/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom/aom_integer.h" static INLINE void load_b_values(const int16_t *zbin_ptr, __m128i *zbin, const int16_t *round_ptr, __m128i *round, const int16_t *quant_ptr, __m128i *quant, const int16_t *dequant_ptr, __m128i *dequant, const int16_t *shift_ptr, __m128i *shift) { *zbin = _mm_load_si128((const __m128i *)zbin_ptr); *round = _mm_load_si128((const __m128i *)round_ptr); *quant = _mm_load_si128((const __m128i *)quant_ptr); *zbin = _mm_sub_epi16(*zbin, _mm_set1_epi16(1)); *dequant = _mm_load_si128((const __m128i *)dequant_ptr); *shift = _mm_load_si128((const __m128i *)shift_ptr); } // With ssse3 and later abs() and sign() are preferred. static INLINE __m128i invert_sign_sse2(__m128i a, __m128i sign) { a = _mm_xor_si128(a, sign); return _mm_sub_epi16(a, sign); } static INLINE __m128i invert_sign_32_sse2(__m128i a, __m128i sign) { a = _mm_xor_si128(a, sign); return _mm_sub_epi32(a, sign); } static INLINE void calculate_qcoeff(__m128i *coeff, const __m128i round, const __m128i quant, const __m128i shift) { __m128i tmp, qcoeff; qcoeff = _mm_adds_epi16(*coeff, round); tmp = _mm_mulhi_epi16(qcoeff, quant); qcoeff = _mm_add_epi16(tmp, qcoeff); *coeff = _mm_mulhi_epi16(qcoeff, shift); } static INLINE void calculate_qcoeff_log_scale(__m128i *coeff, const __m128i round, const __m128i quant, const __m128i *shift, const int *log_scale) { __m128i tmp, tmp1, qcoeff; qcoeff = _mm_adds_epi16(*coeff, round); tmp = _mm_mulhi_epi16(qcoeff, quant); qcoeff = _mm_add_epi16(tmp, qcoeff); tmp = _mm_mullo_epi16(qcoeff, *shift); tmp = _mm_srli_epi16(tmp, (16 - *log_scale)); tmp1 = _mm_mulhi_epi16(qcoeff, *shift); tmp1 = _mm_slli_epi16(tmp1, *log_scale); *coeff = _mm_or_si128(tmp, tmp1); } static INLINE __m128i calculate_dqcoeff(__m128i qcoeff, __m128i dequant) { return _mm_mullo_epi16(qcoeff, dequant); } static INLINE void calculate_dqcoeff_and_store_log_scale(__m128i qcoeff, __m128i dequant, const __m128i zero, tran_low_t *dqcoeff, const int *log_scale) { // calculate abs __m128i coeff_sign = _mm_srai_epi16(qcoeff, 15); __m128i coeff = invert_sign_sse2(qcoeff, coeff_sign); const __m128i sign_0 = _mm_unpacklo_epi16(coeff_sign, zero); const __m128i sign_1 = _mm_unpackhi_epi16(coeff_sign, zero); const __m128i low = _mm_mullo_epi16(coeff, dequant); const __m128i high = _mm_mulhi_epi16(coeff, dequant); __m128i dqcoeff32_0 = _mm_unpacklo_epi16(low, high); __m128i dqcoeff32_1 = _mm_unpackhi_epi16(low, high); dqcoeff32_0 = _mm_srli_epi32(dqcoeff32_0, *log_scale); dqcoeff32_1 = _mm_srli_epi32(dqcoeff32_1, *log_scale); dqcoeff32_0 = invert_sign_32_sse2(dqcoeff32_0, sign_0); dqcoeff32_1 = invert_sign_32_sse2(dqcoeff32_1, sign_1); _mm_store_si128((__m128i *)(dqcoeff), dqcoeff32_0); _mm_store_si128((__m128i *)(dqcoeff + 4), dqcoeff32_1); } // Scan 16 values for eob reference in scan_ptr. Use masks (-1) from comparing // to zbin to add 1 to the index in 'scan'. static INLINE __m128i scan_for_eob(__m128i *coeff0, __m128i *coeff1, const __m128i zbin_mask0, const __m128i zbin_mask1, const int16_t *scan_ptr, const int index, const __m128i zero) { const __m128i zero_coeff0 = _mm_cmpeq_epi16(*coeff0, zero); const __m128i zero_coeff1 = _mm_cmpeq_epi16(*coeff1, zero); __m128i scan0 = _mm_load_si128((const __m128i *)(scan_ptr + index)); __m128i scan1 = _mm_load_si128((const __m128i *)(scan_ptr + index + 8)); __m128i eob0, eob1; // Add one to convert from indices to counts scan0 = _mm_sub_epi16(scan0, zbin_mask0); scan1 = _mm_sub_epi16(scan1, zbin_mask1); eob0 = _mm_andnot_si128(zero_coeff0, scan0); eob1 = _mm_andnot_si128(zero_coeff1, scan1); return _mm_max_epi16(eob0, eob1); } static INLINE int16_t accumulate_eob(__m128i eob) { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); return _mm_extract_epi16(eob, 1); } static INLINE __m128i load_coefficients(const tran_low_t *coeff_ptr) { assert(sizeof(tran_low_t) == 4); const __m128i coeff1 = _mm_load_si128((__m128i *)(coeff_ptr)); const __m128i coeff2 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); return _mm_packs_epi32(coeff1, coeff2); } static INLINE void store_coefficients(__m128i coeff_vals, tran_low_t *coeff_ptr) { assert(sizeof(tran_low_t) == 4); __m128i one = _mm_set1_epi16(1); __m128i coeff_vals_hi = _mm_mulhi_epi16(coeff_vals, one); __m128i coeff_vals_lo = _mm_mullo_epi16(coeff_vals, one); __m128i coeff_vals_1 = _mm_unpacklo_epi16(coeff_vals_lo, coeff_vals_hi); __m128i coeff_vals_2 = _mm_unpackhi_epi16(coeff_vals_lo, coeff_vals_hi); _mm_store_si128((__m128i *)(coeff_ptr), coeff_vals_1); _mm_store_si128((__m128i *)(coeff_ptr + 4), coeff_vals_2); } static INLINE void update_mask1(__m128i *cmp_mask0, __m128i *cmp_mask1, const int16_t *iscan_ptr, int *is_found, __m128i *mask) { __m128i all_zero; __m128i temp_mask = _mm_setzero_si128(); all_zero = _mm_or_si128(*cmp_mask0, *cmp_mask1); if (_mm_movemask_epi8(all_zero)) { __m128i iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); __m128i mask0 = _mm_and_si128(*cmp_mask0, iscan0); __m128i iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + 8)); __m128i mask1 = _mm_and_si128(*cmp_mask1, iscan1); temp_mask = _mm_max_epi16(mask0, mask1); *is_found = 1; } *mask = _mm_max_epi16(temp_mask, *mask); } static INLINE void update_mask0(__m128i *qcoeff0, __m128i *qcoeff1, __m128i *threshold, const int16_t *iscan_ptr, int *is_found, __m128i *mask) { __m128i zero = _mm_setzero_si128(); __m128i coeff[4], cmp_mask0, cmp_mask1, cmp_mask2, cmp_mask3; coeff[0] = _mm_unpacklo_epi16(*qcoeff0, zero); coeff[1] = _mm_unpackhi_epi16(*qcoeff0, zero); coeff[2] = _mm_unpacklo_epi16(*qcoeff1, zero); coeff[3] = _mm_unpackhi_epi16(*qcoeff1, zero); coeff[0] = _mm_slli_epi32(coeff[0], AOM_QM_BITS); cmp_mask0 = _mm_cmpgt_epi32(coeff[0], threshold[0]); coeff[1] = _mm_slli_epi32(coeff[1], AOM_QM_BITS); cmp_mask1 = _mm_cmpgt_epi32(coeff[1], threshold[1]); coeff[2] = _mm_slli_epi32(coeff[2], AOM_QM_BITS); cmp_mask2 = _mm_cmpgt_epi32(coeff[2], threshold[1]); coeff[3] = _mm_slli_epi32(coeff[3], AOM_QM_BITS); cmp_mask3 = _mm_cmpgt_epi32(coeff[3], threshold[1]); cmp_mask0 = _mm_packs_epi32(cmp_mask0, cmp_mask1); cmp_mask1 = _mm_packs_epi32(cmp_mask2, cmp_mask3); update_mask1(&cmp_mask0, &cmp_mask1, iscan_ptr, is_found, mask); } static INLINE int calculate_non_zero_count(__m128i mask) { __m128i mask0, mask1; int non_zero_count = 0; mask0 = _mm_unpackhi_epi64(mask, mask); mask1 = _mm_max_epi16(mask0, mask); mask0 = _mm_shuffle_epi32(mask1, 1); mask0 = _mm_max_epi16(mask0, mask1); mask1 = _mm_srli_epi32(mask0, 16); mask0 = _mm_max_epi16(mask0, mask1); non_zero_count = _mm_extract_epi16(mask0, 0) + 1; return non_zero_count; }