res[0], 5); res[0] = _mm256_packus_epi32( res[0], _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); int mdif = max_base_x - base; if (mdif > 8) { a0_1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8))); a1_1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 9))); diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[1] = _mm256_add_epi32(a32, b); res[1] = _mm256_srli_epi32(res[1], 5); res[1] = _mm256_packus_epi32( res[1], _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); } else { res[1] = a_mbase_x; } res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), 1); // 16 16bit values base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, base + 5, base + 6, base + 7, base + 8, base + 9, base + 10, base + 11, base + 12, base + 13, base + 14, base + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res1, mask256); x += dx; } } static AOM_FORCE_INLINE void highbd_dr_prediction_z1_16xN_internal_avx2( int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((16 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16, c3f; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 16 values } return; } __m256i shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); a0 = _mm256_loadu_si256((__m256i *)(above + base)); a1 = _mm256_loadu_si256((__m256i *)(above + base + 1)); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); // 16 16bit values base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, base + 5, base + 6, base + 7, base + 8, base + 9, base + 10, base + 11, base + 12, base + 13, base + 14, base + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res, mask256); x += dx; } } static void highbd_dr_prediction_z1_16xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx, int bd) { __m256i dstvec[64]; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(N, dstvec, above, upsample_above, dx); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(N, dstvec, above, upsample_above, dx); } for (int i = 0; i < N; i++) { _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); } } static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_32xN_internal_avx2( int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((32 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a0_1, a1, a1_1, a32, a16, c3f; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi32(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res[2], res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 32 values dstvec[i + N] = a_mbase_x; } return; } __m256i shift = _mm256_srli_epi32(_mm256_and_si256(_mm256_set1_epi32(x), c3f), 1); for (int j = 0; j < 32; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { res1 = a_mbase_x; } else { a0 = _mm256_cvtepu16_epi32( _mm_loadu_si128((__m128i *)(above + base + j))); a1 = _mm256_cvtepu16_epi32( _mm_loadu_si128((__m128i *)(above + base + 1 + j))); diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[0] = _mm256_add_epi32(a32, b); res[0] = _mm256_srli_epi32(res[0], 5); res[0] = _mm256_packus_epi32( res[0], _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); if (mdif > 8) { a0_1 = _mm256_cvtepu16_epi32( _mm_loadu_si128((__m128i *)(above + base + 8 + j))); a1_1 = _mm256_cvtepu16_epi32( _mm_loadu_si128((__m128i *)(above + base + 9 + j))); diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[1] = _mm256_add_epi32(a32, b); res[1] = _mm256_srli_epi32(res[1], 5); res[1] = _mm256_packus_epi32( res[1], _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); } else { res[1] = a_mbase_x; } res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), 1); // 16 16bit values base_inc256 = _mm256_setr_epi16( base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, base + j + 5, base + j + 6, base + j + 7, base + j + 8, base + j + 9, base + j + 10, base + j + 11, base + j + 12, base + j + 13, base + j + 14, base + j + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); } if (!j) { dstvec[r] = res1; } else { dstvec[r + N] = res1; } } x += dx; } } static AOM_FORCE_INLINE void highbd_dr_prediction_z1_32xN_internal_avx2( int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((32 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16, c3f; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 32 values dstvec[i + N] = a_mbase_x; } return; } __m256i shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); for (int j = 0; j < 32; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { res = a_mbase_x; } else { a0 = _mm256_loadu_si256((__m256i *)(above + base + j)); a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); base_inc256 = _mm256_setr_epi16( base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, base + j + 5, base + j + 6, base + j + 7, base + j + 8, base + j + 9, base + j + 10, base + j + 11, base + j + 12, base + j + 13, base + j + 14, base + j + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); res = _mm256_blendv_epi8(a_mbase_x, res, mask256); } if (!j) { dstvec[r] = res; } else { dstvec[r + N] = res; } } x += dx; } } static void highbd_dr_prediction_z1_32xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx, int bd) { __m256i dstvec[128]; if (bd < 12) { highbd_dr_prediction_z1_32xN_internal_avx2(N, dstvec, above, upsample_above, dx); } else { highbd_dr_prediction_32bit_z1_32xN_internal_avx2(N, dstvec, above, upsample_above, dx); } for (int i = 0; i < N; i++) { _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); _mm256_storeu_si256((__m256i *)(dst + stride * i + 16), dstvec[i + N]); } } static void highbd_dr_prediction_32bit_z1_64xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((64 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a0_1, a1, a1_1, a32, a16; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi32(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); int x = dx; for (int r = 0; r < N; r++, dst += stride) { __m256i b, res[2], res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); dst += stride; } return; } __m256i shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); __m128i a0_128, a0_1_128, a1_128, a1_1_128; for (int j = 0; j < 64; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); } else { a0_128 = _mm_loadu_si128((__m128i *)(above + base + j)); a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1 + j)); a0 = _mm256_cvtepu16_epi32(a0_128); a1 = _mm256_cvtepu16_epi32(a1_128); diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[0] = _mm256_add_epi32(a32, b); res[0] = _mm256_srli_epi32(res[0], 5); res[0] = _mm256_packus_epi32( res[0], _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); if (mdif > 8) { a0_1_128 = _mm_loadu_si128((__m128i *)(above + base + 8 + j)); a1_1_128 = _mm_loadu_si128((__m128i *)(above + base + 9 + j)); a0_1 = _mm256_cvtepu16_epi32(a0_1_128); a1_1 = _mm256_cvtepu16_epi32(a1_1_128); diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res[1] = _mm256_add_epi32(a32, b); res[1] = _mm256_srli_epi32(res[1], 5); res[1] = _mm256_packus_epi32( res[1], _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); } else { res[1] = a_mbase_x; } res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), 1); // 16 16bit values base_inc256 = _mm256_setr_epi16( base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, base + j + 5, base + j + 6, base + j + 7, base + j + 8, base + j + 9, base + j + 10, base + j + 11, base + j + 12, base + j + 13, base + j + 14, base + j + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); _mm256_storeu_si256((__m256i *)(dst + j), res1); } } x += dx; } } static void highbd_dr_prediction_z1_64xN_avx2(int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((64 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16, c3f; __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi16(above[max_base_x]); max_base_x256 = _mm256_set1_epi16(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++, dst += stride) { __m256i b, res; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); dst += stride; } return; } __m256i shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); for (int j = 0; j < 64; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); } else { a0 = _mm256_loadu_si256((__m256i *)(above + base + j)); a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); base_inc256 = _mm256_setr_epi16( base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, base + j + 5, base + j + 6, base + j + 7, base + j + 8, base + j + 9, base + j + 10, base + j + 11, base + j + 12, base + j + 13, base + j + 14, base + j + 15); mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); res = _mm256_blendv_epi8(a_mbase_x, res, mask256); _mm256_storeu_si256((__m256i *)(dst + j), res); // 16 16bit values } } x += dx; } } // Directional prediction, zone 1: 0 < angle < 90 void av1_highbd_dr_prediction_z1_avx2(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int dx, int dy, int bd) { (void)left; (void)dy; switch (bw) { case 4: highbd_dr_prediction_z1_4xN_avx2(bh, dst, stride, above, upsample_above, dx, bd); break; case 8: highbd_dr_prediction_z1_8xN_avx2(bh, dst, stride, above, upsample_above, dx, bd); break; case 16: highbd_dr_prediction_z1_16xN_avx2(bh, dst, stride, above, upsample_above, dx, bd); break; case 32: highbd_dr_prediction_z1_32xN_avx2(bh, dst, stride, above, upsample_above, dx, bd); break; case 64: if (bd < 12) { highbd_dr_prediction_z1_64xN_avx2(bh, dst, stride, above, upsample_above, dx); } else { highbd_dr_prediction_32bit_z1_64xN_avx2(bh, dst, stride, above, upsample_above, dx); } break; default: break; } return; } static void highbd_transpose_TX_16X16(const uint16_t *src, ptrdiff_t pitchSrc, uint16_t *dst, ptrdiff_t pitchDst) { __m256i r[16]; __m256i d[16]; for (int j = 0; j < 16; j++) { r[j] = _mm256_loadu_si256((__m256i *)(src + j * pitchSrc)); } highbd_transpose16x16_avx2(r, d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + j * pitchDst), d[j]); } } static void highbd_transpose(const uint16_t *src, ptrdiff_t pitchSrc, uint16_t *dst, ptrdiff_t pitchDst, int width, int height) { for (int j = 0; j < height; j += 16) for (int i = 0; i < width; i += 16) highbd_transpose_TX_16X16(src + i * pitchSrc + j, pitchSrc, dst + j * pitchDst + i, pitchDst); } static void highbd_dr_prediction_32bit_z2_Nx4_avx2( int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0_x, a1_x, a32, a16; __m256i diff; __m128i c3f, min_base_y128; a16 = _mm256_set1_epi32(16); c3f = _mm_set1_epi32(0x3f); min_base_y128 = _mm_set1_epi32(min_base_y); for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i resx, resy, resxy; __m128i a0_x128, a1_x128; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 4) { base_min_diff = 4; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 3) { a0_x = _mm256_setzero_si256(); a1_x = _mm256_setzero_si256(); shift = _mm256_setzero_si256(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); if (upsample_above) { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx4[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 8); shift = _mm256_castsi128_si256(_mm_srli_epi32( _mm_and_si128( _mm_slli_epi32( _mm_setr_epi32(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx), upsample_above), c3f), 1)); } else { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 2); shift = _mm256_castsi128_si256(_mm_srli_epi32( _mm_and_si128(_mm_setr_epi32(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx), c3f), 1)); } a0_x = _mm256_cvtepu16_epi32(a0_x128); a1_x = _mm256_cvtepu16_epi32(a1_x128); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; DECLARE_ALIGNED(32, int, base_y_c[4]); r6 = _mm_set1_epi32(r << 6); dy128 = _mm_set1_epi32(dy); c1234 = _mm_setr_epi32(1, 2, 3, 4); y_c128 = _mm_sub_epi32(r6, _mm_mullo_epi32(c1234, dy128)); base_y_c128 = _mm_srai_epi32(y_c128, frac_bits_y); mask128 = _mm_cmpgt_epi32(min_base_y128, base_y_c128); base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a0_y = _mm_setr_epi32(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]]); a1_y = _mm_setr_epi32(left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], left[base_y_c[3] + 1]); if (upsample_left) { shifty = _mm_srli_epi32( _mm_and_si128(_mm_slli_epi32(y_c128, upsample_left), c3f), 1); } else { shifty = _mm_srli_epi32(_mm_and_si128(y_c128, c3f), 1); } a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); shift = _mm256_inserti128_si256(shift, shifty, 1); } diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resx = _mm256_castsi256_si128(res); resx = _mm_packus_epi32(resx, resx); resy = _mm256_extracti128_si256(res, 1); resy = _mm_packus_epi32(resy, resy); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); _mm_storel_epi64((__m128i *)(dst), resxy); dst += stride; } } static void highbd_dr_prediction_z2_Nx4_avx2( int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0_x, a1_x, a32, a16; __m256i diff; __m128i c3f, min_base_y128; a16 = _mm256_set1_epi16(16); c3f = _mm_set1_epi16(0x3f); min_base_y128 = _mm_set1_epi16(min_base_y); for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i resx, resy, resxy; __m128i a0_x128, a1_x128; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 4) { base_min_diff = 4; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 3) { a0_x = _mm256_setzero_si256(); a1_x = _mm256_setzero_si256(); shift = _mm256_setzero_si256(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); if (upsample_above) { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx4[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 8); shift = _mm256_castsi128_si256(_mm_srli_epi16( _mm_and_si128( _mm_slli_epi16(_mm_setr_epi16(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, 0, 0, 0, 0), upsample_above), c3f), 1)); } else { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 2); shift = _mm256_castsi128_si256(_mm_srli_epi16( _mm_and_si128( _mm_setr_epi16(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, 0, 0, 0, 0), c3f), 1)); } a0_x = _mm256_castsi128_si256(a0_x128); a1_x = _mm256_castsi128_si256(a1_x128); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; DECLARE_ALIGNED(32, int16_t, base_y_c[8]); r6 = _mm_set1_epi16(r << 6); dy128 = _mm_set1_epi16(dy); c1234 = _mm_setr_epi16(1, 2, 3, 4, 0, 0, 0, 0); y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128)); base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], left[base_y_c[3] + 1], 0, 0, 0, 0); if (upsample_left) { shifty = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1); } else { shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); } a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); shift = _mm256_inserti128_si256(shift, shifty, 1); } diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); resx = _mm256_castsi256_si128(res); resy = _mm256_extracti128_si256(res, 1); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); _mm_storel_epi64((__m128i *)(dst), resxy); dst += stride; } } static void highbd_dr_prediction_32bit_z2_Nx8_avx2( int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0_x, a1_x, a0_y, a1_y, a32, a16, c3f, min_base_y256; __m256i diff; __m128i a0_x128, a1_x128; a16 = _mm256_set1_epi32(16); c3f = _mm256_set1_epi32(0x3f); min_base_y256 = _mm256_set1_epi32(min_base_y); for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i resx, resy, resxy; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 8) { base_min_diff = 8; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 7) { resx = _mm_setzero_si128(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); if (upsample_above) { __m128i mask, atmp0, atmp1, atmp2, atmp3; a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift)); atmp0 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx[base_shift]); atmp1 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdEvenOddMaskx[base_shift]); atmp2 = _mm_shuffle_epi8( a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); atmp3 = _mm_shuffle_epi8( a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift], _mm_set1_epi8(15)); a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16), _mm_set1_epi8(15)); a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); shift = _mm256_srli_epi32( _mm256_and_si256( _mm256_slli_epi32( _mm256_setr_epi32(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, (4 << 6) - y * dx, (5 << 6) - y * dx, (6 << 6) - y * dx, (7 << 6) - y * dx), upsample_above), c3f), 1); } else { a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift)); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); shift = _mm256_srli_epi32( _mm256_and_si256( _mm256_setr_epi32(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, (4 << 6) - y * dx, (5 << 6) - y * dx, (6 << 6) - y * dx, (7 << 6) - y * dx), c3f), 1); } a0_x = _mm256_cvtepu16_epi32(a0_x128); a1_x = _mm256_cvtepu16_epi32(a1_x128); diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resx = _mm256_castsi256_si128(_mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); } // y calc if (base_x < min_base_x) { DECLARE_ALIGNED(32, int, base_y_c[8]); __m256i r6, c256, dy256, y_c256, base_y_c256, mask256; r6 = _mm256_set1_epi32(r << 6); dy256 = _mm256_set1_epi32(dy); c256 = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256)); base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y); mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]])); a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1], left[base_y_c[6] + 1], left[base_y_c[7] + 1])); if (upsample_left) { shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_slli_epi32((y_c256), upsample_left), c3f), 1); } else { shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1); } diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resy = _mm256_castsi256_si128(_mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); } else { resy = resx; } resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); _mm_storeu_si128((__m128i *)(dst), resxy); dst += stride; } } static void highbd_dr_prediction_z2_Nx8_avx2( int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i c3f, min_base_y128; __m256i a0_x, a1_x, diff, a32, a16; __m128i a0_x128, a1_x128; a16 = _mm256_set1_epi16(16); c3f = _mm_set1_epi16(0x3f); min_base_y128 = _mm_set1_epi16(min_base_y); for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i resx, resy, resxy; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 8) { base_min_diff = 8; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 7) { a0_x = _mm256_setzero_si256(); a1_x = _mm256_setzero_si256(); shift = _mm256_setzero_si256(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); if (upsample_above) { __m128i mask, atmp0, atmp1, atmp2, atmp3; a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift)); atmp0 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx[base_shift]); atmp1 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdEvenOddMaskx[base_shift]); atmp2 = _mm_shuffle_epi8( a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); atmp3 = _mm_shuffle_epi8( a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift], _mm_set1_epi8(15)); a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16), _mm_set1_epi8(15)); a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); shift = _mm256_castsi128_si256(_mm_srli_epi16( _mm_and_si128( _mm_slli_epi16( _mm_setr_epi16(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, (4 << 6) - y * dx, (5 << 6) - y * dx, (6 << 6) - y * dx, (7 << 6) - y * dx), upsample_above), c3f), 1)); } else { a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift)); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); shift = _mm256_castsi128_si256(_mm_srli_epi16( _mm_and_si128(_mm_setr_epi16(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx, (3 << 6) - y * dx, (4 << 6) - y * dx, (5 << 6) - y * dx, (6 << 6) - y * dx, (7 << 6) - y * dx), c3f), 1)); } a0_x = _mm256_castsi128_si256(a0_x128); a1_x = _mm256_castsi128_si256(a1_x128); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { DECLARE_ALIGNED(32, int16_t, base_y_c[8]); __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; r6 = _mm_set1_epi16(r << 6); dy128 = _mm_set1_epi16(dy); c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128)); base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1], left[base_y_c[6] + 1], left[base_y_c[7] + 1]); if (upsample_left) { shifty = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16((y_c128), upsample_left), c3f), 1); } else { shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); } a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); shift = _mm256_inserti128_si256(shift, shifty, 1); } diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); resx = _mm256_castsi256_si128(res); resy = _mm256_extracti128_si256(res, 1); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); _mm_storeu_si128((__m128i *)(dst), resxy); dst += stride; } } static void highbd_dr_prediction_32bit_z2_HxW_avx2( int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_x = -1; const int min_base_y = -1; (void)upsample_above; (void)upsample_left; const int frac_bits_x = 6; const int frac_bits_y = 6; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0_x, a1_x, a0_y, a1_y, a32, a0_1_x, a1_1_x, a16, c1; __m256i diff, min_base_y256, c3f, dy256, c1234, c0123, c8; __m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128; DECLARE_ALIGNED(32, int, base_y_c[16]); a16 = _mm256_set1_epi32(16); c1 = _mm256_srli_epi32(a16, 4); c8 = _mm256_srli_epi32(a16, 1); min_base_y256 = _mm256_set1_epi32(min_base_y); c3f = _mm256_set1_epi32(0x3f); dy256 = _mm256_set1_epi32(dy); c0123 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); c1234 = _mm256_add_epi32(c0123, c1); for (int r = 0; r < H; r++) { __m256i b, res, shift, ydx; __m256i resx[2], resy[2]; __m256i resxy, j256, r6; for (int j = 0; j < W; j += 16) { j256 = _mm256_set1_epi32(j); int y = r + 1; ydx = _mm256_set1_epi32(y * dx); int base_x = ((j << 6) - y * dx) >> frac_bits_x; int base_shift = 0; if ((base_x) < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1); } int base_min_diff = (min_base_x - base_x); if (base_min_diff > 16) { base_min_diff = 16; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 7) { resx[0] = _mm256_setzero_si256(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a0_x = _mm256_cvtepu16_epi32(a0_x128); a1_x = _mm256_cvtepu16_epi32(a1_x128); r6 = _mm256_slli_epi32(_mm256_add_epi32(c0123, j256), 6); shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1); diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resx[0] = _mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); } int base_shift8 = 0; if ((base_x + 8) < (min_base_x - 1)) { base_shift8 = (min_base_x - (base_x + 8) - 1); } if (base_shift8 > 7) { resx[1] = _mm256_setzero_si256(); } else { a0_1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 8)); a1_1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 9)); a0_1_x128 = _mm_shuffle_epi8(a0_1_x128, *(__m128i *)HighbdLoadMaskx[base_shift8]); a1_1_x128 = _mm_shuffle_epi8(a1_1_x128, *(__m128i *)HighbdLoadMaskx[base_shift8]); a0_1_x = _mm256_cvtepu16_epi32(a0_1_x128); a1_1_x = _mm256_cvtepu16_epi32(a1_1_x128); r6 = _mm256_slli_epi32( _mm256_add_epi32(c0123, _mm256_add_epi32(j256, c8)), 6); shift = _mm256_srli_epi32( _mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1); diff = _mm256_sub_epi32(a1_1_x, a0_1_x); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_1_x, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); resx[1] = _mm256_add_epi32(a32, b); resx[1] = _mm256_srli_epi32(resx[1], 5); resx[1] = _mm256_packus_epi32( resx[1], _mm256_castsi128_si256(_mm256_extracti128_si256(resx[1], 1))); } resx[0] = _mm256_inserti128_si256(resx[0], _mm256_castsi256_si128(resx[1]), 1); // 16 16bit values // y calc resy[0] = _mm256_setzero_si256(); if ((base_x < min_base_x)) { __m256i c256, y_c256, y_c_1_256, base_y_c256, mask256; r6 = _mm256_set1_epi32(r << 6); c256 = _mm256_add_epi32(j256, c1234); y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256)); base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y); mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); c256 = _mm256_add_epi32(c256, c8); y_c_1_256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256)); base_y_c256 = _mm256_srai_epi32(y_c_1_256, frac_bits_y); mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); _mm256_store_si256((__m256i *)(base_y_c + 8), base_y_c256); a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]])); a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1], left[base_y_c[6] + 1], left[base_y_c[7] + 1])); shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1); diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resy[0] = _mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]])); a1_y = _mm256_cvtepu16_epi32( _mm_setr_epi16(left[base_y_c[8] + 1], left[base_y_c[9] + 1], left[base_y_c[10] + 1], left[base_y_c[11] + 1], left[base_y_c[12] + 1], left[base_y_c[13] + 1], left[base_y_c[14] + 1], left[base_y_c[15] + 1])); shift = _mm256_srli_epi32(_mm256_and_si256(y_c_1_256, c3f), 1); diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi32(diff, shift); res = _mm256_add_epi32(a32, b); res = _mm256_srli_epi32(res, 5); resy[1] = _mm256_packus_epi32( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); resy[0] = _mm256_inserti128_si256(resy[0], _mm256_castsi256_si128(resy[1]), 1); // 16 16bit values } resxy = _mm256_blendv_epi8(resx[0], resy[0], *(__m256i *)HighbdBaseMask[base_min_diff]); _mm256_storeu_si256((__m256i *)(dst + j), resxy); } // for j dst += stride; } } static void highbd_dr_prediction_z2_HxW_avx2( int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_x = -1; const int min_base_y = -1; (void)upsample_above; (void)upsample_left; const int frac_bits_x = 6; const int frac_bits_y = 6; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0_x, a1_x, a32, a16, c3f, c1; __m256i diff, min_base_y256, dy256, c1234, c0123; DECLARE_ALIGNED(32, int16_t, base_y_c[16]); a16 = _mm256_set1_epi16(16); c1 = _mm256_srli_epi16(a16, 4); min_base_y256 = _mm256_set1_epi16(min_base_y); c3f = _mm256_set1_epi16(0x3f); dy256 = _mm256_set1_epi16(dy); c0123 = _mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); c1234 = _mm256_add_epi16(c0123, c1); for (int r = 0; r < H; r++) { __m256i b, res, shift; __m256i resx, resy, ydx; __m256i resxy, j256, r6; __m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128; int y = r + 1; ydx = _mm256_set1_epi16((short)(y * dx)); for (int j = 0; j < W; j += 16) { j256 = _mm256_set1_epi16(j); int base_x = ((j << 6) - y * dx) >> frac_bits_x; int base_shift = 0; if ((base_x) < (min_base_x - 1)) { base_shift = (min_base_x - (base_x)-1); } int base_min_diff = (min_base_x - base_x); if (base_min_diff > 16) { base_min_diff = 16; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift < 8) { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); a0_x = _mm256_castsi128_si256(a0_x128); a1_x = _mm256_castsi128_si256(a1_x128); } else { a0_x = _mm256_setzero_si256(); a1_x = _mm256_setzero_si256(); } int base_shift1 = 0; if (base_shift > 8) { base_shift1 = base_shift - 8; } if (base_shift1 < 8) { a0_1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 8)); a1_1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 9)); a0_1_x128 = _mm_shuffle_epi8(a0_1_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); a1_1_x128 = _mm_shuffle_epi8(a1_1_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); a0_x = _mm256_inserti128_si256(a0_x, a0_1_x128, 1); a1_x = _mm256_inserti128_si256(a1_x, a1_1_x128, 1); } r6 = _mm256_slli_epi16(_mm256_add_epi16(c0123, j256), 6); shift = _mm256_srli_epi16( _mm256_and_si256(_mm256_sub_epi16(r6, ydx), c3f), 1); diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); resx = _mm256_srli_epi16(res, 5); // 16 16-bit values // y calc resy = _mm256_setzero_si256(); __m256i a0_y, a1_y, shifty; if ((base_x < min_base_x)) { __m256i c256, y_c256, base_y_c256, mask256, mul16; r6 = _mm256_set1_epi16(r << 6); c256 = _mm256_add_epi16(j256, c1234); mul16 = _mm256_min_epu16(_mm256_mullo_epi16(c256, dy256), _mm256_srli_epi16(min_base_y256, 1)); y_c256 = _mm256_sub_epi16(r6, mul16); base_y_c256 = _mm256_srai_epi16(y_c256, frac_bits_y); mask256 = _mm256_cmpgt_epi16(min_base_y256, base_y_c256); base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); a0_y = _mm256_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); base_y_c256 = _mm256_add_epi16(base_y_c256, c1); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); a1_y = _mm256_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); shifty = _mm256_srli_epi16(_mm256_and_si256(y_c256, c3f), 1); diff = _mm256_sub_epi16(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_y, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shifty); res = _mm256_add_epi16(a32, b); resy = _mm256_srli_epi16(res, 5); } resxy = _mm256_blendv_epi8(resx, resy, *(__m256i *)HighbdBaseMask[base_min_diff]); _mm256_storeu_si256((__m256i *)(dst + j), resxy); } // for j dst += stride; } } // Directional prediction, zone 2: 90 < angle < 180 void av1_highbd_dr_prediction_z2_avx2(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); switch (bw) { case 4: if (bd < 12) { highbd_dr_prediction_z2_Nx4_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } else { highbd_dr_prediction_32bit_z2_Nx4_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } break; case 8: if (bd < 12) { highbd_dr_prediction_z2_Nx8_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } else { highbd_dr_prediction_32bit_z2_Nx8_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } break; default: if (bd < 12) { highbd_dr_prediction_z2_HxW_avx2(bh, bw, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } else { highbd_dr_prediction_32bit_z2_HxW_avx2(bh, bw, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } break; } } // Directional prediction, zone 3 functions static void highbd_dr_prediction_z3_4x4_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[4], d[4]; if (bd < 12) { highbd_dr_prediction_z1_4xN_internal_avx2(4, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_4xN_internal_avx2(4, dstvec, left, upsample_left, dy); } highbd_transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3]); _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]); _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]); return; } static void highbd_dr_prediction_z3_8x8_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[8], d[8]; if (bd < 12) { highbd_dr_prediction_z1_8xN_internal_avx2(8, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_8xN_internal_avx2(8, dstvec, left, upsample_left, dy); } highbd_transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void highbd_dr_prediction_z3_4x8_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[4], d[8]; if (bd < 12) { highbd_dr_prediction_z1_8xN_internal_avx2(4, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_8xN_internal_avx2(4, dstvec, left, upsample_left, dy); } highbd_transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); } } static void highbd_dr_prediction_z3_8x4_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[8], d[4]; if (bd < 12) { highbd_dr_prediction_z1_4xN_internal_avx2(8, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_4xN_internal_avx2(8, dstvec, left, upsample_left, dy); } highbd_transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3]); _mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]); _mm_storeu_si128((__m128i *)(dst + 1 * stride), d[1]); _mm_storeu_si128((__m128i *)(dst + 2 * stride), d[2]); _mm_storeu_si128((__m128i *)(dst + 3 * stride), d[3]); } static void highbd_dr_prediction_z3_8x16_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[8], d[8]; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(8, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(8, dstvec, left, upsample_left, dy); } highbd_transpose8x16_16x8_avx2(dstvec, d); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), _mm256_castsi256_si128(d[i])); } for (int i = 8; i < 16; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), _mm256_extracti128_si256(d[i - 8], 1)); } } static void highbd_dr_prediction_z3_16x8_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[16], d[16]; if (bd < 12) { highbd_dr_prediction_z1_8xN_internal_avx2(16, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_8xN_internal_avx2(16, dstvec, left, upsample_left, dy); } for (int i = 0; i < 16; i += 8) { highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i], &dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i], &dstvec[6 + i], &dstvec[7 + i], &d[0 + i], &d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i], &d[5 + i], &d[6 + i], &d[7 + i]); } for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); _mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]); } } static void highbd_dr_prediction_z3_4x16_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[4], d[4], d1; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(4, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(4, dstvec, left, upsample_left, dy); } highbd_transpose4x16_avx2(dstvec, d); for (int i = 0; i < 4; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), _mm256_castsi256_si128(d[i])); d1 = _mm256_bsrli_epi128(d[i], 8); _mm_storel_epi64((__m128i *)(dst + (i + 4) * stride), _mm256_castsi256_si128(d1)); _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), _mm256_extracti128_si256(d[i], 1)); _mm_storel_epi64((__m128i *)(dst + (i + 12) * stride), _mm256_extracti128_si256(d1, 1)); } } static void highbd_dr_prediction_z3_16x4_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[16], d[8]; if (bd < 12) { highbd_dr_prediction_z1_4xN_internal_avx2(16, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_4xN_internal_avx2(16, dstvec, left, upsample_left, dy); } highbd_transpose16x4_8x8_sse2(dstvec, d); _mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]); _mm_storeu_si128((__m128i *)(dst + 0 * stride + 8), d[1]); _mm_storeu_si128((__m128i *)(dst + 1 * stride), d[2]); _mm_storeu_si128((__m128i *)(dst + 1 * stride + 8), d[3]); _mm_storeu_si128((__m128i *)(dst + 2 * stride), d[4]); _mm_storeu_si128((__m128i *)(dst + 2 * stride + 8), d[5]); _mm_storeu_si128((__m128i *)(dst + 3 * stride), d[6]); _mm_storeu_si128((__m128i *)(dst + 3 * stride + 8), d[7]); } static void highbd_dr_prediction_z3_8x32_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[16], d[16]; if (bd < 12) { highbd_dr_prediction_z1_32xN_internal_avx2(8, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_32xN_internal_avx2(8, dstvec, left, upsample_left, dy); } for (int i = 0; i < 16; i += 8) { highbd_transpose8x16_16x8_avx2(dstvec + i, d + i); } for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), _mm256_castsi256_si128(d[i])); } for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), _mm256_extracti128_si256(d[i], 1)); } for (int i = 8; i < 16; i++) { _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), _mm256_castsi256_si128(d[i])); } for (int i = 8; i < 16; i++) { _mm_storeu_si128((__m128i *)(dst + (i + 16) * stride), _mm256_extracti128_si256(d[i], 1)); } } static void highbd_dr_prediction_z3_32x8_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m128i dstvec[32], d[32]; if (bd < 12) { highbd_dr_prediction_z1_8xN_internal_avx2(32, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_8xN_internal_avx2(32, dstvec, left, upsample_left, dy); } for (int i = 0; i < 32; i += 8) { highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i], &dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i], &dstvec[6 + i], &dstvec[7 + i], &d[0 + i], &d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i], &d[5 + i], &d[6 + i], &d[7 + i]); } for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); _mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]); _mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 16]); _mm_storeu_si128((__m128i *)(dst + i * stride + 24), d[i + 24]); } } static void highbd_dr_prediction_z3_16x16_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[16], d[16]; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(16, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(16, dstvec, left, upsample_left, dy); } highbd_transpose16x16_avx2(dstvec, d); for (int i = 0; i < 16; i++) { _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); } } static void highbd_dr_prediction_z3_32x32_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[64], d[16]; if (bd < 12) { highbd_dr_prediction_z1_32xN_internal_avx2(32, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_32xN_internal_avx2(32, dstvec, left, upsample_left, dy); } highbd_transpose16x16_avx2(dstvec, d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + j * stride), d[j]); } highbd_transpose16x16_avx2(dstvec + 16, d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + j * stride + 16), d[j]); } highbd_transpose16x16_avx2(dstvec + 32, d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride), d[j]); } highbd_transpose16x16_avx2(dstvec + 48, d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride + 16), d[j]); } } static void highbd_dr_prediction_z3_64x64_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { DECLARE_ALIGNED(16, uint16_t, dstT[64 * 64]); if (bd < 12) { highbd_dr_prediction_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy); } highbd_transpose(dstT, 64, dst, stride, 64, 64); } static void highbd_dr_prediction_z3_16x32_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[32], d[32]; if (bd < 12) { highbd_dr_prediction_z1_32xN_internal_avx2(16, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_32xN_internal_avx2(16, dstvec, left, upsample_left, dy); } for (int i = 0; i < 32; i += 8) { highbd_transpose8x16_16x8_avx2(dstvec + i, d + i); } // store for (int j = 0; j < 32; j += 16) { for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + (i + j) * stride), _mm256_castsi256_si128(d[(i + j)])); } for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + (i + j) * stride + 8), _mm256_castsi256_si128(d[(i + j) + 8])); } for (int i = 8; i < 16; i++) { _mm256_storeu_si256( (__m256i *)(dst + (i + j) * stride), _mm256_inserti128_si256( d[(i + j)], _mm256_extracti128_si256(d[(i + j) - 8], 1), 0)); } } } static void highbd_dr_prediction_z3_32x16_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[32], d[16]; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(32, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(32, dstvec, left, upsample_left, dy); } for (int i = 0; i < 32; i += 16) { highbd_transpose16x16_avx2((dstvec + i), d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); } } } static void highbd_dr_prediction_z3_32x64_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { uint16_t dstT[64 * 32]; if (bd < 12) { highbd_dr_prediction_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy); } highbd_transpose(dstT, 64, dst, stride, 32, 64); } static void highbd_dr_prediction_z3_64x32_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { DECLARE_ALIGNED(16, uint16_t, dstT[32 * 64]); highbd_dr_prediction_z1_32xN_avx2(64, dstT, 32, left, upsample_left, dy, bd); highbd_transpose(dstT, 32, dst, stride, 64, 32); return; } static void highbd_dr_prediction_z3_16x64_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { DECLARE_ALIGNED(16, uint16_t, dstT[64 * 16]); if (bd < 12) { highbd_dr_prediction_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy); } highbd_transpose(dstT, 64, dst, stride, 16, 64); } static void highbd_dr_prediction_z3_64x16_avx2(uint16_t *dst, ptrdiff_t stride, const uint16_t *left, int upsample_left, int dy, int bd) { __m256i dstvec[64], d[16]; if (bd < 12) { highbd_dr_prediction_z1_16xN_internal_avx2(64, dstvec, left, upsample_left, dy); } else { highbd_dr_prediction_32bit_z1_16xN_internal_avx2(64, dstvec, left, upsample_left, dy); } for (int i = 0; i < 64; i += 16) { highbd_transpose16x16_avx2((dstvec + i), d); for (int j = 0; j < 16; j++) { _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); } } } void av1_highbd_dr_prediction_z3_avx2(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_left, int dx, int dy, int bd) { (void)above; (void)dx; assert(dx == 1); assert(dy > 0); if (bw == bh) { switch (bw) { case 4: highbd_dr_prediction_z3_4x4_avx2(dst, stride, left, upsample_left, dy, bd); break; case 8: highbd_dr_prediction_z3_8x8_avx2(dst, stride, left, upsample_left, dy, bd); break; case 16: highbd_dr_prediction_z3_16x16_avx2(dst, stride, left, upsample_left, dy, bd); break; case 32: highbd_dr_prediction_z3_32x32_avx2(dst, stride, left, upsample_left, dy, bd); break; case 64: highbd_dr_prediction_z3_64x64_avx2(dst, stride, left, upsample_left, dy, bd); break; } } else { if (bw < bh) { if (bw + bw == bh) { switch (bw) { case 4: highbd_dr_prediction_z3_4x8_avx2(dst, stride, left, upsample_left, dy, bd); break; case 8: highbd_dr_prediction_z3_8x16_avx2(dst, stride, left, upsample_left, dy, bd); break; case 16: highbd_dr_prediction_z3_16x32_avx2(dst, stride, left, upsample_left, dy, bd); break; case 32: highbd_dr_prediction_z3_32x64_avx2(dst, stride, left, upsample_left, dy, bd); break; } } else { switch (bw) { case 4: highbd_dr_prediction_z3_4x16_avx2(dst, stride, left, upsample_left, dy, bd); break; case 8: highbd_dr_prediction_z3_8x32_avx2(dst, stride, left, upsample_left, dy, bd); break; case 16: highbd_dr_prediction_z3_16x64_avx2(dst, stride, left, upsample_left, dy, bd); break; } } } else { if (bh + bh == bw) { switch (bh) { case 4: highbd_dr_prediction_z3_8x4_avx2(dst, stride, left, upsample_left, dy, bd); break; case 8: highbd_dr_prediction_z3_16x8_avx2(dst, stride, left, upsample_left, dy, bd); break; case 16: highbd_dr_prediction_z3_32x16_avx2(dst, stride, left, upsample_left, dy, bd); break; case 32: highbd_dr_prediction_z3_64x32_avx2(dst, stride, left, upsample_left, dy, bd); break; } } else { switch (bh) { case 4: highbd_dr_prediction_z3_16x4_avx2(dst, stride, left, upsample_left, dy, bd); break; case 8: highbd_dr_prediction_z3_32x8_avx2(dst, stride, left, upsample_left, dy, bd); break; case 16: highbd_dr_prediction_z3_64x16_avx2(dst, stride, left, upsample_left, dy, bd); break; } } } } return; } // Low bit depth functions static DECLARE_ALIGNED(32, uint8_t, BaseMask[33][32]) = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, }; /* clang-format on */ static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_avx2( int H, int W, __m128i *dst, const uint8_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((W + H) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16; __m256i diff, c3f; __m128i a_mbase_x; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm_set1_epi8((int8_t)above[max_base_x]); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < W; r++) { __m256i b, res, shift; __m128i res1, a0_128, a1_128; int base = x >> frac_bits; int base_max_diff = (max_base_x - base) >> upsample_above; if (base_max_diff <= 0) { for (int i = r; i < W; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } if (base_max_diff > H) base_max_diff = H; a0_128 = _mm_loadu_si128((__m128i *)(above + base)); a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1)); if (upsample_above) { a0_128 = _mm_shuffle_epi8(a0_128, *(__m128i *)EvenOddMaskx[0]); a1_128 = _mm_srli_si128(a0_128, 8); shift = _mm256_srli_epi16( _mm256_and_si256( _mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), c3f), 1); } else { shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); } a0 = _mm256_cvtepu8_epi16(a0_128); a1 = _mm256_cvtepu8_epi16(a1_128); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); res = _mm256_packus_epi16( res, _mm256_castsi128_si256( _mm256_extracti128_si256(res, 1))); // goto 8 bit res1 = _mm256_castsi256_si128(res); // 16 8bit values dst[r] = _mm_blendv_epi8(a_mbase_x, res1, *(__m128i *)BaseMask[base_max_diff]); x += dx; } } static void dr_prediction_z1_4xN_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[16]; dr_prediction_z1_HxW_internal_avx2(4, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(dstvec[i]); } } static void dr_prediction_z1_8xN_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[32]; dr_prediction_z1_HxW_internal_avx2(8, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]); } } static void dr_prediction_z1_16xN_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[64]; dr_prediction_z1_HxW_internal_avx2(16, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); } } static AOM_FORCE_INLINE void dr_prediction_z1_32xN_internal_avx2( int N, __m256i *dstvec, const uint8_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((32 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16; __m256i a_mbase_x, diff, c3f; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi8((int8_t)above[max_base_x]); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m256i b, res, res16[2]; __m128i a0_128, a1_128; int base = x >> frac_bits; int base_max_diff = (max_base_x - base); if (base_max_diff <= 0) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 32 values } return; } if (base_max_diff > 32) base_max_diff = 32; __m256i shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); for (int j = 0, jj = 0; j < 32; j += 16, jj++) { int mdiff = base_max_diff - j; if (mdiff <= 0) { res16[jj] = a_mbase_x; } else { a0_128 = _mm_loadu_si128((__m128i *)(above + base + j)); a1_128 = _mm_loadu_si128((__m128i *)(above + base + j + 1)); a0 = _mm256_cvtepu8_epi16(a0_128); a1 = _mm256_cvtepu8_epi16(a1_128); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); res16[jj] = _mm256_packus_epi16( res, _mm256_castsi128_si256( _mm256_extracti128_si256(res, 1))); // 16 8bit values } } res16[1] = _mm256_inserti128_si256(res16[0], _mm256_castsi256_si128(res16[1]), 1); // 32 8bit values dstvec[r] = _mm256_blendv_epi8( a_mbase_x, res16[1], *(__m256i *)BaseMask[base_max_diff]); // 32 8bit values x += dx; } } static void dr_prediction_z1_32xN_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m256i dstvec[64]; dr_prediction_z1_32xN_internal_avx2(N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); } } static void dr_prediction_z1_64xN_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((64 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i a0, a1, a32, a16; __m256i a_mbase_x, diff, c3f; __m128i max_base_x128, base_inc128, mask128; a16 = _mm256_set1_epi16(16); a_mbase_x = _mm256_set1_epi8((int8_t)above[max_base_x]); max_base_x128 = _mm_set1_epi8(max_base_x); c3f = _mm256_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++, dst += stride) { __m256i b, res; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); dst += stride; } return; } __m256i shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); __m128i a0_128, a1_128, res128; for (int j = 0; j < 64; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { _mm_storeu_si128((__m128i *)(dst + j), _mm256_castsi256_si128(a_mbase_x)); } else { a0_128 = _mm_loadu_si128((__m128i *)(above + base + j)); a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1 + j)); a0 = _mm256_cvtepu8_epi16(a0_128); a1 = _mm256_cvtepu8_epi16(a1_128); diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); res = _mm256_packus_epi16( res, _mm256_castsi128_si256( _mm256_extracti128_si256(res, 1))); // 16 8bit values base_inc128 = _mm_setr_epi8((int8_t)(base + j), (int8_t)(base + j + 1), (int8_t)(base + j + 2), (int8_t)(base + j + 3), (int8_t)(base + j + 4), (int8_t)(base + j + 5), (int8_t)(base + j + 6), (int8_t)(base + j + 7), (int8_t)(base + j + 8), (int8_t)(base + j + 9), (int8_t)(base + j + 10), (int8_t)(base + j + 11), (int8_t)(base + j + 12), (int8_t)(base + j + 13), (int8_t)(base + j + 14), (int8_t)(base + j + 15)); mask128 = _mm_cmpgt_epi8(_mm_subs_epu8(max_base_x128, base_inc128), _mm_setzero_si128()); res128 = _mm_blendv_epi8(_mm256_castsi256_si128(a_mbase_x), _mm256_castsi256_si128(res), mask128); _mm_storeu_si128((__m128i *)(dst + j), res128); } } x += dx; } } // Directional prediction, zone 1: 0 < angle < 90 void av1_dr_prediction_z1_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int dx, int dy) { (void)left; (void)dy; switch (bw) { case 4: dr_prediction_z1_4xN_avx2(bh, dst, stride, above, upsample_above, dx); break; case 8: dr_prediction_z1_8xN_avx2(bh, dst, stride, above, upsample_above, dx); break; case 16: dr_prediction_z1_16xN_avx2(bh, dst, stride, above, upsample_above, dx); break; case 32: dr_prediction_z1_32xN_avx2(bh, dst, stride, above, upsample_above, dx); break; case 64: dr_prediction_z1_64xN_avx2(bh, dst, stride, above, upsample_above, dx); break; default: break; } return; } static void dr_prediction_z2_Nx4_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i a0_x, a1_x, a32, a16, diff; __m128i c3f, min_base_y128, c1234, dy128; a16 = _mm_set1_epi16(16); c3f = _mm_set1_epi16(0x3f); min_base_y128 = _mm_set1_epi16(min_base_y); c1234 = _mm_setr_epi16(0, 1, 2, 3, 4, 0, 0, 0); dy128 = _mm_set1_epi16(dy); for (int r = 0; r < N; r++) { __m128i b, res, shift, r6, ydx; __m128i resx, resy, resxy; __m128i a0_x128, a1_x128; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 4) { base_min_diff = 4; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 3) { a0_x = _mm_setzero_si128(); a1_x = _mm_setzero_si128(); shift = _mm_setzero_si128(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); ydx = _mm_set1_epi16(y * dx); r6 = _mm_slli_epi16(c1234, 6); if (upsample_above) { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)EvenOddMaskx[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 8); shift = _mm_srli_epi16( _mm_and_si128( _mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f), 1); } else { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 1); shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1); } a0_x = _mm_cvtepu8_epi16(a0_x128); a1_x = _mm_cvtepu8_epi16(a1_x128); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { DECLARE_ALIGNED(32, int16_t, base_y_c[8]); __m128i y_c128, base_y_c128, mask128, c1234_; c1234_ = _mm_srli_si128(c1234, 2); r6 = _mm_set1_epi16(r << 6); y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy128)); base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); base_y_c128 = _mm_add_epi16(base_y_c128, _mm_srli_epi16(a16, 4)); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); if (upsample_left) { shifty = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1); } else { shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); } a0_x = _mm_unpacklo_epi64(a0_x, a0_y); a1_x = _mm_unpacklo_epi64(a1_x, a1_y); shift = _mm_unpacklo_epi64(shift, shifty); } diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); resx = _mm_packus_epi16(res, res); resy = _mm_srli_si128(resx, 4); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]); *(int *)(dst) = _mm_cvtsi128_si32(resxy); dst += stride; } } static void dr_prediction_z2_Nx8_avx2(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m256i diff, a32, a16; __m256i a0_x, a1_x; __m128i a0_x128, a1_x128, min_base_y128, c3f; __m128i c1234, dy128; a16 = _mm256_set1_epi16(16); c3f = _mm_set1_epi16(0x3f); min_base_y128 = _mm_set1_epi16(min_base_y); dy128 = _mm_set1_epi16(dy); c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); for (int r = 0; r < N; r++) { __m256i b, res, shift; __m128i resx, resy, resxy, r6, ydx; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 8) { base_min_diff = 8; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 7) { a0_x = _mm256_setzero_si256(); a1_x = _mm256_setzero_si256(); shift = _mm256_setzero_si256(); } else { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); ydx = _mm_set1_epi16(y * dx); r6 = _mm_slli_epi16(_mm_srli_si128(c1234, 2), 6); if (upsample_above) { a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)EvenOddMaskx[base_shift]); a1_x128 = _mm_srli_si128(a0_x128, 8); shift = _mm256_castsi128_si256(_mm_srli_epi16( _mm_and_si128( _mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f), 1)); } else { a1_x128 = _mm_srli_si128(a0_x128, 1); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)LoadMaskx[base_shift]); shift = _mm256_castsi128_si256( _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1)); } a0_x = _mm256_castsi128_si256(_mm_cvtepu8_epi16(a0_x128)); a1_x = _mm256_castsi128_si256(_mm_cvtepu8_epi16(a1_x128)); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { DECLARE_ALIGNED(32, int16_t, base_y_c[16]); __m128i y_c128, base_y_c128, mask128; r6 = _mm_set1_epi16(r << 6); y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128)); base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); base_y_c128 = _mm_add_epi16( base_y_c128, _mm_srli_epi16(_mm256_castsi256_si128(a16), 4)); _mm_store_si128((__m128i *)base_y_c, base_y_c128); a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); if (upsample_left) { shifty = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1); } else { shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); } a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); shift = _mm256_inserti128_si256(shift, shifty, 1); } diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); resx = _mm_packus_epi16(_mm256_castsi256_si128(res), _mm256_castsi256_si128(res)); resy = _mm256_extracti128_si256(res, 1); resy = _mm_packus_epi16(resy, resy); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]); _mm_storel_epi64((__m128i *)(dst), resxy); dst += stride; } } static void dr_prediction_z2_HxW_avx2(int H, int W, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_x = -1; const int min_base_y = -1; (void)upsample_above; (void)upsample_left; const int frac_bits_x = 6; const int frac_bits_y = 6; __m256i a0_x, a1_x, a0_y, a1_y, a32, a16, c1234, c0123; __m256i diff, min_base_y256, c3f, shifty, dy256, c1; __m128i a0_x128, a1_x128; DECLARE_ALIGNED(32, int16_t, base_y_c[16]); a16 = _mm256_set1_epi16(16); c1 = _mm256_srli_epi16(a16, 4); min_base_y256 = _mm256_set1_epi16(min_base_y); c3f = _mm256_set1_epi16(0x3f); dy256 = _mm256_set1_epi16(dy); c0123 = _mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); c1234 = _mm256_add_epi16(c0123, c1); for (int r = 0; r < H; r++) { __m256i b, res, shift, j256, r6, ydx; __m128i resx, resy; __m128i resxy; int y = r + 1; ydx = _mm256_set1_epi16((int16_t)(y * dx)); int base_x = (-y * dx) >> frac_bits_x; for (int j = 0; j < W; j += 16) { j256 = _mm256_set1_epi16(j); int base_shift = 0; if ((base_x + j) < (min_base_x - 1)) { base_shift = (min_base_x - (base_x + j) - 1); } int base_min_diff = (min_base_x - base_x - j); if (base_min_diff > 16) { base_min_diff = 16; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift < 16) { a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + j)); a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1 + j)); a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]); a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)LoadMaskx[base_shift]); a0_x = _mm256_cvtepu8_epi16(a0_x128); a1_x = _mm256_cvtepu8_epi16(a1_x128); r6 = _mm256_slli_epi16(_mm256_add_epi16(c0123, j256), 6); shift = _mm256_srli_epi16( _mm256_and_si256(_mm256_sub_epi16(r6, ydx), c3f), 1); diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shift); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); // 16 16-bit values resx = _mm256_castsi256_si128(_mm256_packus_epi16( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); } else { resx = _mm_setzero_si128(); } // y calc if (base_x < min_base_x) { __m256i c256, y_c256, base_y_c256, mask256, mul16; r6 = _mm256_set1_epi16(r << 6); c256 = _mm256_add_epi16(j256, c1234); mul16 = _mm256_min_epu16(_mm256_mullo_epi16(c256, dy256), _mm256_srli_epi16(min_base_y256, 1)); y_c256 = _mm256_sub_epi16(r6, mul16); base_y_c256 = _mm256_srai_epi16(y_c256, frac_bits_y); mask256 = _mm256_cmpgt_epi16(min_base_y256, base_y_c256); base_y_c256 = _mm256_blendv_epi8(base_y_c256, min_base_y256, mask256); int16_t min_y = (int16_t)_mm_extract_epi16( _mm256_extracti128_si256(base_y_c256, 1), 7); int16_t max_y = (int16_t)_mm_extract_epi16(_mm256_castsi256_si128(base_y_c256), 0); int16_t offset_diff = max_y - min_y; if (offset_diff < 16) { __m256i min_y256 = _mm256_set1_epi16(min_y); __m256i base_y_offset = _mm256_sub_epi16(base_y_c256, min_y256); __m128i base_y_offset128 = _mm_packs_epi16(_mm256_extracti128_si256(base_y_offset, 0), _mm256_extracti128_si256(base_y_offset, 1)); __m128i a0_y128 = _mm_maskload_epi32( (int *)(left + min_y), *(__m128i *)LoadMaskz2[offset_diff / 4]); __m128i a1_y128 = _mm_maskload_epi32((int *)(left + min_y + 1), *(__m128i *)LoadMaskz2[offset_diff / 4]); a0_y128 = _mm_shuffle_epi8(a0_y128, base_y_offset128); a1_y128 = _mm_shuffle_epi8(a1_y128, base_y_offset128); a0_y = _mm256_cvtepu8_epi16(a0_y128); a1_y = _mm256_cvtepu8_epi16(a1_y128); } else { base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); a0_y = _mm256_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); base_y_c256 = _mm256_add_epi16(base_y_c256, c1); _mm256_store_si256((__m256i *)base_y_c, base_y_c256); a1_y = _mm256_setr_epi16( left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); } shifty = _mm256_srli_epi16(_mm256_and_si256(y_c256, c3f), 1); diff = _mm256_sub_epi16(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm256_slli_epi16(a0_y, 5); // a[x] * 32 a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm256_mullo_epi16(diff, shifty); res = _mm256_add_epi16(a32, b); res = _mm256_srli_epi16(res, 5); // 16 16-bit values resy = _mm256_castsi256_si128(_mm256_packus_epi16( res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); } else { resy = _mm_setzero_si128(); } resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]); _mm_storeu_si128((__m128i *)(dst + j), resxy); } // for j dst += stride; } } // Directional prediction, zone 2: 90 < angle < 180 void av1_dr_prediction_z2_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { assert(dx > 0); assert(dy > 0); switch (bw) { case 4: dr_prediction_z2_Nx4_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; case 8: dr_prediction_z2_Nx8_avx2(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; default: dr_prediction_z2_HxW_avx2(bh, bw, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; } return; } // z3 functions static INLINE void transpose16x32_avx2(__m256i *x, __m256i *d) { __m256i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9; __m256i w10, w11, w12, w13, w14, w15; w0 = _mm256_unpacklo_epi8(x[0], x[1]); w1 = _mm256_unpacklo_epi8(x[2], x[3]); w2 = _mm256_unpacklo_epi8(x[4], x[5]); w3 = _mm256_unpacklo_epi8(x[6], x[7]); w8 = _mm256_unpacklo_epi8(x[8], x[9]); w9 = _mm256_unpacklo_epi8(x[10], x[11]); w10 = _mm256_unpacklo_epi8(x[12], x[13]); w11 = _mm256_unpacklo_epi8(x[14], x[15]); w4 = _mm256_unpacklo_epi16(w0, w1); w5 = _mm256_unpacklo_epi16(w2, w3); w12 = _mm256_unpacklo_epi16(w8, w9); w13 = _mm256_unpacklo_epi16(w10, w11); w6 = _mm256_unpacklo_epi32(w4, w5); w7 = _mm256_unpackhi_epi32(w4, w5); w14 = _mm256_unpacklo_epi32(w12, w13); w15 = _mm256_unpackhi_epi32(w12, w13); // Store first 4-line result d[0] = _mm256_unpacklo_epi64(w6, w14); d[1] = _mm256_unpackhi_epi64(w6, w14); d[2] = _mm256_unpacklo_epi64(w7, w15); d[3] = _mm256_unpackhi_epi64(w7, w15); w4 = _mm256_unpackhi_epi16(w0, w1); w5 = _mm256_unpackhi_epi16(w2, w3); w12 = _mm256_unpackhi_epi16(w8, w9); w13 = _mm256_unpackhi_epi16(w10, w11); w6 = _mm256_unpacklo_epi32(w4, w5); w7 = _mm256_unpackhi_epi32(w4, w5); w14 = _mm256_unpacklo_epi32(w12, w13); w15 = _mm256_unpackhi_epi32(w12, w13); // Store second 4-line result d[4] = _mm256_unpacklo_epi64(w6, w14); d[5] = _mm256_unpackhi_epi64(w6, w14); d[6] = _mm256_unpacklo_epi64(w7, w15); d[7] = _mm256_unpackhi_epi64(w7, w15); // upper half w0 = _mm256_unpackhi_epi8(x[0], x[1]); w1 = _mm256_unpackhi_epi8(x[2], x[3]); w2 = _mm256_unpackhi_epi8(x[4], x[5]); w3 = _mm256_unpackhi_epi8(x[6], x[7]); w8 = _mm256_unpackhi_epi8(x[8], x[9]); w9 = _mm256_unpackhi_epi8(x[10], x[11]); w10 = _mm256_unpackhi_epi8(x[12], x[13]); w11 = _mm256_unpackhi_epi8(x[14], x[15]); w4 = _mm256_unpacklo_epi16(w0, w1); w5 = _mm256_unpacklo_epi16(w2, w3); w12 = _mm256_unpacklo_epi16(w8, w9); w13 = _mm256_unpacklo_epi16(w10, w11); w6 = _mm256_unpacklo_epi32(w4, w5); w7 = _mm256_unpackhi_epi32(w4, w5); w14 = _mm256_unpacklo_epi32(w12, w13); w15 = _mm256_unpackhi_epi32(w12, w13); // Store first 4-line result d[8] = _mm256_unpacklo_epi64(w6, w14); d[9] = _mm256_unpackhi_epi64(w6, w14); d[10] = _mm256_unpacklo_epi64(w7, w15); d[11] = _mm256_unpackhi_epi64(w7, w15); w4 = _mm256_unpackhi_epi16(w0, w1); w5 = _mm256_unpackhi_epi16(w2, w3); w12 = _mm256_unpackhi_epi16(w8, w9); w13 = _mm256_unpackhi_epi16(w10, w11); w6 = _mm256_unpacklo_epi32(w4, w5); w7 = _mm256_unpackhi_epi32(w4, w5); w14 = _mm256_unpacklo_epi32(w12, w13); w15 = _mm256_unpackhi_epi32(w12, w13); // Store second 4-line result d[12] = _mm256_unpacklo_epi64(w6, w14); d[13] = _mm256_unpackhi_epi64(w6, w14); d[14] = _mm256_unpacklo_epi64(w7, w15); d[15] = _mm256_unpackhi_epi64(w7, w15); } static void dr_prediction_z3_4x4_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[4]; dr_prediction_z1_HxW_internal_avx2(4, 4, dstvec, left, upsample_left, dy); transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3]); *(int *)(dst + stride * 0) = _mm_cvtsi128_si32(d[0]); *(int *)(dst + stride * 1) = _mm_cvtsi128_si32(d[1]); *(int *)(dst + stride * 2) = _mm_cvtsi128_si32(d[2]); *(int *)(dst + stride * 3) = _mm_cvtsi128_si32(d[3]); return; } static void dr_prediction_z3_8x8_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[8]; dr_prediction_z1_HxW_internal_avx2(8, 8, dstvec, left, upsample_left, dy); transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3]); _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 1 * stride), _mm_srli_si128(d[0], 8)); _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[1]); _mm_storel_epi64((__m128i *)(dst + 3 * stride), _mm_srli_si128(d[1], 8)); _mm_storel_epi64((__m128i *)(dst + 4 * stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 5 * stride), _mm_srli_si128(d[2], 8)); _mm_storel_epi64((__m128i *)(dst + 6 * stride), d[3]); _mm_storel_epi64((__m128i *)(dst + 7 * stride), _mm_srli_si128(d[3], 8)); } static void dr_prediction_z3_4x8_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[8]; dr_prediction_z1_HxW_internal_avx2(8, 4, dstvec, left, upsample_left, dy); transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]); } } static void dr_prediction_z3_8x4_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[4]; dr_prediction_z1_HxW_internal_avx2(4, 8, dstvec, left, upsample_left, dy); transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3]); _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]); _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]); } static void dr_prediction_z3_8x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[8]; dr_prediction_z1_HxW_internal_avx2(16, 8, dstvec, left, upsample_left, dy); transpose8x16_16x8_sse2(dstvec, dstvec + 1, dstvec + 2, dstvec + 3, dstvec + 4, dstvec + 5, dstvec + 6, dstvec + 7, d, d + 1, d + 2, d + 3, d + 4, d + 5, d + 6, d + 7); for (int i = 0; i < 8; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), _mm_srli_si128(d[i], 8)); } } static void dr_prediction_z3_16x8_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16]; dr_prediction_z1_HxW_internal_avx2(8, 16, dstvec, left, upsample_left, dy); transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_4x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[16]; dr_prediction_z1_HxW_internal_avx2(16, 4, dstvec, left, upsample_left, dy); transpose4x16_sse2(dstvec, d); for (int i = 0; i < 16; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]); } } static void dr_prediction_z3_16x4_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[8]; dr_prediction_z1_HxW_internal_avx2(4, 16, dstvec, left, upsample_left, dy); for (int i = 4; i < 8; i++) { d[i] = _mm_setzero_si128(); } transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 4; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_8x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m256i dstvec[16], d[16]; dr_prediction_z1_32xN_internal_avx2(8, dstvec, left, upsample_left, dy); for (int i = 8; i < 16; i++) { dstvec[i] = _mm256_setzero_si256(); } transpose16x32_avx2(dstvec, d); for (int i = 0; i < 16; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), _mm256_castsi256_si128(d[i])); } for (int i = 0; i < 16; i++) { _mm_storel_epi64((__m128i *)(dst + (i + 16) * stride), _mm256_extracti128_si256(d[i], 1)); } } static void dr_prediction_z3_32x8_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[32], d[16]; dr_prediction_z1_HxW_internal_avx2(8, 32, dstvec, left, upsample_left, dy); transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); transpose16x8_8x16_sse2( &dstvec[0 + 16], &dstvec[1 + 16], &dstvec[2 + 16], &dstvec[3 + 16], &dstvec[4 + 16], &dstvec[5 + 16], &dstvec[6 + 16], &dstvec[7 + 16], &dstvec[8 + 16], &dstvec[9 + 16], &dstvec[10 + 16], &dstvec[11 + 16], &dstvec[12 + 16], &dstvec[13 + 16], &dstvec[14 + 16], &dstvec[15 + 16], &d[0 + 8], &d[1 + 8], &d[2 + 8], &d[3 + 8], &d[4 + 8], &d[5 + 8], &d[6 + 8], &d[7 + 8]); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); _mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 8]); } } static void dr_prediction_z3_16x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16]; dr_prediction_z1_HxW_internal_avx2(16, 16, dstvec, left, upsample_left, dy); transpose16x16_sse2(dstvec, d); for (int i = 0; i < 16; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_32x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m256i dstvec[32], d[32]; dr_prediction_z1_32xN_internal_avx2(32, dstvec, left, upsample_left, dy); transpose16x32_avx2(dstvec, d); transpose16x32_avx2(dstvec + 16, d + 16); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride), _mm256_castsi256_si128(d[j])); _mm_storeu_si128((__m128i *)(dst + j * stride + 16), _mm256_castsi256_si128(d[j + 16])); } for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), _mm256_extracti128_si256(d[j], 1)); _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride + 16), _mm256_extracti128_si256(d[j + 16], 1)); } } static void dr_prediction_z3_64x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { DECLARE_ALIGNED(16, uint8_t, dstT[64 * 64]); dr_prediction_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 64, 64); } static void dr_prediction_z3_16x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m256i dstvec[16], d[16]; dr_prediction_z1_32xN_internal_avx2(16, dstvec, left, upsample_left, dy); transpose16x32_avx2(dstvec, d); // store for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride), _mm256_castsi256_si128(d[j])); _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), _mm256_extracti128_si256(d[j], 1)); } } static void dr_prediction_z3_32x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[32], d[16]; dr_prediction_z1_HxW_internal_avx2(16, 32, dstvec, left, upsample_left, dy); for (int i = 0; i < 32; i += 16) { transpose16x16_sse2((dstvec + i), d); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]); } } } static void dr_prediction_z3_32x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[64 * 32]; dr_prediction_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 32, 64); } static void dr_prediction_z3_64x32_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[32 * 64]; dr_prediction_z1_32xN_avx2(64, dstT, 32, left, upsample_left, dy); transpose(dstT, 32, dst, stride, 64, 32); return; } static void dr_prediction_z3_16x64_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[64 * 16]; dr_prediction_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 16, 64); } static void dr_prediction_z3_64x16_avx2(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[64], d[16]; dr_prediction_z1_HxW_internal_avx2(16, 64, dstvec, left, upsample_left, dy); for (int i = 0; i < 64; i += 16) { transpose16x16_sse2((dstvec + i), d); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]); } } } void av1_dr_prediction_z3_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_left, int dx, int dy) { (void)above; (void)dx; assert(dx == 1); assert(dy > 0); if (bw == bh) { switch (bw) { case 4: dr_prediction_z3_4x4_avx2(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x8_avx2(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x16_avx2(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_32x32_avx2(dst, stride, left, upsample_left, dy); break; case 64: dr_prediction_z3_64x64_avx2(dst, stride, left, upsample_left, dy); break; } } else { if (bw < bh) { if (bw + bw == bh) { switch (bw) { case 4: dr_prediction_z3_4x8_avx2(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x16_avx2(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x32_avx2(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_32x64_avx2(dst, stride, left, upsample_left, dy); break; } } else { switch (bw) { case 4: dr_prediction_z3_4x16_avx2(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x32_avx2(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x64_avx2(dst, stride, left, upsample_left, dy); break; } } } else { if (bh + bh == bw) { switch (bh) { case 4: dr_prediction_z3_8x4_avx2(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_16x8_avx2(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_32x16_avx2(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_64x32_avx2(dst, stride, left, upsample_left, dy); break; } } else { switch (bh) { case 4: dr_prediction_z3_16x4_avx2(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_32x8_avx2(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_64x16_avx2(dst, stride, left, upsample_left, dy); break; } } } } }