/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/sum_squares_sse2.h" #include "config/aom_dsp_rtcd.h" static INLINE __m128i xx_loadh_64(__m128i a, const void *b) { const __m128d ad = _mm_castsi128_pd(a); return _mm_castpd_si128(_mm_loadh_pd(ad, (double *)b)); } static INLINE uint64_t xx_cvtsi128_si64(__m128i a) { #if AOM_ARCH_X86_64 return (uint64_t)_mm_cvtsi128_si64(a); #else { uint64_t tmp; _mm_storel_epi64((__m128i *)&tmp, a); return tmp; } #endif } static INLINE __m128i sum_squares_i16_4x4_sse2(const int16_t *src, int stride) { const __m128i v_val_0_w = xx_loadl_64(src + 0 * stride); const __m128i v_val_2_w = xx_loadl_64(src + 2 * stride); const __m128i v_val_01_w = xx_loadh_64(v_val_0_w, src + 1 * stride); const __m128i v_val_23_w = xx_loadh_64(v_val_2_w, src + 3 * stride); const __m128i v_sq_01_d = _mm_madd_epi16(v_val_01_w, v_val_01_w); const __m128i v_sq_23_d = _mm_madd_epi16(v_val_23_w, v_val_23_w); return _mm_add_epi32(v_sq_01_d, v_sq_23_d); } uint64_t aom_sum_squares_2d_i16_4x4_sse2(const int16_t *src, int stride) { const __m128i v_sum_0123_d = sum_squares_i16_4x4_sse2(src, stride); __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d, _mm_srli_epi64(v_sum_0123_d, 32)); v_sum_d = _mm_add_epi32(v_sum_d, _mm_srli_si128(v_sum_d, 8)); return (uint64_t)_mm_cvtsi128_si32(v_sum_d); } uint64_t aom_sum_sse_2d_i16_4x4_sse2(const int16_t *src, int stride, int *sum) { const __m128i one_reg = _mm_set1_epi16(1); const __m128i v_val_0_w = xx_loadl_64(src + 0 * stride); const __m128i v_val_2_w = xx_loadl_64(src + 2 * stride); __m128i v_val_01_w = xx_loadh_64(v_val_0_w, src + 1 * stride); __m128i v_val_23_w = xx_loadh_64(v_val_2_w, src + 3 * stride); __m128i v_sum_0123_d = _mm_add_epi16(v_val_01_w, v_val_23_w); v_sum_0123_d = _mm_madd_epi16(v_sum_0123_d, one_reg); v_sum_0123_d = _mm_add_epi32(v_sum_0123_d, _mm_srli_si128(v_sum_0123_d, 8)); v_sum_0123_d = _mm_add_epi32(v_sum_0123_d, _mm_srli_si128(v_sum_0123_d, 4)); *sum = _mm_cvtsi128_si32(v_sum_0123_d); const __m128i v_sq_01_d = _mm_madd_epi16(v_val_01_w, v_val_01_w); const __m128i v_sq_23_d = _mm_madd_epi16(v_val_23_w, v_val_23_w); __m128i v_sq_0123_d = _mm_add_epi32(v_sq_01_d, v_sq_23_d); v_sq_0123_d = _mm_add_epi32(v_sq_0123_d, _mm_srli_si128(v_sq_0123_d, 8)); v_sq_0123_d = _mm_add_epi32(v_sq_0123_d, _mm_srli_si128(v_sq_0123_d, 4)); return (uint64_t)_mm_cvtsi128_si32(v_sq_0123_d); } uint64_t aom_sum_squares_2d_i16_4xn_sse2(const int16_t *src, int stride, int height) { int r = 0; __m128i v_acc_q = _mm_setzero_si128(); do { const __m128i v_acc_d = sum_squares_i16_4x4_sse2(src, stride); v_acc_q = _mm_add_epi32(v_acc_q, v_acc_d); src += stride << 2; r += 4; } while (r < height); const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0); __m128i v_acc_64 = _mm_add_epi64(_mm_srli_epi64(v_acc_q, 32), _mm_and_si128(v_acc_q, v_zext_mask_q)); v_acc_64 = _mm_add_epi64(v_acc_64, _mm_srli_si128(v_acc_64, 8)); return xx_cvtsi128_si64(v_acc_64); } uint64_t aom_sum_sse_2d_i16_4xn_sse2(const int16_t *src, int stride, int height, int *sum) { int r = 0; uint64_t sse = 0; do { int curr_sum = 0; sse += aom_sum_sse_2d_i16_4x4_sse2(src, stride, &curr_sum); *sum += curr_sum; src += stride << 2; r += 4; } while (r < height); return sse; } #ifdef __GNUC__ // This prevents GCC/Clang from inlining this function into // aom_sum_squares_2d_i16_sse2, which in turn saves some stack // maintenance instructions in the common case of 4x4. __attribute__((noinline)) #endif uint64_t aom_sum_squares_2d_i16_nxn_sse2(const int16_t *src, int stride, int width, int height) { int r = 0; const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0); __m128i v_acc_q = _mm_setzero_si128(); do { __m128i v_acc_d = _mm_setzero_si128(); int c = 0; do { const int16_t *b = src + c; const __m128i v_val_0_w = xx_load_128(b + 0 * stride); const __m128i v_val_1_w = xx_load_128(b + 1 * stride); const __m128i v_val_2_w = xx_load_128(b + 2 * stride); const __m128i v_val_3_w = xx_load_128(b + 3 * stride); const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w); const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w); const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w); const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w); const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d); const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d); const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d); v_acc_d = _mm_add_epi32(v_acc_d, v_sum_0123_d); c += 8; } while (c < width); v_acc_q = _mm_add_epi64(v_acc_q, _mm_and_si128(v_acc_d, v_zext_mask_q)); v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_epi64(v_acc_d, 32)); src += 4 * stride; r += 4; } while (r < height); v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8)); return xx_cvtsi128_si64(v_acc_q); } #ifdef __GNUC__ // This prevents GCC/Clang from inlining this function into // aom_sum_sse_2d_i16_nxn_sse2, which in turn saves some stack // maintenance instructions in the common case of 4x4. __attribute__((noinline)) #endif uint64_t aom_sum_sse_2d_i16_nxn_sse2(const int16_t *src, int stride, int width, int height, int *sum) { int r = 0; uint64_t result; const __m128i zero_reg = _mm_setzero_si128(); const __m128i one_reg = _mm_set1_epi16(1); __m128i v_sse_total = zero_reg; __m128i v_sum_total = zero_reg; do { int c = 0; __m128i v_sse_row = zero_reg; do { const int16_t *b = src + c; __m128i v_val_0_w = xx_load_128(b + 0 * stride); __m128i v_val_1_w = xx_load_128(b + 1 * stride); __m128i v_val_2_w = xx_load_128(b + 2 * stride); __m128i v_val_3_w = xx_load_128(b + 3 * stride); const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w); const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w); const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w); const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w); const __m128i v_sq_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d); const __m128i v_sq_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d); const __m128i v_sq_0123_d = _mm_add_epi32(v_sq_01_d, v_sq_23_d); v_sse_row = _mm_add_epi32(v_sse_row, v_sq_0123_d); const __m128i v_sum_01 = _mm_add_epi16(v_val_0_w, v_val_1_w); const __m128i v_sum_23 = _mm_add_epi16(v_val_2_w, v_val_3_w); __m128i v_sum_0123_d = _mm_add_epi16(v_sum_01, v_sum_23); v_sum_0123_d = _mm_madd_epi16(v_sum_0123_d, one_reg); v_sum_total = _mm_add_epi32(v_sum_total, v_sum_0123_d); c += 8; } while (c < width); const __m128i v_sse_row_low = _mm_unpacklo_epi32(v_sse_row, zero_reg); const __m128i v_sse_row_hi = _mm_unpackhi_epi32(v_sse_row, zero_reg); v_sse_row = _mm_add_epi64(v_sse_row_low, v_sse_row_hi); v_sse_total = _mm_add_epi64(v_sse_total, v_sse_row); src += 4 * stride; r += 4; } while (r < height); v_sum_total = _mm_add_epi32(v_sum_total, _mm_srli_si128(v_sum_total, 8)); v_sum_total = _mm_add_epi32(v_sum_total, _mm_srli_si128(v_sum_total, 4)); *sum += _mm_cvtsi128_si32(v_sum_total); v_sse_total = _mm_add_epi64(v_sse_total, _mm_srli_si128(v_sse_total, 8)); xx_storel_64(&result, v_sse_total); return result; } uint64_t aom_sum_squares_2d_i16_sse2(const int16_t *src, int stride, int width, int height) { // 4 elements per row only requires half an XMM register, so this // must be a special case, but also note that over 75% of all calls // are with size == 4, so it is also the common case. if (LIKELY(width == 4 && height == 4)) { return aom_sum_squares_2d_i16_4x4_sse2(src, stride); } else if (LIKELY(width == 4 && (height & 3) == 0)) { return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height); } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) { // Generic case return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height); } else { return aom_sum_squares_2d_i16_c(src, stride, width, height); } } uint64_t aom_sum_sse_2d_i16_sse2(const int16_t *src, int src_stride, int width, int height, int *sum) { if (LIKELY(width == 4 && height == 4)) { return aom_sum_sse_2d_i16_4x4_sse2(src, src_stride, sum); } else if (LIKELY(width == 4 && (height & 3) == 0)) { return aom_sum_sse_2d_i16_4xn_sse2(src, src_stride, height, sum); } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) { // Generic case return aom_sum_sse_2d_i16_nxn_sse2(src, src_stride, width, height, sum); } else { return aom_sum_sse_2d_i16_c(src, src_stride, width, height, sum); } } ////////////////////////////////////////////////////////////////////////////// // 1D version ////////////////////////////////////////////////////////////////////////////// static uint64_t aom_sum_squares_i16_64n_sse2(const int16_t *src, uint32_t n) { const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0); __m128i v_acc0_q = _mm_setzero_si128(); __m128i v_acc1_q = _mm_setzero_si128(); const int16_t *const end = src + n; assert(n % 64 == 0); while (src < end) { const __m128i v_val_0_w = xx_load_128(src); const __m128i v_val_1_w = xx_load_128(src + 8); const __m128i v_val_2_w = xx_load_128(src + 16); const __m128i v_val_3_w = xx_load_128(src + 24); const __m128i v_val_4_w = xx_load_128(src + 32); const __m128i v_val_5_w = xx_load_128(src + 40); const __m128i v_val_6_w = xx_load_128(src + 48); const __m128i v_val_7_w = xx_load_128(src + 56); const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w); const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w); const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w); const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w); const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w); const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w); const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w); const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w); const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d); const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d); const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d); const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d); const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d); const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d); const __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d, v_sum_4567_d); v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_and_si128(v_sum_d, v_zext_mask_q)); v_acc1_q = _mm_add_epi64(v_acc1_q, _mm_srli_epi64(v_sum_d, 32)); src += 64; } v_acc0_q = _mm_add_epi64(v_acc0_q, v_acc1_q); v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8)); return xx_cvtsi128_si64(v_acc0_q); } uint64_t aom_sum_squares_i16_sse2(const int16_t *src, uint32_t n) { if (n % 64 == 0) { return aom_sum_squares_i16_64n_sse2(src, n); } else if (n > 64) { const uint32_t k = n & ~63u; return aom_sum_squares_i16_64n_sse2(src, k) + aom_sum_squares_i16_c(src + k, n - k); } else { return aom_sum_squares_i16_c(src, n); } } // Accumulate sum of 16-bit elements in the vector static AOM_INLINE int32_t mm_accumulate_epi16(__m128i vec_a) { __m128i vtmp = _mm_srli_si128(vec_a, 8); vec_a = _mm_add_epi16(vec_a, vtmp); vtmp = _mm_srli_si128(vec_a, 4); vec_a = _mm_add_epi16(vec_a, vtmp); vtmp = _mm_srli_si128(vec_a, 2); vec_a = _mm_add_epi16(vec_a, vtmp); return _mm_extract_epi16(vec_a, 0); } // Accumulate sum of 32-bit elements in the vector static AOM_INLINE int32_t mm_accumulate_epi32(__m128i vec_a) { __m128i vtmp = _mm_srli_si128(vec_a, 8); vec_a = _mm_add_epi32(vec_a, vtmp); vtmp = _mm_srli_si128(vec_a, 4); vec_a = _mm_add_epi32(vec_a, vtmp); return _mm_cvtsi128_si32(vec_a); } uint64_t aom_var_2d_u8_sse2(uint8_t *src, int src_stride, int width, int height) { uint8_t *srcp; uint64_t s = 0, ss = 0; __m128i vzero = _mm_setzero_si128(); __m128i v_acc_sum = vzero; __m128i v_acc_sqs = vzero; int i, j; // Process 16 elements in a row for (i = 0; i < width - 15; i += 16) { srcp = src + i; // Process 8 columns at a time for (j = 0; j < height - 7; j += 8) { __m128i vsrc[8]; for (int k = 0; k < 8; k++) { vsrc[k] = _mm_loadu_si128((__m128i *)srcp); srcp += src_stride; } for (int k = 0; k < 8; k++) { __m128i vsrc0 = _mm_unpacklo_epi8(vsrc[k], vzero); __m128i vsrc1 = _mm_unpackhi_epi8(vsrc[k], vzero); v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0); v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1); __m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0); __m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1); } // Update total sum and clear the vectors s += mm_accumulate_epi16(v_acc_sum); ss += mm_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process remaining rows (height not a multiple of 8) for (; j < height; j++) { __m128i vsrc = _mm_loadu_si128((__m128i *)srcp); __m128i vsrc0 = _mm_unpacklo_epi8(vsrc, vzero); __m128i vsrc1 = _mm_unpackhi_epi8(vsrc, vzero); v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0); v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1); __m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0); __m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1); srcp += src_stride; } // Update total sum and clear the vectors s += mm_accumulate_epi16(v_acc_sum); ss += mm_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process the remaining area using C srcp = src; for (int k = 0; k < height; k++) { for (int m = i; m < width; m++) { uint8_t val = srcp[m]; s += val; ss += val * val; } srcp += src_stride; } return (ss - s * s / (width * height)); } uint64_t aom_var_2d_u16_sse2(uint8_t *src, int src_stride, int width, int height) { uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp; uint64_t s = 0, ss = 0; __m128i vzero = _mm_setzero_si128(); __m128i v_acc_sum = vzero; __m128i v_acc_sqs = vzero; int i, j; // Process 8 elements in a row for (i = 0; i < width - 8; i += 8) { srcp = srcp1 + i; // Process 8 columns at a time for (j = 0; j < height - 8; j += 8) { __m128i vsrc[8]; for (int k = 0; k < 8; k++) { vsrc[k] = _mm_loadu_si128((__m128i *)srcp); srcp += src_stride; } for (int k = 0; k < 8; k++) { __m128i vsrc0 = _mm_unpacklo_epi16(vsrc[k], vzero); __m128i vsrc1 = _mm_unpackhi_epi16(vsrc[k], vzero); v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum); v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum); __m128i vsqs0 = _mm_madd_epi16(vsrc[k], vsrc[k]); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0); } // Update total sum and clear the vectors s += mm_accumulate_epi32(v_acc_sum); ss += mm_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process remaining rows (height not a multiple of 8) for (; j < height; j++) { __m128i vsrc = _mm_loadu_si128((__m128i *)srcp); __m128i vsrc0 = _mm_unpacklo_epi16(vsrc, vzero); __m128i vsrc1 = _mm_unpackhi_epi16(vsrc, vzero); v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum); v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum); __m128i vsqs0 = _mm_madd_epi16(vsrc, vsrc); v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0); srcp += src_stride; } // Update total sum and clear the vectors s += mm_accumulate_epi32(v_acc_sum); ss += mm_accumulate_epi32(v_acc_sqs); v_acc_sum = vzero; v_acc_sqs = vzero; } // Process the remaining area using C srcp = srcp1; for (int k = 0; k < height; k++) { for (int m = i; m < width; m++) { uint16_t val = srcp[m]; s += val; ss += val * val; } srcp += src_stride; } return (ss - s * s / (width * height)); }