/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_ports/mem.h" #include "av1/common/arm/convolve_neon.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; static INLINE int16x4_t convolve12_4_x(uint8x16_t samples, const int8x16_t filter, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { uint8x16_t permuted_samples[3]; int32x4_t sum; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); // First 4 output values. sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filter, 0); sum = vusdotq_laneq_s32(sum, permuted_samples[1], filter, 1); sum = vusdotq_laneq_s32(sum, permuted_samples[2], filter, 2); return vqrshrn_n_s32(sum, FILTER_BITS); } static INLINE uint8x8_t convolve12_8_x(uint8x16_t samples[2], const int8x16_t filter, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { uint8x16_t permuted_samples[4]; int32x4_t sum[2]; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples[0], permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples[0], permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples[0], permute_tbl.val[2]); // {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } permuted_samples[3] = vqtbl1q_u8(samples[1], permute_tbl.val[2]); // First 4 output values. sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filter, 0); sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filter, 1); sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filter, 2); // Second 4 output values. sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filter, 0); sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filter, 1); sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filter, 2); // Narrow and re-pack. int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS), vqrshrn_n_s32(sum[1], FILTER_BITS)); return vqmovun_s16(sum_s16); } static INLINE void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const int16_t *x_filter_ptr) { const int16x8_t filter_0_7 = vld1q_s16(x_filter_ptr); const int16x4_t filter_8_11 = vld1_s16(x_filter_ptr + 8); const int16x8_t filter_8_15 = vcombine_s16(filter_8_11, vdup_n_s16(0)); const int8x16_t filter = vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15)); // Special case the following no-op filter as 128 won't fit into the // 8-bit signed dot-product instruction: // { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 } if (vgetq_lane_s16(filter_0_7, 5) == 128) { // Undo the horizontal offset in the calling function. src += 5; do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x8_t d0 = vld1_u8(s); if (w == 4) { store_u8_4x1(d, d0); } else { vst1_u8(d, d0); } s += 8; d += 8; width -= 8; } while (width > 0); src += src_stride; dst += dst_stride; } while (--h != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // This shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding // right shift by FILTER_BITS - instead of a first rounding right shift by // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS - // ROUND0_BITS. const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1)); if (w <= 4) { do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const); int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const); int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const); int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const); uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1)); uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3)); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h != 0); } else { do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0[2], s1[2], s2[2], s3[2]; load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const); uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const); uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const); uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const); store_u8_8x4(d + 0 * dst_stride, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } } static INLINE int16x4_t convolve4_4_x(uint8x16_t samples, const int8x8_t filter, const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl); // First 4 output values. int32x4_t sum = vusdotq_lane_s32(horiz_const, permuted_samples, filter, 0); // Packing is performed by the caller. return vmovn_s32(sum); } static INLINE uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { uint8x16_t permuted_samples[3]; int32x4_t sum[2]; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); // First 4 output values. sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filter, 0); sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filter, 1); // Second 4 output values. sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filter, 0); sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filter, 1); int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1])); // We halved the convolution filter values so - 1 from the right shift. return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); } void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { if (w == 2 || h == 2) { av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params); return; } const uint8_t horiz_offset = filter_params_x->taps / 2 - 1; src -= horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); if (filter_params_x->taps > 8) { convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, x_filter_ptr); return; } // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single // rounding right shift by FILTER_BITS - instead of a first rounding right // shift by ROUND0_BITS, followed by second rounding right shift by // FILTER_BITS - ROUND0_BITS. // The outermost -1 is needed because we will halve the filter values. const int32x4_t horiz_const = vdupq_n_s32(1 << ((ROUND0_BITS - 1) - 1)); if (w <= 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve4_4_x(s0, x_filter, permute_tbl, horiz_const); int16x4_t d1 = convolve4_4_x(s1, x_filter, permute_tbl, horiz_const); int16x4_t d2 = convolve4_4_x(s2, x_filter, permute_tbl, horiz_const); int16x4_t d3 = convolve4_4_x(s3, x_filter, permute_tbl, horiz_const); // We halved the convolution filter values so - 1 from the right shift. uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl, horiz_const); uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl, horiz_const); uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl, horiz_const); uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl, horiz_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } static INLINE int16x4_t convolve12_4_2d_h(uint8x16_t samples, const int8x16_t filters, const uint8x16x3_t permute_tbl, int32x4_t horiz_const) { uint8x16_t permuted_samples[3]; int32x4_t sum; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); // First 4 output values. sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0); sum = vusdotq_laneq_s32(sum, permuted_samples[1], filters, 1); sum = vusdotq_laneq_s32(sum, permuted_samples[2], filters, 2); // Narrow and re-pack. return vshrn_n_s32(sum, ROUND0_BITS); } static INLINE int16x8_t convolve12_8_2d_h(uint8x16_t samples[2], const int8x16_t filters, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { uint8x16_t permuted_samples[4]; int32x4_t sum[2]; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples[0], permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples[0], permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples[0], permute_tbl.val[2]); // {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } permuted_samples[3] = vqtbl1q_u8(samples[1], permute_tbl.val[2]); // First 4 output values. sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0); sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1); sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2); // Second 4 output values. sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filters, 0); sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1); sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2); // Narrow and re-pack. return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS), vshrn_n_s32(sum[1], ROUND0_BITS)); } static INLINE void convolve_2d_sr_horiz_12tap_neon_i8mm( const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr, const int dst_stride, int w, int h, const int16x8_t x_filter_0_7, const int16x4_t x_filter_8_11) { const int bd = 8; // Special case the following no-op filter as 128 won't fit into the // 8-bit signed dot-product instruction: // { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 } if (vgetq_lane_s16(x_filter_0_7, 5) == 128) { const uint16x8_t horiz_const = vdupq_n_u16((1 << (bd - 1))); // Undo the horizontal offset in the calling function. src_ptr += 5; do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x8_t s0 = vld1_u8(s); uint16x8_t d0 = vaddw_u8(horiz_const, s0); d0 = vshlq_n_u16(d0, FILTER_BITS - ROUND0_BITS); // Store 8 elements to avoid additional branches. This is safe if the // actual block width is < 8 because the intermediate buffer is large // enough to accommodate 128x128 blocks. vst1q_s16(d, vreinterpretq_s16_u16(d0)); d += 8; s += 8; width -= 8; } while (width > 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--h != 0); } else { // Narrow filter values to 8-bit. const int16x8x2_t x_filter_s16 = { { x_filter_0_7, vcombine_s16(x_filter_8_11, vdup_n_s16(0)) } }; const int8x16_t x_filter = vcombine_s8(vmovn_s16(x_filter_s16.val[0]), vmovn_s16(x_filter_s16.val[1])); // This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts // - which are generally faster than rounding shifts on modern CPUs. const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); if (w <= 4) { do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, permute_tbl, horiz_const); int16x4_t d1 = convolve12_4_2d_h(s1, x_filter, permute_tbl, horiz_const); int16x4_t d2 = convolve12_4_2d_h(s2, x_filter, permute_tbl, horiz_const); int16x4_t d3 = convolve12_4_2d_h(s3, x_filter, permute_tbl, horiz_const); store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; h -= 4; } while (h > 4); do { uint8x16_t s0 = vld1q_u8(src_ptr); int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, permute_tbl, horiz_const); vst1_s16(dst_ptr, d0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--h != 0); } else { do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0[2], s1[2], s2[2], s3[2]; load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, permute_tbl, horiz_const); int16x8_t d1 = convolve12_8_2d_h(s1, x_filter, permute_tbl, horiz_const); int16x8_t d2 = convolve12_8_2d_h(s2, x_filter, permute_tbl, horiz_const); int16x8_t d3 = convolve12_8_2d_h(s3, x_filter, permute_tbl, horiz_const); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; h -= 4; } while (h > 4); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0[2]; s0[0] = vld1q_u8(s); s0[1] = vld1q_u8(s + 4); int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, permute_tbl, horiz_const); vst1q_s16(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--h != 0); } } } static INLINE int16x4_t convolve4_4_2d_h(uint8x16_t samples, const int8x8_t filters, const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl); // First 4 output values. int32x4_t sum = vusdotq_lane_s32(horiz_const, permuted_samples, filters, 0); // We halved the convolution filter values so -1 from the right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static INLINE int16x8_t convolve8_8_2d_h(uint8x16_t samples, const int8x8_t filters, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { uint8x16_t permuted_samples[3]; int32x4_t sum[2]; // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); // First 4 output values. sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0); sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filters, 1); // Second 4 output values. sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filters, 0); sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filters, 1); // Narrow and re-pack. // We halved the convolution filter values so -1 from the right shift. return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), vshrn_n_s32(sum[1], ROUND0_BITS - 1)); } static INLINE void convolve_2d_sr_horiz_neon_i8mm( const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w, int im_h, const int16_t *x_filter_ptr) { const int bd = 8; // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // The outermost -1 is needed because we halved the filter values. const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1))); const uint8_t *src_ptr = src; int16_t *dst_ptr = im_block; int dst_stride = im_stride; int height = im_h; if (w <= 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); // 4-tap filters are used for blocks having width <= 4. // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); src_ptr += 2; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve4_4_2d_h(s0, x_filter, permute_tbl, horiz_const); int16x4_t d1 = convolve4_4_2d_h(s1, x_filter, permute_tbl, horiz_const); int16x4_t d2 = convolve4_4_2d_h(s2, x_filter, permute_tbl, horiz_const); int16x4_t d3 = convolve4_4_2d_h(s3, x_filter, permute_tbl, horiz_const); store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height > 4); do { uint8x16_t s0 = vld1q_u8(src_ptr); int16x4_t d0 = convolve4_4_2d_h(s0, x_filter, permute_tbl, horiz_const); vst1_s16(dst_ptr, d0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--height != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, permute_tbl, horiz_const); int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, permute_tbl, horiz_const); int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, permute_tbl, horiz_const); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height > 4); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0 = vld1q_u8(s); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); vst1q_s16(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--height != 0); } } void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { if (w == 2 || h == 2) { av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); return; } const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps; const int im_h = h + clamped_y_taps - 1; const int im_stride = MAX_SB_SIZE; const int vert_offset = clamped_y_taps / 2 - 1; const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); if (filter_params_x->taps > 8) { DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr); const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8); convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_0_7, x_filter_8_11); convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter_0_7, y_filter_8_11); } else { DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); convolve_2d_sr_horiz_neon_i8mm(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr); const int16x8_t y_filter = vld1q_s16(y_filter_ptr); if (clamped_y_taps <= 6) { convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter); } else { convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter); } } }