/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/synonyms_avx2.h" #include "aom_dsp/x86/sum_squares_sse2.h" #include "config/aom_dsp_rtcd.h" static uint64_t aom_sum_squares_2d_i16_nxn_avx2(const int16_t *src, int stride, int width, int height) { uint64_t result; __m256i v_acc_q = _mm256_setzero_si256(); const __m256i v_zext_mask_q = yy_set1_64_from_32i(~0); for (int col = 0; col < height; col += 4) { __m256i v_acc_d = _mm256_setzero_si256(); for (int row = 0; row < width; row += 16) { const int16_t *tempsrc = src + row; const __m256i v_val_0_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride)); const __m256i v_val_1_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride)); const __m256i v_val_2_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride)); const __m256i v_val_3_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride)); const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w); const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w); const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w); const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w); const __m256i v_sum_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d); const __m256i v_sum_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d); const __m256i v_sum_0123_d = _mm256_add_epi32(v_sum_01_d, v_sum_23_d); v_acc_d = _mm256_add_epi32(v_acc_d, v_sum_0123_d); } v_acc_q = _mm256_add_epi64(v_acc_q, _mm256_and_si256(v_acc_d, v_zext_mask_q)); v_acc_q = _mm256_add_epi64(v_acc_q, _mm256_srli_epi64(v_acc_d, 32)); src += 4 * stride; } __m128i lower_64_2_Value = _mm256_castsi256_si128(v_acc_q); __m128i higher_64_2_Value = _mm256_extracti128_si256(v_acc_q, 1); __m128i result_64_2_int = _mm_add_epi64(lower_64_2_Value, higher_64_2_Value); result_64_2_int = _mm_add_epi64( result_64_2_int, _mm_unpackhi_epi64(result_64_2_int, result_64_2_int)); xx_storel_64(&result, result_64_2_int); return result; } uint64_t aom_sum_squares_2d_i16_avx2(const int16_t *src, int stride, int width, int height) { if (LIKELY(width == 4 && height == 4)) { return aom_sum_squares_2d_i16_4x4_sse2(src, stride); } else if (LIKELY(width == 4 && (height & 3) == 0)) { return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height); } else if (LIKELY(width == 8 && (height & 3) == 0)) { return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height); } else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) { return aom_sum_squares_2d_i16_nxn_avx2(src, stride, width, height); } else { return aom_sum_squares_2d_i16_c(src, stride, width, height); } } static uint64_t aom_sum_sse_2d_i16_nxn_avx2(const int16_t *src, int stride, int width, int height, int *sum) { uint64_t result; const __m256i zero_reg = _mm256_setzero_si256(); const __m256i one_reg = _mm256_set1_epi16(1); __m256i v_sse_total = zero_reg; __m256i v_sum_total = zero_reg; for (int col = 0; col < height; col += 4) { __m256i v_sse_row = zero_reg; for (int row = 0; row < width; row += 16) { const int16_t *tempsrc = src + row; const __m256i v_val_0_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride)); const __m256i v_val_1_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride)); const __m256i v_val_2_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride)); const __m256i v_val_3_w = _mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride)); const __m256i v_sum_01 = _mm256_add_epi16(v_val_0_w, v_val_1_w); const __m256i v_sum_23 = _mm256_add_epi16(v_val_2_w, v_val_3_w); __m256i v_sum_0123 = _mm256_add_epi16(v_sum_01, v_sum_23); v_sum_0123 = _mm256_madd_epi16(v_sum_0123, one_reg); v_sum_total = _mm256_add_epi32(v_sum_total, v_sum_0123); const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w); const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w); const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w); const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w); const __m256i v_sq_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d); const __m256i v_sq_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d); const __m256i v_sq_0123_d = _mm256_add_epi32(v_sq_01_d, v_sq_23_d); v_sse_row = _mm256_add_epi32(v_sse_row, v_sq_0123_d); } const __m256i v_sse_row_low = _mm256_unpacklo_epi32(v_sse_row, zero_reg); const __m256i v_sse_row_hi = _mm256_unpackhi_epi32(v_sse_row, zero_reg); v_sse_row = _mm256_add_epi64(v_sse_row_low, v_sse_row_hi); v_sse_total = _mm256_add_epi64(v_sse_total, v_sse_row); src += 4 * stride; } const __m128i v_sum_total_low = _mm256_castsi256_si128(v_sum_total); const __m128i v_sum_total_hi = _mm256_extracti128_si256(v_sum_total, 1); __m128i sum_128bit = _mm_add_epi32(v_sum_total_hi, v_sum_total_low); sum_128bit = _mm_add_epi32(sum_128bit, _mm_srli_si128(sum_128bit, 8)); sum_128bit = _mm_add_epi32(sum_128bit, _mm_srli_si128(sum_128bit, 4)); *sum += _mm_cvtsi128_si32(sum_128bit); __m128i v_sse_total_lo = _mm256_castsi256_si128(v_sse_total); __m128i v_sse_total_hi = _mm256_extracti128_si256(v_sse_total, 1); __m128i sse_128bit = _mm_add_epi64(v_sse_total_lo, v_sse_total_hi); sse_128bit = _mm_add_epi64(sse_128bit, _mm_unpackhi_epi64(sse_128bit, sse_128bit)); xx_storel_64(&result, sse_128bit); return result; } uint64_t aom_sum_sse_2d_i16_avx2(const int16_t *src, int src_stride, int width, int height, int *sum) { if (LIKELY(width == 4 && height == 4)) { return aom_sum_sse_2d_i16_4x4_sse2(src, src_stride, sum); } else if (LIKELY(width == 4 && (height & 3) == 0)) { return aom_sum_sse_2d_i16_4xn_sse2(src, src_stride, height, sum); } else if (LIKELY(width == 8 && (height & 3) == 0)) { return aom_sum_sse_2d_i16_nxn_sse2(src, src_stride, width, height, sum); } else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) { return aom_sum_sse_2d_i16_nxn_avx2(src, src_stride, width, height, sum); } else { return aom_sum_sse_2d_i16_c(src, src_stride, width, height, sum); } } // Accumulate sum of 16-bit elements in the vector static AOM_INLINE int32_t mm256_accumulate_epi16(__m256i vec_a) { __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); __m128i vtmp2 = _mm256_castsi256_si128(vec_a); vtmp1 = _mm_add_epi16(vtmp1, vtmp2); vtmp2 = _mm_srli_si128(vtmp1, 8); vtmp1 = _mm_add_epi16(vtmp1, vtmp2); vtmp2 = _mm_srli_si128(vtmp1, 4); vtmp1 = _mm_add_epi16(vtmp1, vtmp2); vtmp2 = _mm_srli_si128(vtmp1, 2); vtmp1 = _mm_add_epi16(vtmp1, vtmp2); return _mm_extract_epi16(vtmp1, 0); } // Accumulate sum of 32-bit elements in the vector static AOM_INLINE int32_t mm256_accumulate_epi32(__m256i vec_a) { __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); __m128i vtmp2 = _mm256_castsi256_si128(vec_a); vtmp1 = _mm_add_epi32(vtmp1, vtmp2); vtmp2 = _mm_srli_si128(vtmp1, 8); vtmp1 = _mm_add_epi32(vtmp1, vtmp2); vtmp2 = _mm_srli_si128(vtmp1, 4); vtmp1 = _mm_add_epi32(vtmp1, vtmp2); return _mm_cvtsi128_si32(vtmp1); } uint64_t aom_var_2d_u8_avx2(uint8_t *src, int src_stride, int width, int height) { uint8_t *srcp; uint64_t s = 0, ss = 0; __m256i vzero = _mm256_setzero_si256(); __m256i v_acc_sum = vzero; __m256i v_acc_sqs = vzero; int i, j; // Process 32 elements in a row for (i = 0; i < width - 31; i += 32) { srcp = src + i; // Process 8 columns at a time for (j = 0; j < height - 7; j += 8) { __m256i vsrc[8]; for (int k = 0; k < 8; k++) { vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); srcp += src_stride; } for (int k = 0; k < 8; k++) { __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc[k], vzero); __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc[k], vzero); v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); } // Update total sum and clear the vectors s += mm256_accumulate_epi16(v_acc_sum); ss += mm256_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process remaining rows (height not a multiple of 8) for (; j < height; j++) { __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc, vzero); __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc, vzero); v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); srcp += src_stride; } // Update total sum and clear the vectors s += mm256_accumulate_epi16(v_acc_sum); ss += mm256_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process the remaining area using C srcp = src; for (int k = 0; k < height; k++) { for (int m = i; m < width; m++) { uint8_t val = srcp[m]; s += val; ss += val * val; } srcp += src_stride; } return (ss - s * s / (width * height)); } uint64_t aom_var_2d_u16_avx2(uint8_t *src, int src_stride, int width, int height) { uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp; uint64_t s = 0, ss = 0; __m256i vzero = _mm256_setzero_si256(); __m256i v_acc_sum = vzero; __m256i v_acc_sqs = vzero; int i, j; // Process 16 elements in a row for (i = 0; i < width - 15; i += 16) { srcp = srcp1 + i; // Process 8 columns at a time for (j = 0; j < height - 8; j += 8) { __m256i vsrc[8]; for (int k = 0; k < 8; k++) { vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); srcp += src_stride; } for (int k = 0; k < 8; k++) { __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc[k], vzero); __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc[k], vzero); v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); __m256i vsqs0 = _mm256_madd_epi16(vsrc[k], vsrc[k]); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); } // Update total sum and clear the vectors s += mm256_accumulate_epi32(v_acc_sum); ss += mm256_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process remaining rows (height not a multiple of 8) for (; j < height; j++) { __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc, vzero); __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc, vzero); v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); __m256i vsqs0 = _mm256_madd_epi16(vsrc, vsrc); v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); srcp += src_stride; } // Update total sum and clear the vectors s += mm256_accumulate_epi32(v_acc_sum); ss += mm256_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process the remaining area using C srcp = srcp1; for (int k = 0; k < height; k++) { for (int m = i; m < width; m++) { uint16_t val = srcp[m]; s += val; ss += val * val; } srcp += src_stride; } return (ss - s * s / (width * height)); }