/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // SSE2 #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/blend.h" #include "aom_dsp/x86/mem_sse2.h" #include "aom_dsp/x86/synonyms.h" #include "aom_ports/mem.h" unsigned int aom_get_mb_ss_sse2(const int16_t *src) { __m128i vsum = _mm_setzero_si128(); int i; for (i = 0; i < 32; ++i) { const __m128i v = xx_loadu_128(src); vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v)); src += 8; } vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4)); return (unsigned int)_mm_cvtsi128_si32(vsum); } static INLINE __m128i load4x2_sse2(const uint8_t *const p, const int stride) { const __m128i p0 = _mm_cvtsi32_si128(loadu_int32(p + 0 * stride)); const __m128i p1 = _mm_cvtsi32_si128(loadu_int32(p + 1 * stride)); return _mm_unpacklo_epi8(_mm_unpacklo_epi32(p0, p1), _mm_setzero_si128()); } static INLINE __m128i load8_8to16_sse2(const uint8_t *const p) { const __m128i p0 = _mm_loadl_epi64((const __m128i *)p); return _mm_unpacklo_epi8(p0, _mm_setzero_si128()); } static INLINE void load16_8to16_sse2(const uint8_t *const p, __m128i *out) { const __m128i p0 = _mm_loadu_si128((const __m128i *)p); out[0] = _mm_unpacklo_epi8(p0, _mm_setzero_si128()); // lower 8 values out[1] = _mm_unpackhi_epi8(p0, _mm_setzero_si128()); // upper 8 values } // Accumulate 4 32bit numbers in val to 1 32bit number static INLINE unsigned int add32x4_sse2(__m128i val) { val = _mm_add_epi32(val, _mm_srli_si128(val, 8)); val = _mm_add_epi32(val, _mm_srli_si128(val, 4)); return (unsigned int)_mm_cvtsi128_si32(val); } // Accumulate 8 16bit in sum to 4 32bit number static INLINE __m128i sum_to_32bit_sse2(const __m128i sum) { const __m128i sum_lo = _mm_srai_epi32(_mm_unpacklo_epi16(sum, sum), 16); const __m128i sum_hi = _mm_srai_epi32(_mm_unpackhi_epi16(sum, sum), 16); return _mm_add_epi32(sum_lo, sum_hi); } static INLINE void variance_kernel_sse2(const __m128i src, const __m128i ref, __m128i *const sse, __m128i *const sum) { const __m128i diff = _mm_sub_epi16(src, ref); *sse = _mm_add_epi32(*sse, _mm_madd_epi16(diff, diff)); *sum = _mm_add_epi16(*sum, diff); } // Can handle 128 pixels' diff sum (such as 8x16 or 16x8) // Slightly faster than variance_final_256_pel_sse2() // diff sum of 128 pixels can still fit in 16bit integer static INLINE void variance_final_128_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2)); *sum = (int16_t)_mm_extract_epi16(vsum, 0); } // Can handle 256 pixels' diff sum (such as 16x16) static INLINE void variance_final_256_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); *sum = (int16_t)_mm_extract_epi16(vsum, 0); *sum += (int16_t)_mm_extract_epi16(vsum, 1); } // Can handle 512 pixels' diff sum (such as 16x32 or 32x16) static INLINE void variance_final_512_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_unpacklo_epi16(vsum, vsum); vsum = _mm_srai_epi32(vsum, 16); *sum = (int)add32x4_sse2(vsum); } // Can handle 1024 pixels' diff sum (such as 32x32) static INLINE void variance_final_1024_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = sum_to_32bit_sse2(vsum); *sum = (int)add32x4_sse2(vsum); } static INLINE void variance4_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 256); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; i += 2) { const __m128i s = load4x2_sse2(src, src_stride); const __m128i r = load4x2_sse2(ref, ref_stride); variance_kernel_sse2(s, r, sse, sum); src += 2 * src_stride; ref += 2 * ref_stride; } } static INLINE void variance8_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 128); // May overflow for larger height. *sum = _mm_setzero_si128(); *sse = _mm_setzero_si128(); for (int i = 0; i < h; i++) { const __m128i s = load8_8to16_sse2(src); const __m128i r = load8_8to16_sse2(ref); variance_kernel_sse2(s, r, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance16_kernel_sse2(const uint8_t *const src, const uint8_t *const ref, __m128i *const sse, __m128i *const sum) { const __m128i zero = _mm_setzero_si128(); const __m128i s = _mm_loadu_si128((const __m128i *)src); const __m128i r = _mm_loadu_si128((const __m128i *)ref); const __m128i src0 = _mm_unpacklo_epi8(s, zero); const __m128i ref0 = _mm_unpacklo_epi8(r, zero); const __m128i src1 = _mm_unpackhi_epi8(s, zero); const __m128i ref1 = _mm_unpackhi_epi8(r, zero); variance_kernel_sse2(src0, ref0, sse, sum); variance_kernel_sse2(src1, ref1, sse, sum); } static INLINE void variance16_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 64); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src, ref, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance32_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 32); // May overflow for larger height. // Don't initialize sse here since it's an accumulation. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src + 0, ref + 0, sse, sum); variance16_kernel_sse2(src + 16, ref + 16, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance64_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 16); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src + 0, ref + 0, sse, sum); variance16_kernel_sse2(src + 16, ref + 16, sse, sum); variance16_kernel_sse2(src + 32, ref + 32, sse, sum); variance16_kernel_sse2(src + 48, ref + 48, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance128_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 8); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { for (int j = 0; j < 4; ++j) { const int offset0 = j << 5; const int offset1 = offset0 + 16; variance16_kernel_sse2(src + offset0, ref + offset0, sse, sum); variance16_kernel_sse2(src + offset1, ref + offset1, sse, sum); } src += src_stride; ref += ref_stride; } } void aom_get_var_sse_sum_8x8_quad_sse2(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, uint32_t *sse8x8, int *sum8x8, unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) { // Loop over 4 8x8 blocks. Process one 8x32 block. for (int k = 0; k < 4; k++) { const uint8_t *src = src_ptr; const uint8_t *ref = ref_ptr; __m128i vsum = _mm_setzero_si128(); __m128i vsse = _mm_setzero_si128(); for (int i = 0; i < 8; i++) { const __m128i s = load8_8to16_sse2(src + (k * 8)); const __m128i r = load8_8to16_sse2(ref + (k * 8)); const __m128i diff = _mm_sub_epi16(s, r); vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff, diff)); vsum = _mm_add_epi16(vsum, diff); src += src_stride; ref += ref_stride; } variance_final_128_pel_sse2(vsse, vsum, &sse8x8[k], &sum8x8[k]); } // Calculate variance at 8x8 level and total sse, sum of 8x32 block. *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3]; *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3]; for (int i = 0; i < 4; i++) var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6); } void aom_get_var_sse_sum_16x16_dual_sse2(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, uint32_t *sse16x16, unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) { int sum16x16[2] = { 0 }; // Loop over 2 16x16 blocks. Process one 16x32 block. for (int k = 0; k < 2; k++) { const uint8_t *src = src_ptr; const uint8_t *ref = ref_ptr; __m128i vsum = _mm_setzero_si128(); __m128i vsse = _mm_setzero_si128(); for (int i = 0; i < 16; i++) { __m128i s[2]; __m128i r[2]; load16_8to16_sse2(src + (k * 16), s); load16_8to16_sse2(ref + (k * 16), r); const __m128i diff0 = _mm_sub_epi16(s[0], r[0]); const __m128i diff1 = _mm_sub_epi16(s[1], r[1]); vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff0, diff0)); vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff1, diff1)); vsum = _mm_add_epi16(vsum, _mm_add_epi16(diff0, diff1)); src += src_stride; ref += ref_stride; } variance_final_256_pel_sse2(vsse, vsum, &sse16x16[k], &sum16x16[k]); } // Calculate variance at 16x16 level and total sse, sum of 16x32 block. *tot_sse += sse16x16[0] + sse16x16[1]; *tot_sum += sum16x16[0] + sum16x16[1]; for (int i = 0; i < 2; i++) var16x16[i] = sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8); } #define AOM_VAR_NO_LOOP_SSE2(bw, bh, bits, max_pixels) \ unsigned int aom_variance##bw##x##bh##_sse2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m128i vsse = _mm_setzero_si128(); \ __m128i vsum; \ int sum = 0; \ variance##bw##_sse2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \ variance_final_##max_pixels##_pel_sse2(vsse, vsum, sse, &sum); \ assert(sum <= 255 * bw * bh); \ assert(sum >= -255 * bw * bh); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_NO_LOOP_SSE2(4, 4, 4, 128) AOM_VAR_NO_LOOP_SSE2(4, 8, 5, 128) AOM_VAR_NO_LOOP_SSE2(4, 16, 6, 128) AOM_VAR_NO_LOOP_SSE2(8, 4, 5, 128) AOM_VAR_NO_LOOP_SSE2(8, 8, 6, 128) AOM_VAR_NO_LOOP_SSE2(8, 16, 7, 128) AOM_VAR_NO_LOOP_SSE2(16, 8, 7, 128) AOM_VAR_NO_LOOP_SSE2(16, 16, 8, 256) AOM_VAR_NO_LOOP_SSE2(16, 32, 9, 512) AOM_VAR_NO_LOOP_SSE2(32, 8, 8, 256) AOM_VAR_NO_LOOP_SSE2(32, 16, 9, 512) AOM_VAR_NO_LOOP_SSE2(32, 32, 10, 1024) #if !CONFIG_REALTIME_ONLY AOM_VAR_NO_LOOP_SSE2(16, 4, 6, 128) AOM_VAR_NO_LOOP_SSE2(8, 32, 8, 256) AOM_VAR_NO_LOOP_SSE2(16, 64, 10, 1024) #endif #define AOM_VAR_LOOP_SSE2(bw, bh, bits, uh) \ unsigned int aom_variance##bw##x##bh##_sse2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m128i vsse = _mm_setzero_si128(); \ __m128i vsum = _mm_setzero_si128(); \ for (int i = 0; i < (bh / uh); ++i) { \ __m128i vsum16; \ variance##bw##_sse2(src, src_stride, ref, ref_stride, uh, &vsse, \ &vsum16); \ vsum = _mm_add_epi32(vsum, sum_to_32bit_sse2(vsum16)); \ src += (src_stride * uh); \ ref += (ref_stride * uh); \ } \ *sse = add32x4_sse2(vsse); \ int sum = (int)add32x4_sse2(vsum); \ assert(sum <= 255 * bw * bh); \ assert(sum >= -255 * bw * bh); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_LOOP_SSE2(32, 64, 11, 32) // 32x32 * ( 64/32 ) AOM_VAR_LOOP_SSE2(64, 32, 11, 16) // 64x16 * ( 32/16 ) AOM_VAR_LOOP_SSE2(64, 64, 12, 16) // 64x16 * ( 64/16 ) AOM_VAR_LOOP_SSE2(64, 128, 13, 16) // 64x16 * ( 128/16 ) AOM_VAR_LOOP_SSE2(128, 64, 13, 8) // 128x8 * ( 64/8 ) AOM_VAR_LOOP_SSE2(128, 128, 14, 8) // 128x8 * ( 128/8 ) #if !CONFIG_REALTIME_ONLY AOM_VAR_NO_LOOP_SSE2(64, 16, 10, 1024) #endif unsigned int aom_mse8x8_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance8x8_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse8x16_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance8x16_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse16x8_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance16x8_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse16x16_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance16x16_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } // The 2 unused parameters are place holders for PIC enabled build. // These definitions are for functions defined in subpel_variance.asm #define DECL(w, opt) \ int aom_sub_pixel_variance##w##xh_##opt( \ const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \ void *unused0, void *unused) #define DECLS(opt) \ DECL(4, opt); \ DECL(8, opt); \ DECL(16, opt) DECLS(sse2); DECLS(ssse3); #undef DECLS #undef DECL #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ unsigned int aom_sub_pixel_variance##w##x##h##_##opt( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_variance##wf##xh_##opt( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, hf, \ &sse2, NULL, NULL); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ } #if !CONFIG_REALTIME_ONLY #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)) \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)) \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)) \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)) \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)) \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)) \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)) \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)) \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)) \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)) \ FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)) \ FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)) \ FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)) \ FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)) \ FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)) \ FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)) \ FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)) \ FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)) \ FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)) \ FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)) \ FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)) \ FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) #else #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)) \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)) \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)) \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)) \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)) \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)) \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)) \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)) \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)) \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)) \ FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)) \ FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)) \ FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)) \ FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)) \ FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)) \ FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)) #endif FNS(sse2) FNS(ssse3) #undef FNS #undef FN // The 2 unused parameters are place holders for PIC enabled build. #define DECL(w, opt) \ int aom_sub_pixel_avg_variance##w##xh_##opt( \ const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \ ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \ void *unused) #define DECLS(opt) \ DECL(4, opt); \ DECL(8, opt); \ DECL(16, opt) DECLS(sse2); DECLS(ssse3); #undef DECL #undef DECLS #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ unsigned int aom_sub_pixel_avg_variance##w##x##h##_##opt( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr, \ const uint8_t *sec) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ const uint8_t *sec_ptr = sec; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, \ sec_ptr, w, hf, &sse2, NULL, NULL); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ sec_ptr += hf * w; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ sec += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ } #if !CONFIG_REALTIME_ONLY #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)) \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)) \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)) \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)) \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)) \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)) \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)) \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)) \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)) \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)) \ FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)) \ FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)) \ FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)) \ FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)) \ FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)) \ FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)) \ FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)) \ FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)) \ FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)) \ FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)) \ FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)) \ FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) #else #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)) \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)) \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)) \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)) \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)) \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)) \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)) \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)) \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)) \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)) \ FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)) \ FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)) \ FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)) \ FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)) \ FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)) \ FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)) #endif FNS(sse2) FNS(ssse3) #undef FNS #undef FN static INLINE __m128i highbd_comp_mask_pred_line_sse2(const __m128i s0, const __m128i s1, const __m128i a) { const __m128i alpha_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m128i round_const = _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m128i a_inv = _mm_sub_epi16(alpha_max, a); const __m128i s_lo = _mm_unpacklo_epi16(s0, s1); const __m128i a_lo = _mm_unpacklo_epi16(a, a_inv); const __m128i pred_lo = _mm_madd_epi16(s_lo, a_lo); const __m128i pred_l = _mm_srai_epi32(_mm_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i s_hi = _mm_unpackhi_epi16(s0, s1); const __m128i a_hi = _mm_unpackhi_epi16(a, a_inv); const __m128i pred_hi = _mm_madd_epi16(s_hi, a_hi); const __m128i pred_h = _mm_srai_epi32(_mm_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i comp = _mm_packs_epi32(pred_l, pred_h); return comp; } void aom_highbd_comp_mask_pred_sse2(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i = 0; uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); const uint16_t *src0 = invert_mask ? pred : ref; const uint16_t *src1 = invert_mask ? ref : pred; const int stride0 = invert_mask ? width : ref_stride; const int stride1 = invert_mask ? ref_stride : width; const __m128i zero = _mm_setzero_si128(); if (width == 8) { do { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1)); const __m128i m_8 = _mm_loadl_epi64((const __m128i *)mask); const __m128i m_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m_16); _mm_storeu_si128((__m128i *)comp_pred, comp); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } else if (width == 16) { do { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0)); const __m128i s2 = _mm_loadu_si128((const __m128i *)(src0 + 8)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1)); const __m128i s3 = _mm_loadu_si128((const __m128i *)(src1 + 8)); const __m128i m_8 = _mm_loadu_si128((const __m128i *)mask); const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16); const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16); _mm_storeu_si128((__m128i *)comp_pred, comp); _mm_storeu_si128((__m128i *)(comp_pred + 8), comp1); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } else { do { for (int x = 0; x < width; x += 32) { for (int j = 0; j < 2; j++) { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0 + x + j * 16)); const __m128i s2 = _mm_loadu_si128((const __m128i *)(src0 + x + 8 + j * 16)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1 + x + j * 16)); const __m128i s3 = _mm_loadu_si128((const __m128i *)(src1 + x + 8 + j * 16)); const __m128i m_8 = _mm_loadu_si128((const __m128i *)(mask + x + j * 16)); const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16); const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16); _mm_storeu_si128((__m128i *)(comp_pred + j * 16), comp); _mm_storeu_si128((__m128i *)(comp_pred + 8 + j * 16), comp1); } comp_pred += 32; } src0 += stride0; src1 += stride1; mask += mask_stride; i += 1; } while (i < height); } } uint64_t aom_mse_4xh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src, int sstride, int h) { uint64_t sum = 0; __m128i dst0_8x8, dst1_8x8, dst_16x8; __m128i src0_16x4, src1_16x4, src_16x8; __m128i res0_32x4, res0_64x2, res1_64x2; __m128i sub_result_16x8; const __m128i zeros = _mm_setzero_si128(); __m128i square_result = _mm_setzero_si128(); for (int i = 0; i < h; i += 2) { dst0_8x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 0) * dstride])); dst1_8x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 1) * dstride])); dst_16x8 = _mm_unpacklo_epi8(_mm_unpacklo_epi32(dst0_8x8, dst1_8x8), zeros); src0_16x4 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride])); src1_16x4 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride])); src_16x8 = _mm_unpacklo_epi64(src0_16x4, src1_16x4); sub_result_16x8 = _mm_sub_epi16(src_16x8, dst_16x8); res0_32x4 = _mm_madd_epi16(sub_result_16x8, sub_result_16x8); res0_64x2 = _mm_unpacklo_epi32(res0_32x4, zeros); res1_64x2 = _mm_unpackhi_epi32(res0_32x4, zeros); square_result = _mm_add_epi64(square_result, _mm_add_epi64(res0_64x2, res1_64x2)); } const __m128i sum_64x1 = _mm_add_epi64(square_result, _mm_srli_si128(square_result, 8)); xx_storel_64(&sum, sum_64x1); return sum; } uint64_t aom_mse_8xh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src, int sstride, int h) { uint64_t sum = 0; __m128i dst_8x8, dst_16x8; __m128i src_16x8; __m128i res0_32x4, res0_64x2, res1_64x2; __m128i sub_result_16x8; const __m128i zeros = _mm_setzero_si128(); __m128i square_result = _mm_setzero_si128(); for (int i = 0; i < h; i++) { dst_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride])); dst_16x8 = _mm_unpacklo_epi8(dst_8x8, zeros); src_16x8 = _mm_loadu_si128((__m128i *)&src[i * sstride]); sub_result_16x8 = _mm_sub_epi16(src_16x8, dst_16x8); res0_32x4 = _mm_madd_epi16(sub_result_16x8, sub_result_16x8); res0_64x2 = _mm_unpacklo_epi32(res0_32x4, zeros); res1_64x2 = _mm_unpackhi_epi32(res0_32x4, zeros); square_result = _mm_add_epi64(square_result, _mm_add_epi64(res0_64x2, res1_64x2)); } const __m128i sum_64x1 = _mm_add_epi64(square_result, _mm_srli_si128(square_result, 8)); xx_storel_64(&sum, sum_64x1); return sum; } uint64_t aom_mse_wxh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src, int sstride, int w, int h) { assert((w == 8 || w == 4) && (h == 8 || h == 4) && "w=8/4 and h=8/4 must satisfy"); switch (w) { case 4: return aom_mse_4xh_16bit_sse2(dst, dstride, src, sstride, h); case 8: return aom_mse_8xh_16bit_sse2(dst, dstride, src, sstride, h); default: assert(0 && "unsupported width"); return -1; } } uint64_t aom_mse_16xh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src, int w, int h) { assert((w == 8 || w == 4) && (h == 8 || h == 4) && "w=8/4 and h=8/4 must be satisfied"); const int num_blks = 16 / w; uint64_t sum = 0; for (int i = 0; i < num_blks; i++) { sum += aom_mse_wxh_16bit_sse2(dst, dstride, src, w, w, h); dst += w; src += (w * h); } return sum; }