/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // SSE2 #include /* SSE4.1 */ #include "config/av1_rtcd.h" #include "aom_dsp/x86/intrapred_x86.h" #include "aom_dsp/x86/intrapred_utils.h" #include "aom_dsp/x86/lpf_common_sse2.h" // Low bit depth functions static DECLARE_ALIGNED(16, uint8_t, Mask[2][33][16]) = { { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, }, }; /* clang-format on */ static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_sse4_1( int H, int W, __m128i *dst, const uint8_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((W + H) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i a0, a1, a32, a16; __m128i diff, c3f; __m128i a_mbase_x; a16 = _mm_set1_epi16(16); a_mbase_x = _mm_set1_epi8((char)above[max_base_x]); c3f = _mm_set1_epi16(0x3f); int x = dx; for (int r = 0; r < W; r++) { __m128i b, res, res1, shift; __m128i a0_above, a1_above; int base = x >> frac_bits; int base_max_diff = (max_base_x - base) >> upsample_above; if (base_max_diff <= 0) { for (int i = r; i < W; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } if (base_max_diff > H) base_max_diff = H; a0_above = _mm_loadu_si128((__m128i *)(above + base)); a1_above = _mm_loadu_si128((__m128i *)(above + base + 1)); if (upsample_above) { a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[0]); a1_above = _mm_srli_si128(a0_above, 8); shift = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(_mm_set1_epi16(x), upsample_above), c3f), 1); } else { shift = _mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1); } // lower half a0 = _mm_cvtepu8_epi16(a0_above); a1 = _mm_cvtepu8_epi16(a1_above); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); // uppar half a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8)); a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8)); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); res = _mm_packus_epi16(res, res1); dst[r] = _mm_blendv_epi8(a_mbase_x, res, *(__m128i *)Mask[0][base_max_diff]); x += dx; } } static void dr_prediction_z1_4xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[16]; dr_prediction_z1_HxW_internal_sse4_1(4, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(dstvec[i]); } } static void dr_prediction_z1_8xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[32]; dr_prediction_z1_HxW_internal_sse4_1(8, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]); } } static void dr_prediction_z1_16xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[64]; dr_prediction_z1_HxW_internal_sse4_1(16, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); } } static AOM_FORCE_INLINE void dr_prediction_z1_32xN_internal_sse4_1( int N, __m128i *dstvec, __m128i *dstvec_h, const uint8_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((32 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i a0, a1, a32, a16; __m128i a_mbase_x, diff, c3f; a16 = _mm_set1_epi16(16); a_mbase_x = _mm_set1_epi8((char)above[max_base_x]); c3f = _mm_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++) { __m128i b, res, res1, res16[2]; __m128i a0_above, a1_above; int base = x >> frac_bits; int base_max_diff = (max_base_x - base); if (base_max_diff <= 0) { for (int i = r; i < N; ++i) { dstvec[i] = a_mbase_x; // save 32 values dstvec_h[i] = a_mbase_x; } return; } if (base_max_diff > 32) base_max_diff = 32; __m128i shift = _mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1); for (int j = 0, jj = 0; j < 32; j += 16, jj++) { int mdiff = base_max_diff - j; if (mdiff <= 0) { res16[jj] = a_mbase_x; } else { a0_above = _mm_loadu_si128((__m128i *)(above + base + j)); a1_above = _mm_loadu_si128((__m128i *)(above + base + j + 1)); // lower half a0 = _mm_cvtepu8_epi16(a0_above); a1 = _mm_cvtepu8_epi16(a1_above); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); // uppar half a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8)); a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8)); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); res16[jj] = _mm_packus_epi16(res, res1); // 16 8bit values } } dstvec[r] = _mm_blendv_epi8(a_mbase_x, res16[0], *(__m128i *)Mask[0][base_max_diff]); // 16 8bit values dstvec_h[r] = _mm_blendv_epi8(a_mbase_x, res16[1], *(__m128i *)Mask[1][base_max_diff]); // 16 8bit values x += dx; } } static void dr_prediction_z1_32xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { __m128i dstvec[64], dstvec_h[64]; dr_prediction_z1_32xN_internal_sse4_1(N, dstvec, dstvec_h, above, upsample_above, dx); for (int i = 0; i < N; i++) { _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); _mm_storeu_si128((__m128i *)(dst + stride * i + 16), dstvec_h[i]); } } static void dr_prediction_z1_64xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { // here upsample_above is 0 by design of av1_use_intra_edge_upsample (void)upsample_above; const int frac_bits = 6; const int max_base_x = ((64 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i a0, a1, a32, a16; __m128i a_mbase_x, diff, c3f; __m128i max_base, base_inc, mask; a16 = _mm_set1_epi16(16); a_mbase_x = _mm_set1_epi8((char)above[max_base_x]); max_base = _mm_set1_epi8(max_base_x); c3f = _mm_set1_epi16(0x3f); int x = dx; for (int r = 0; r < N; r++, dst += stride) { __m128i b, res, res1; int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { _mm_storeu_si128((__m128i *)dst, a_mbase_x); // save 32 values _mm_storeu_si128((__m128i *)(dst + 16), a_mbase_x); _mm_storeu_si128((__m128i *)(dst + 32), a_mbase_x); _mm_storeu_si128((__m128i *)(dst + 48), a_mbase_x); dst += stride; } return; } __m128i shift = _mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1); // 8 element __m128i a0_above, a1_above, res_val; for (int j = 0; j < 64; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { _mm_storeu_si128((__m128i *)(dst + j), a_mbase_x); } else { a0_above = _mm_loadu_si128((__m128i *)(above + base + j)); // load 16 element a1_above = _mm_loadu_si128((__m128i *)(above + base + 1 + j)); // lower half a0 = _mm_cvtepu8_epi16(a0_above); a1 = _mm_cvtepu8_epi16(a1_above); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); // uppar half a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8)); a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8)); diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); res = _mm_packus_epi16(res, res1); // 16 8bit values base_inc = _mm_setr_epi8((int8_t)(base + j), (int8_t)(base + j + 1), (int8_t)(base + j + 2), (int8_t)(base + j + 3), (int8_t)(base + j + 4), (int8_t)(base + j + 5), (int8_t)(base + j + 6), (int8_t)(base + j + 7), (int8_t)(base + j + 8), (int8_t)(base + j + 9), (int8_t)(base + j + 10), (int8_t)(base + j + 11), (int8_t)(base + j + 12), (int8_t)(base + j + 13), (int8_t)(base + j + 14), (int8_t)(base + j + 15)); mask = _mm_cmpgt_epi8(_mm_subs_epu8(max_base, base_inc), _mm_setzero_si128()); res_val = _mm_blendv_epi8(a_mbase_x, res, mask); _mm_storeu_si128((__m128i *)(dst + j), res_val); } } x += dx; } } // Directional prediction, zone 1: 0 < angle < 90 void av1_dr_prediction_z1_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int dx, int dy) { (void)left; (void)dy; switch (bw) { case 4: dr_prediction_z1_4xN_sse4_1(bh, dst, stride, above, upsample_above, dx); break; case 8: dr_prediction_z1_8xN_sse4_1(bh, dst, stride, above, upsample_above, dx); break; case 16: dr_prediction_z1_16xN_sse4_1(bh, dst, stride, above, upsample_above, dx); break; case 32: dr_prediction_z1_32xN_sse4_1(bh, dst, stride, above, upsample_above, dx); break; case 64: dr_prediction_z1_64xN_sse4_1(bh, dst, stride, above, upsample_above, dx); break; default: assert(0 && "Invalid block size"); } return; } static void dr_prediction_z2_Nx4_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i a0_x, a1_x, a32, diff; const __m128i c3f = _mm_set1_epi16(0x3f); const __m128i min_y_base = _mm_set1_epi16(min_base_y); const __m128i c1234 = _mm_setr_epi16(0, 1, 2, 3, 4, 0, 0, 0); const __m128i dy_reg = _mm_set1_epi16(dy); const __m128i a16 = _mm_set1_epi16(16); for (int r = 0; r < N; r++) { __m128i b, res, shift, r6, ydx; __m128i resx, resy, resxy; __m128i a0_above, a1_above; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 4) { base_min_diff = 4; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 3) { a0_x = _mm_setzero_si128(); a1_x = _mm_setzero_si128(); shift = _mm_setzero_si128(); } else { a0_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); ydx = _mm_set1_epi16(y * dx); r6 = _mm_slli_epi16(c1234, 6); if (upsample_above) { a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[base_shift]); a1_above = _mm_srli_si128(a0_above, 8); shift = _mm_srli_epi16( _mm_and_si128( _mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f), 1); } else { a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]); a1_above = _mm_srli_si128(a0_above, 1); shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1); } a0_x = _mm_cvtepu8_epi16(a0_above); a1_x = _mm_cvtepu8_epi16(a1_above); } // y calc __m128i a0_y, a1_y, shifty; if (base_x < min_base_x) { DECLARE_ALIGNED(32, int16_t, base_y_c[8]); __m128i y_c, base_y_c_reg, mask, c1234_; c1234_ = _mm_srli_si128(c1234, 2); r6 = _mm_set1_epi16(r << 6); y_c = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy_reg)); base_y_c_reg = _mm_srai_epi16(y_c, frac_bits_y); mask = _mm_cmpgt_epi16(min_y_base, base_y_c_reg); base_y_c_reg = _mm_andnot_si128(mask, base_y_c_reg); _mm_store_si128((__m128i *)base_y_c, base_y_c_reg); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); base_y_c_reg = _mm_add_epi16(base_y_c_reg, _mm_srli_epi16(a16, 4)); _mm_store_si128((__m128i *)base_y_c, base_y_c_reg); a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); if (upsample_left) { shifty = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(y_c, upsample_left), c3f), 1); } else { shifty = _mm_srli_epi16(_mm_and_si128(y_c, c3f), 1); } a0_x = _mm_unpacklo_epi64(a0_x, a0_y); a1_x = _mm_unpacklo_epi64(a1_x, a1_y); shift = _mm_unpacklo_epi64(shift, shifty); } diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); resx = _mm_packus_epi16(res, res); resy = _mm_srli_si128(resx, 4); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]); *(int *)(dst) = _mm_cvtsi128_si32(resxy); dst += stride; } } static void dr_prediction_z2_Nx8_sse4_1(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 __m128i diff, a32; __m128i a0_x, a1_x, a0_y, a1_y; __m128i a0_above, a1_above; const __m128i a16 = _mm_set1_epi16(16); const __m128i c3f = _mm_set1_epi16(0x3f); const __m128i min_y_base = _mm_set1_epi16(min_base_y); const __m128i dy_reg = _mm_set1_epi16(dy); const __m128i c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); for (int r = 0; r < N; r++) { __m128i b, res, res1, shift; __m128i resx, resy, resxy, r6, ydx; int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_shift = 0; if (base_x < (min_base_x - 1)) { base_shift = (min_base_x - base_x - 1) >> upsample_above; } int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff > 8) { base_min_diff = 8; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift > 7) { resx = _mm_setzero_si128(); } else { a0_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); ydx = _mm_set1_epi16(y * dx); r6 = _mm_slli_epi16(_mm_srli_si128(c1234, 2), 6); if (upsample_above) { a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[base_shift]); a1_above = _mm_srli_si128(a0_above, 8); shift = _mm_srli_epi16( _mm_and_si128( _mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f), 1); } else { a1_above = _mm_srli_si128(a0_above, 1); a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]); a1_above = _mm_shuffle_epi8(a1_above, *(__m128i *)LoadMaskx[base_shift]); shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1); } a0_x = _mm_cvtepu8_epi16(a0_above); a1_x = _mm_cvtepu8_epi16(a1_above); diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); resx = _mm_packus_epi16(res, res); } // y calc if (base_x < min_base_x) { DECLARE_ALIGNED(32, int16_t, base_y_c[16]); __m128i y_c, base_y_c_reg, mask; r6 = _mm_set1_epi16(r << 6); y_c = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy_reg)); base_y_c_reg = _mm_srai_epi16(y_c, frac_bits_y); mask = _mm_cmpgt_epi16(min_y_base, base_y_c_reg); base_y_c_reg = _mm_andnot_si128(mask, base_y_c_reg); _mm_store_si128((__m128i *)base_y_c, base_y_c_reg); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); base_y_c_reg = _mm_add_epi16(base_y_c_reg, _mm_srli_epi16(a16, 4)); _mm_store_si128((__m128i *)base_y_c, base_y_c_reg); a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); if (upsample_left) { shift = _mm_srli_epi16( _mm_and_si128(_mm_slli_epi16(y_c, upsample_left), c3f), 1); } else { shift = _mm_srli_epi16(_mm_and_si128(y_c, c3f), 1); } diff = _mm_sub_epi16(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_y, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); resy = _mm_packus_epi16(res1, res1); resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]); _mm_storel_epi64((__m128i *)dst, resxy); } else { _mm_storel_epi64((__m128i *)dst, resx); } dst += stride; } } static void dr_prediction_z2_HxW_sse4_1(int H, int W, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_x = -1; const int min_base_y = -1; (void)upsample_above; (void)upsample_left; const int frac_bits_x = 6; const int frac_bits_y = 6; __m128i a0_x, a1_x, a0_y, a1_y, a0_y_h, a1_y_h, a32; __m128i diff, shifty, shifty_h; __m128i a0_above, a1_above; DECLARE_ALIGNED(32, int16_t, base_y_c[16]); const __m128i a16 = _mm_set1_epi16(16); const __m128i c1 = _mm_srli_epi16(a16, 4); const __m128i min_y_base = _mm_set1_epi16(min_base_y); const __m128i c3f = _mm_set1_epi16(0x3f); const __m128i dy256 = _mm_set1_epi16(dy); const __m128i c0123 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); const __m128i c0123_h = _mm_setr_epi16(8, 9, 10, 11, 12, 13, 14, 15); const __m128i c1234 = _mm_add_epi16(c0123, c1); const __m128i c1234_h = _mm_add_epi16(c0123_h, c1); for (int r = 0; r < H; r++) { __m128i b, res, res1, shift, reg_j, r6, ydx; __m128i resx, resy; __m128i resxy; int y = r + 1; ydx = _mm_set1_epi16((int16_t)(y * dx)); int base_x = (-y * dx) >> frac_bits_x; for (int j = 0; j < W; j += 16) { reg_j = _mm_set1_epi16(j); int base_shift = 0; if ((base_x + j) < (min_base_x - 1)) { base_shift = (min_base_x - (base_x + j) - 1); } int base_min_diff = (min_base_x - base_x - j); if (base_min_diff > 16) { base_min_diff = 16; } else { if (base_min_diff < 0) base_min_diff = 0; } if (base_shift < 16) { a0_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + j)); a1_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1 + j)); a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]); a1_above = _mm_shuffle_epi8(a1_above, *(__m128i *)LoadMaskx[base_shift]); a0_x = _mm_cvtepu8_epi16(a0_above); a1_x = _mm_cvtepu8_epi16(a1_above); r6 = _mm_slli_epi16(_mm_add_epi16(c0123, reg_j), 6); shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1); diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); // 16 16-bit values a0_x = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8)); a1_x = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8)); r6 = _mm_slli_epi16(_mm_add_epi16(c0123_h, reg_j), 6); shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1); diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shift); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); // 16 16-bit values resx = _mm_packus_epi16(res, res1); } else { resx = _mm_setzero_si128(); } // y calc if (base_x < min_base_x) { __m128i c_reg, c_reg_h, y_reg, y_reg_h, base_y, base_y_h; __m128i mask, mask_h, mul16, mul16_h; r6 = _mm_set1_epi16(r << 6); c_reg = _mm_add_epi16(reg_j, c1234); c_reg_h = _mm_add_epi16(reg_j, c1234_h); mul16 = _mm_min_epu16(_mm_mullo_epi16(c_reg, dy256), _mm_srli_epi16(min_y_base, 1)); mul16_h = _mm_min_epu16(_mm_mullo_epi16(c_reg_h, dy256), _mm_srli_epi16(min_y_base, 1)); y_reg = _mm_sub_epi16(r6, mul16); y_reg_h = _mm_sub_epi16(r6, mul16_h); base_y = _mm_srai_epi16(y_reg, frac_bits_y); base_y_h = _mm_srai_epi16(y_reg_h, frac_bits_y); mask = _mm_cmpgt_epi16(min_y_base, base_y); mask_h = _mm_cmpgt_epi16(min_y_base, base_y_h); base_y = _mm_blendv_epi8(base_y, min_y_base, mask); base_y_h = _mm_blendv_epi8(base_y_h, min_y_base, mask_h); int16_t min_y = (int16_t)_mm_extract_epi16(base_y_h, 7); int16_t max_y = (int16_t)_mm_extract_epi16(base_y, 0); int16_t offset_diff = max_y - min_y; if (offset_diff < 16) { __m128i min_y_reg = _mm_set1_epi16(min_y); __m128i base_y_offset = _mm_sub_epi16(base_y, min_y_reg); __m128i base_y_offset_h = _mm_sub_epi16(base_y_h, min_y_reg); __m128i y_offset = _mm_packs_epi16(base_y_offset, base_y_offset_h); __m128i a0_mask = _mm_loadu_si128((__m128i *)(left + min_y)); __m128i a1_mask = _mm_loadu_si128((__m128i *)(left + min_y + 1)); __m128i LoadMask = _mm_loadu_si128((__m128i *)(LoadMaskz2[offset_diff / 4])); a0_mask = _mm_and_si128(a0_mask, LoadMask); a1_mask = _mm_and_si128(a1_mask, LoadMask); a0_mask = _mm_shuffle_epi8(a0_mask, y_offset); a1_mask = _mm_shuffle_epi8(a1_mask, y_offset); a0_y = _mm_cvtepu8_epi16(a0_mask); a1_y = _mm_cvtepu8_epi16(a1_mask); a0_y_h = _mm_cvtepu8_epi16(_mm_srli_si128(a0_mask, 8)); a1_y_h = _mm_cvtepu8_epi16(_mm_srli_si128(a1_mask, 8)); } else { base_y = _mm_andnot_si128(mask, base_y); base_y_h = _mm_andnot_si128(mask_h, base_y_h); _mm_store_si128((__m128i *)base_y_c, base_y); _mm_store_si128((__m128i *)&base_y_c[8], base_y_h); a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); a0_y_h = _mm_setr_epi16(left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); base_y = _mm_add_epi16(base_y, c1); base_y_h = _mm_add_epi16(base_y_h, c1); _mm_store_si128((__m128i *)base_y_c, base_y); _mm_store_si128((__m128i *)&base_y_c[8], base_y_h); a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], left[base_y_c[6]], left[base_y_c[7]]); a1_y_h = _mm_setr_epi16(left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], left[base_y_c[15]]); } shifty = _mm_srli_epi16(_mm_and_si128(y_reg, c3f), 1); shifty_h = _mm_srli_epi16(_mm_and_si128(y_reg_h, c3f), 1); diff = _mm_sub_epi16(a1_y, a0_y); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_y, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shifty); res = _mm_add_epi16(a32, b); res = _mm_srli_epi16(res, 5); // 16 16-bit values diff = _mm_sub_epi16(a1_y_h, a0_y_h); // a[x+1] - a[x] a32 = _mm_slli_epi16(a0_y_h, 5); // a[x] * 32 a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16 b = _mm_mullo_epi16(diff, shifty_h); res1 = _mm_add_epi16(a32, b); res1 = _mm_srli_epi16(res1, 5); // 16 16-bit values resy = _mm_packus_epi16(res, res1); } else { resy = _mm_setzero_si128(); } resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]); _mm_storeu_si128((__m128i *)(dst + j), resxy); } // for j dst += stride; } } // Directional prediction, zone 2: 90 < angle < 180 void av1_dr_prediction_z2_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { assert(dx > 0); assert(dy > 0); switch (bw) { case 4: dr_prediction_z2_Nx4_sse4_1(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; case 8: dr_prediction_z2_Nx8_sse4_1(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; default: dr_prediction_z2_HxW_sse4_1(bh, bw, dst, stride, above, left, upsample_above, upsample_left, dx, dy); } return; } // z3 functions static void dr_prediction_z3_4x4_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[4]; dr_prediction_z1_HxW_internal_sse4_1(4, 4, dstvec, left, upsample_left, dy); transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3]); *(int *)(dst + stride * 0) = _mm_cvtsi128_si32(d[0]); *(int *)(dst + stride * 1) = _mm_cvtsi128_si32(d[1]); *(int *)(dst + stride * 2) = _mm_cvtsi128_si32(d[2]); *(int *)(dst + stride * 3) = _mm_cvtsi128_si32(d[3]); return; } static void dr_prediction_z3_8x8_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[8]; dr_prediction_z1_HxW_internal_sse4_1(8, 8, dstvec, left, upsample_left, dy); transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3]); _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 1 * stride), _mm_srli_si128(d[0], 8)); _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[1]); _mm_storel_epi64((__m128i *)(dst + 3 * stride), _mm_srli_si128(d[1], 8)); _mm_storel_epi64((__m128i *)(dst + 4 * stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 5 * stride), _mm_srli_si128(d[2], 8)); _mm_storel_epi64((__m128i *)(dst + 6 * stride), d[3]); _mm_storel_epi64((__m128i *)(dst + 7 * stride), _mm_srli_si128(d[3], 8)); } static void dr_prediction_z3_4x8_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[8]; dr_prediction_z1_HxW_internal_sse4_1(8, 4, dstvec, left, upsample_left, dy); transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]); } } static void dr_prediction_z3_8x4_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[4]; dr_prediction_z1_HxW_internal_sse4_1(4, 8, dstvec, left, upsample_left, dy); transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2], &d[3]); _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]); _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]); } static void dr_prediction_z3_8x16_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[8], d[8]; dr_prediction_z1_HxW_internal_sse4_1(16, 8, dstvec, left, upsample_left, dy); transpose8x16_16x8_sse2(dstvec, dstvec + 1, dstvec + 2, dstvec + 3, dstvec + 4, dstvec + 5, dstvec + 6, dstvec + 7, d, d + 1, d + 2, d + 3, d + 4, d + 5, d + 6, d + 7); for (int i = 0; i < 8; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), _mm_srli_si128(d[i], 8)); } } static void dr_prediction_z3_16x8_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16]; dr_prediction_z1_HxW_internal_sse4_1(8, 16, dstvec, left, upsample_left, dy); transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_4x16_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[4], d[16]; dr_prediction_z1_HxW_internal_sse4_1(16, 4, dstvec, left, upsample_left, dy); transpose4x16_sse2(dstvec, d); for (int i = 0; i < 16; i++) { *(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]); } } static void dr_prediction_z3_16x4_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[8]; dr_prediction_z1_HxW_internal_sse4_1(4, 16, dstvec, left, upsample_left, dy); for (int i = 4; i < 8; i++) { d[i] = _mm_setzero_si128(); } transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); for (int i = 0; i < 4; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_8x32_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16], dstvec_h[16], d_h[16]; dr_prediction_z1_32xN_internal_sse4_1(8, dstvec, dstvec_h, left, upsample_left, dy); for (int i = 8; i < 16; i++) { dstvec[i] = _mm_setzero_si128(); dstvec_h[i] = _mm_setzero_si128(); } transpose16x16_sse2(dstvec, d); transpose16x16_sse2(dstvec_h, d_h); for (int i = 0; i < 16; i++) { _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); } for (int i = 0; i < 16; i++) { _mm_storel_epi64((__m128i *)(dst + (i + 16) * stride), d_h[i]); } } static void dr_prediction_z3_32x8_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[32], d[16]; dr_prediction_z1_HxW_internal_sse4_1(8, 32, dstvec, left, upsample_left, dy); transpose16x8_8x16_sse2( &dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11], &dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); transpose16x8_8x16_sse2( &dstvec[0 + 16], &dstvec[1 + 16], &dstvec[2 + 16], &dstvec[3 + 16], &dstvec[4 + 16], &dstvec[5 + 16], &dstvec[6 + 16], &dstvec[7 + 16], &dstvec[8 + 16], &dstvec[9 + 16], &dstvec[10 + 16], &dstvec[11 + 16], &dstvec[12 + 16], &dstvec[13 + 16], &dstvec[14 + 16], &dstvec[15 + 16], &d[0 + 8], &d[1 + 8], &d[2 + 8], &d[3 + 8], &d[4 + 8], &d[5 + 8], &d[6 + 8], &d[7 + 8]); for (int i = 0; i < 8; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); _mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 8]); } } static void dr_prediction_z3_16x16_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16]; dr_prediction_z1_HxW_internal_sse4_1(16, 16, dstvec, left, upsample_left, dy); transpose16x16_sse2(dstvec, d); for (int i = 0; i < 16; i++) { _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); } } static void dr_prediction_z3_32x32_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[32], d[32], dstvec_h[32], d_h[32]; dr_prediction_z1_32xN_internal_sse4_1(32, dstvec, dstvec_h, left, upsample_left, dy); transpose16x16_sse2(dstvec, d); transpose16x16_sse2(dstvec_h, d_h); transpose16x16_sse2(dstvec + 16, d + 16); transpose16x16_sse2(dstvec_h + 16, d_h + 16); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride), d[j]); _mm_storeu_si128((__m128i *)(dst + j * stride + 16), d[j + 16]); } for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), d_h[j]); _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride + 16), d_h[j + 16]); } } static void dr_prediction_z3_64x64_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[64 * 64]; dr_prediction_z1_64xN_sse4_1(64, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 64, 64); } static void dr_prediction_z3_16x32_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[16], d[16], dstvec_h[16], d_h[16]; dr_prediction_z1_32xN_internal_sse4_1(16, dstvec, dstvec_h, left, upsample_left, dy); transpose16x16_sse2(dstvec, d); transpose16x16_sse2(dstvec_h, d_h); // store for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride), d[j]); _mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), d_h[j]); } } static void dr_prediction_z3_32x16_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[32], d[16]; dr_prediction_z1_HxW_internal_sse4_1(16, 32, dstvec, left, upsample_left, dy); for (int i = 0; i < 32; i += 16) { transpose16x16_sse2((dstvec + i), d); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]); } } } static void dr_prediction_z3_32x64_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[64 * 32]; dr_prediction_z1_64xN_sse4_1(32, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 32, 64); } static void dr_prediction_z3_64x32_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[32 * 64]; dr_prediction_z1_32xN_sse4_1(64, dstT, 32, left, upsample_left, dy); transpose(dstT, 32, dst, stride, 64, 32); return; } static void dr_prediction_z3_16x64_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8_t dstT[64 * 16]; dr_prediction_z1_64xN_sse4_1(16, dstT, 64, left, upsample_left, dy); transpose(dstT, 64, dst, stride, 16, 64); } static void dr_prediction_z3_64x16_sse4_1(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { __m128i dstvec[64], d[16]; dr_prediction_z1_HxW_internal_sse4_1(16, 64, dstvec, left, upsample_left, dy); for (int i = 0; i < 64; i += 16) { transpose16x16_sse2(dstvec + i, d); for (int j = 0; j < 16; j++) { _mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]); } } } void av1_dr_prediction_z3_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_left, int dx, int dy) { (void)above; (void)dx; assert(dx == 1); assert(dy > 0); if (bw == bh) { switch (bw) { case 4: dr_prediction_z3_4x4_sse4_1(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x8_sse4_1(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x16_sse4_1(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_32x32_sse4_1(dst, stride, left, upsample_left, dy); break; case 64: dr_prediction_z3_64x64_sse4_1(dst, stride, left, upsample_left, dy); break; default: assert(0 && "Invalid block size"); } } else { if (bw < bh) { if (bw + bw == bh) { switch (bw) { case 4: dr_prediction_z3_4x8_sse4_1(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x16_sse4_1(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x32_sse4_1(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_32x64_sse4_1(dst, stride, left, upsample_left, dy); break; default: assert(0 && "Invalid block size"); } } else { switch (bw) { case 4: dr_prediction_z3_4x16_sse4_1(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_8x32_sse4_1(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_16x64_sse4_1(dst, stride, left, upsample_left, dy); break; default: assert(0 && "Invalid block size"); } } } else { if (bh + bh == bw) { switch (bh) { case 4: dr_prediction_z3_8x4_sse4_1(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_16x8_sse4_1(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_32x16_sse4_1(dst, stride, left, upsample_left, dy); break; case 32: dr_prediction_z3_64x32_sse4_1(dst, stride, left, upsample_left, dy); break; default: assert(0 && "Invalid block size"); } } else { switch (bh) { case 4: dr_prediction_z3_16x4_sse4_1(dst, stride, left, upsample_left, dy); break; case 8: dr_prediction_z3_32x8_sse4_1(dst, stride, left, upsample_left, dy); break; case 16: dr_prediction_z3_64x16_sse4_1(dst, stride, left, upsample_left, dy); break; default: assert(0 && "Invalid block size"); } } } } }