/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/mem_neon.h" #include "av1/common/arm/compound_convolve_neon.h" #include "config/aom_config.h" #include "config/av1_rtcd.h" DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; static INLINE int16x4_t convolve4_4_2d_h(uint8x16_t samples, const int8x8_t x_filter, const int32x4_t correction, const uint8x16_t range_limit, const uint8x16_t permute_tbl) { // Clamp sample range to [-128, 127] for 8-bit signed dot product. int8x16_t clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); // Accumulate dot product into 'correction' to account for range clamp. int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0); // We halved the convolution filter values so -1 from the right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static INLINE int16x8_t convolve8_8_2d_h(uint8x16_t samples, const int8x8_t x_filter, const int32x4_t correction, const uint8x16_t range_limit, const uint8x16x3_t permute_tbl) { int8x16_t clamped_samples, permuted_samples[3]; int32x4_t sum[2]; // Clamp sample range to [-128, 127] for 8-bit signed dot product. clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); // Permute samples ready for dot product. */ // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); // Accumulate dot product into 'correction' to account for range clamp. // First 4 output values. sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0); sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1); // Second 4 output values. sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0); sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1); // Narrow and re-pack. // We halved the convolution filter values so -1 from the right shift. return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), vshrn_n_s32(sum[1], ROUND0_BITS - 1)); } static INLINE void dist_wtd_convolve_2d_horiz_neon_dotprod( const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride, const int16_t *x_filter_ptr, const int im_h, int w) { const int bd = 8; // Dot product constants and other shims. const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); // This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts // - which are generally faster than rounding shifts on modern CPUs. const int32_t horiz_const = ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); // Halve the total because we will halve the filter values. const int32x4_t correction = vdupq_n_s32(((128 << FILTER_BITS) + horiz_const) / 2); const uint8x16_t range_limit = vdupq_n_u8(128); const uint8_t *src_ptr = src; int16_t *dst_ptr = im_block; int dst_stride = im_stride; int height = im_h; if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src_ptr += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); int16x4_t d1 = convolve4_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl); int16x4_t d2 = convolve4_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl); int16x4_t d3 = convolve4_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl); store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height > 4); do { uint8x16_t s0 = vld1q_u8(src_ptr); int16x4_t d0 = convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); vst1_s16(dst_ptr, d0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--height != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, permute_tbl); int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, range_limit, permute_tbl); int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, range_limit, permute_tbl); int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, range_limit, permute_tbl); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width > 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height > 4); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0 = vld1q_u8(s); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, permute_tbl); vst1q_s16(d, d0); s += 8; d += 8; width -= 8; } while (width > 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--height != 0); } } void av1_dist_wtd_convolve_2d_neon_dotprod( const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { assert(w % 4 == 0); assert(h % 4 == 0); DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps; const int im_h = h + clamped_y_taps - 1; const int im_stride = MAX_SB_SIZE; const int vert_offset = clamped_y_taps / 2 - 1; const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const int16x8_t y_filter = vld1q_s16(y_filter_ptr); dist_wtd_convolve_2d_horiz_neon_dotprod(src_ptr, src_stride, im_block, im_stride, x_filter_ptr, im_h, w); if (clamped_y_taps == 6) { if (conv_params->do_average) { if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { dist_wtd_convolve_2d_vert_6tap_dist_wtd_avg_neon( im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, w); } else { dist_wtd_convolve_2d_vert_6tap_avg_neon(im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, w); } } else { dist_wtd_convolve_2d_vert_6tap_neon(im_block, im_stride, conv_params, y_filter, h, w); } } else { if (conv_params->do_average) { if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { dist_wtd_convolve_2d_vert_8tap_dist_wtd_avg_neon( im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, w); } else { dist_wtd_convolve_2d_vert_8tap_avg_neon(im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, w); } } else { dist_wtd_convolve_2d_vert_8tap_neon(im_block, im_stride, conv_params, y_filter, h, w); } } } static INLINE uint16x4_t convolve4_4_x(uint8x16_t samples, const int8x8_t x_filter, const int32x4_t correction, const uint8x16_t range_limit, const uint8x16_t permute_tbl) { // Clamp sample range to [-128, 127] for 8-bit signed dot product. int8x16_t clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); // Accumulate dot product into 'correction' to account for range clamp. int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0); // We halved the convolution filter values so -1 from the right shift. return vreinterpret_u16_s16(vshrn_n_s32(sum, ROUND0_BITS - 1)); } static INLINE uint16x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t x_filter, const int32x4_t correction, const uint8x16_t range_limit, const uint8x16x3_t permute_tbl) { int8x16_t clamped_samples, permuted_samples[3]; int32x4_t sum[2]; // Clamp sample range to [-128, 127] for 8-bit signed dot product. clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); // Permute samples ready for dot product. */ // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); // Accumulate dot product into 'correction' to account for range clamp. // First 4 output values. sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0); sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1); // Second 4 output values. sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0); sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1); // Narrow and re-pack. // We halved the convolution filter values so -1 from the right shift. int16x8_t res = vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), vshrn_n_s32(sum[1], ROUND0_BITS - 1)); return vreinterpretq_u16_s16(res); } static INLINE void dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod( const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { assert(w % 4 == 0); assert(h % 4 == 0); const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); const uint16_t fwd_offset = conv_params->fwd_offset; const uint16_t bck_offset = conv_params->bck_offset; // Horizontal filter. const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); // Dot-product constants and other shims. const uint8x16_t range_limit = vdupq_n_u8(128); // Fold round_offset into the dot-product filter correction constant. The // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // Halve the total because we will halve the filter values. int32x4_t correction = vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + (1 << (ROUND0_BITS - 1))) / 2); const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - horiz_offset; CONV_BUF_TYPE *dst_ptr = conv_params->dst; uint8_t *dst8_ptr = dst8; int dst_stride = conv_params->dst_stride; int height = h; if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src_ptr += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x4_t d1 = convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x4_t d2 = convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x4_t d3 = convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); uint16x4_t dd0, dd1, dd2, dd3; load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); uint8x8_t d01_u8, d23_u8; compute_dist_wtd_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, bck_offset, round_offset_vec, &d01_u8, &d23_u8); store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8); store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; dst8_ptr += 4 * dst8_stride; height -= 4; } while (height != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); do { const uint8_t *s = src_ptr; CONV_BUF_TYPE *d = dst_ptr; uint8_t *d_u8 = dst8_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x8_t d0 = convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x8_t d1 = convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x8_t d2 = convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x8_t d3 = convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); uint16x8_t dd0, dd1, dd2, dd3; load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, bck_offset, round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); s += 8; d += 8; d_u8 += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; dst8_ptr += 4 * dst8_stride; height -= 4; } while (height != 0); } } static INLINE void dist_wtd_convolve_x_avg_neon_dotprod( const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { assert(w % 4 == 0); assert(h % 4 == 0); const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); // Horizontal filter. const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); // Dot-product constants and other shims. const uint8x16_t range_limit = vdupq_n_u8(128); // Fold round_offset into the dot-product filter correction constant. The // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // Halve the total because we will halve the filter values. int32x4_t correction = vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + (1 << (ROUND0_BITS - 1))) / 2); const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - horiz_offset; CONV_BUF_TYPE *dst_ptr = conv_params->dst; uint8_t *dst8_ptr = dst8; int dst_stride = conv_params->dst_stride; int height = h; if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src_ptr += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x4_t d1 = convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x4_t d2 = convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x4_t d3 = convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); uint16x4_t dd0, dd1, dd2, dd3; load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); uint8x8_t d01_u8, d23_u8; compute_basic_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, round_offset_vec, &d01_u8, &d23_u8); store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8); store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; dst8_ptr += 4 * dst8_stride; height -= 4; } while (height != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); do { const uint8_t *s = src_ptr; CONV_BUF_TYPE *d = dst_ptr; uint8_t *d_u8 = dst8_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x8_t d0 = convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x8_t d1 = convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x8_t d2 = convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x8_t d3 = convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); uint16x8_t dd0, dd1, dd2, dd3; load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); s += 8; d += 8; d_u8 += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; dst8_ptr += 4 * dst8_stride; height -= 4; } while (height != 0); } } static INLINE void dist_wtd_convolve_x_neon_dotprod( const uint8_t *src, int src_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { assert(w % 4 == 0); assert(h % 4 == 0); const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); // Horizontal filter. const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); // Dot-product constants and other shims. const uint8x16_t range_limit = vdupq_n_u8(128); // Fold round_offset into the dot-product filter correction constant. The // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // Halve the total because we will halve the vilter values. int32x4_t correction = vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + (1 << (ROUND0_BITS - 1))) / 2); const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - horiz_offset; CONV_BUF_TYPE *dst_ptr = conv_params->dst; int dst_stride = conv_params->dst_stride; int height = h; if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src_ptr += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x4_t d1 = convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x4_t d2 = convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x4_t d3 = convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); store_u16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); do { const uint8_t *s = src_ptr; CONV_BUF_TYPE *d = dst_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x8_t d0 = convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); uint16x8_t d1 = convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); uint16x8_t d2 = convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); uint16x8_t d3 = convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height != 0); } } void av1_dist_wtd_convolve_x_neon_dotprod( const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { if (conv_params->do_average) { if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod( src, src_stride, dst8, dst8_stride, w, h, filter_params_x, subpel_x_qn, conv_params); } else { dist_wtd_convolve_x_avg_neon_dotprod(src, src_stride, dst8, dst8_stride, w, h, filter_params_x, subpel_x_qn, conv_params); } } else { dist_wtd_convolve_x_neon_dotprod(src, src_stride, w, h, filter_params_x, subpel_x_qn, conv_params); } }