/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" #include "av1/common/arm/highbd_convolve_neon.h" static INLINE void highbd_dist_wtd_comp_avg_neon( const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride, int w, int h, ConvolveParams *conv_params, const int round_bits, const int offset, const int bd) { CONV_BUF_TYPE *ref_ptr = conv_params->dst; const int ref_stride = conv_params->dst_stride; const int32x4_t round_shift = vdupq_n_s32(-round_bits); const uint32x4_t offset_vec = vdupq_n_u32(offset); const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); uint16x4_t fwd_offset = vdup_n_u16(conv_params->fwd_offset); uint16x4_t bck_offset = vdup_n_u16(conv_params->bck_offset); // Weighted averaging if (w <= 4) { do { const uint16x4_t src = vld1_u16(src_ptr); const uint16x4_t ref = vld1_u16(ref_ptr); uint32x4_t wtd_avg = vmull_u16(ref, fwd_offset); wtd_avg = vmlal_u16(wtd_avg, src, bck_offset); wtd_avg = vshrq_n_u32(wtd_avg, DIST_PRECISION_BITS); int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg, offset_vec)); d0 = vqrshlq_s32(d0, round_shift); uint16x4_t d0_u16 = vqmovun_s32(d0); d0_u16 = vmin_u16(d0_u16, vget_low_u16(max)); if (w == 2) { store_u16_2x1(dst_ptr, d0_u16); } else { vst1_u16(dst_ptr, d0_u16); } src_ptr += src_stride; dst_ptr += dst_stride; ref_ptr += ref_stride; } while (--h != 0); } else { do { int width = w; const uint16_t *src = src_ptr; const uint16_t *ref = ref_ptr; uint16_t *dst = dst_ptr; do { const uint16x8_t s = vld1q_u16(src); const uint16x8_t r = vld1q_u16(ref); uint32x4_t wtd_avg0 = vmull_u16(vget_low_u16(r), fwd_offset); wtd_avg0 = vmlal_u16(wtd_avg0, vget_low_u16(s), bck_offset); wtd_avg0 = vshrq_n_u32(wtd_avg0, DIST_PRECISION_BITS); int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg0, offset_vec)); d0 = vqrshlq_s32(d0, round_shift); uint32x4_t wtd_avg1 = vmull_u16(vget_high_u16(r), fwd_offset); wtd_avg1 = vmlal_u16(wtd_avg1, vget_high_u16(s), bck_offset); wtd_avg1 = vshrq_n_u32(wtd_avg1, DIST_PRECISION_BITS); int32x4_t d1 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg1, offset_vec)); d1 = vqrshlq_s32(d1, round_shift); uint16x8_t d01 = vcombine_u16(vqmovun_s32(d0), vqmovun_s32(d1)); d01 = vminq_u16(d01, max); vst1q_u16(dst, d01); src += 8; ref += 8; dst += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; ref_ptr += ref_stride; } while (--h != 0); } } static INLINE void highbd_comp_avg_neon(const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride, int w, int h, ConvolveParams *conv_params, const int round_bits, const int offset, const int bd) { CONV_BUF_TYPE *ref_ptr = conv_params->dst; const int ref_stride = conv_params->dst_stride; const int32x4_t round_shift = vdupq_n_s32(-round_bits); const uint16x4_t offset_vec = vdup_n_u16(offset); const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); if (w <= 4) { do { const uint16x4_t src = vld1_u16(src_ptr); const uint16x4_t ref = vld1_u16(ref_ptr); uint16x4_t avg = vhadd_u16(src, ref); int32x4_t d0 = vreinterpretq_s32_u32(vsubl_u16(avg, offset_vec)); d0 = vqrshlq_s32(d0, round_shift); uint16x4_t d0_u16 = vqmovun_s32(d0); d0_u16 = vmin_u16(d0_u16, vget_low_u16(max)); if (w == 2) { store_u16_2x1(dst_ptr, d0_u16); } else { vst1_u16(dst_ptr, d0_u16); } src_ptr += src_stride; ref_ptr += ref_stride; dst_ptr += dst_stride; } while (--h != 0); } else { do { int width = w; const uint16_t *src = src_ptr; const uint16_t *ref = ref_ptr; uint16_t *dst = dst_ptr; do { const uint16x8_t s = vld1q_u16(src); const uint16x8_t r = vld1q_u16(ref); uint16x8_t avg = vhaddq_u16(s, r); int32x4_t d0_lo = vreinterpretq_s32_u32(vsubl_u16(vget_low_u16(avg), offset_vec)); int32x4_t d0_hi = vreinterpretq_s32_u32(vsubl_u16(vget_high_u16(avg), offset_vec)); d0_lo = vqrshlq_s32(d0_lo, round_shift); d0_hi = vqrshlq_s32(d0_hi, round_shift); uint16x8_t d0 = vcombine_u16(vqmovun_s32(d0_lo), vqmovun_s32(d0_hi)); d0 = vminq_u16(d0, max); vst1q_u16(dst, d0); src += 8; ref += 8; dst += 8; width -= 8; } while (width != 0); src_ptr += src_stride; ref_ptr += ref_stride; dst_ptr += dst_stride; } while (--h != 0); } } static INLINE void highbd_convolve_2d_x_scale_8tap_neon( const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride, int w, int h, const int subpel_x_qn, const int x_step_qn, const InterpFilterParams *filter_params, ConvolveParams *conv_params, const int offset) { static const uint32_t kIdx[4] = { 0, 1, 2, 3 }; const uint32x4_t idx = vld1q_u32(kIdx); const uint32x4_t subpel_mask = vdupq_n_u32(SCALE_SUBPEL_MASK); const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0); const int32x4_t offset_s32 = vdupq_n_s32(offset); if (w <= 4) { int height = h; uint16_t *d = dst_ptr; do { int x_qn = subpel_x_qn; // Load 4 src vectors at a time, they might be the same, but we have to // calculate the indices anyway. Doing it in SIMD and then storing the // indices is faster than having to calculate the expression // &src_ptr[((x_qn + 0*x_step_qn) >> SCALE_SUBPEL_BITS)] 4 times // Ideally this should be a gather using the indices, but NEON does not // have that, so have to emulate const uint32x4_t xqn_idx = vmlaq_n_u32(vdupq_n_u32(x_qn), idx, x_step_qn); // We have to multiply x2 to get the actual pointer as sizeof(uint16_t) = // 2 const uint32x4_t src_idx_u32 = vshlq_n_u32(vshrq_n_u32(xqn_idx, SCALE_SUBPEL_BITS), 1); #if AOM_ARCH_AARCH64 uint64x2_t src4[2]; src4[0] = vaddw_u32(vdupq_n_u64((const uint64_t)src_ptr), vget_low_u32(src_idx_u32)); src4[1] = vaddw_u32(vdupq_n_u64((const uint64_t)src_ptr), vget_high_u32(src_idx_u32)); int16_t *src4_ptr[4]; uint64_t *tmp_ptr = (uint64_t *)&src4_ptr; vst1q_u64(tmp_ptr, src4[0]); vst1q_u64(tmp_ptr + 2, src4[1]); #else uint32x4_t src4; src4 = vaddq_u32(vdupq_n_u32((const uint32_t)src_ptr), src_idx_u32); int16_t *src4_ptr[4]; uint32_t *tmp_ptr = (uint32_t *)&src4_ptr; vst1q_u32(tmp_ptr, src4); #endif // AOM_ARCH_AARCH64 // Same for the filter vectors const int32x4_t filter_idx_s32 = vreinterpretq_s32_u32( vshrq_n_u32(vandq_u32(xqn_idx, subpel_mask), SCALE_EXTRA_BITS)); int32_t x_filter4_idx[4]; vst1q_s32(x_filter4_idx, filter_idx_s32); const int16_t *x_filter4_ptr[4]; // Load source int16x8_t s0 = vld1q_s16(src4_ptr[0]); int16x8_t s1 = vld1q_s16(src4_ptr[1]); int16x8_t s2 = vld1q_s16(src4_ptr[2]); int16x8_t s3 = vld1q_s16(src4_ptr[3]); // We could easily do this using SIMD as well instead of calling the // inline function 4 times. x_filter4_ptr[0] = av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[0]); x_filter4_ptr[1] = av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[1]); x_filter4_ptr[2] = av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[2]); x_filter4_ptr[3] = av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[3]); // Actually load the filters const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]); const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]); const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]); const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]); // Group low and high parts and transpose int16x4_t filters_lo[] = { vget_low_s16(x_filter0), vget_low_s16(x_filter1), vget_low_s16(x_filter2), vget_low_s16(x_filter3) }; int16x4_t filters_hi[] = { vget_high_s16(x_filter0), vget_high_s16(x_filter1), vget_high_s16(x_filter2), vget_high_s16(x_filter3) }; transpose_array_inplace_u16_4x4((uint16x4_t *)filters_lo); transpose_array_inplace_u16_4x4((uint16x4_t *)filters_hi); // Run the 2D Scale convolution uint16x4_t d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16( s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32); if (w == 2) { store_u16_2x1(d, d0); } else { vst1_u16(d, d0); } src_ptr += src_stride; d += dst_stride; height--; } while (height > 0); } else { int height = h; do { int width = w; int x_qn = subpel_x_qn; uint16_t *d = dst_ptr; const uint16_t *s = src_ptr; do { // Load 4 src vectors at a time, they might be the same, but we have to // calculate the indices anyway. Doing it in SIMD and then storing the // indices is faster than having to calculate the expression // &src_ptr[((x_qn + 0*x_step_qn) >> SCALE_SUBPEL_BITS)] 4 times // Ideally this should be a gather using the indices, but NEON does not // have that, so have to emulate const uint32x4_t xqn_idx = vmlaq_n_u32(vdupq_n_u32(x_qn), idx, x_step_qn); // We have to multiply x2 to get the actual pointer as sizeof(uint16_t) // = 2 const uint32x4_t src_idx_u32 = vshlq_n_u32(vshrq_n_u32(xqn_idx, SCALE_SUBPEL_BITS), 1); #if AOM_ARCH_AARCH64 uint64x2_t src4[2]; src4[0] = vaddw_u32(vdupq_n_u64((const uint64_t)s), vget_low_u32(src_idx_u32)); src4[1] = vaddw_u32(vdupq_n_u64((const uint64_t)s), vget_high_u32(src_idx_u32)); int16_t *src4_ptr[4]; uint64_t *tmp_ptr = (uint64_t *)&src4_ptr; vst1q_u64(tmp_ptr, src4[0]); vst1q_u64(tmp_ptr + 2, src4[1]); #else uint32x4_t src4; src4 = vaddq_u32(vdupq_n_u32((const uint32_t)s), src_idx_u32); int16_t *src4_ptr[4]; uint32_t *tmp_ptr = (uint32_t *)&src4_ptr; vst1q_u32(tmp_ptr, src4); #endif // AOM_ARCH_AARCH64 // Same for the filter vectors const int32x4_t filter_idx_s32 = vreinterpretq_s32_u32( vshrq_n_u32(vandq_u32(xqn_idx, subpel_mask), SCALE_EXTRA_BITS)); int32_t x_filter4_idx[4]; vst1q_s32(x_filter4_idx, filter_idx_s32); const int16_t *x_filter4_ptr[4]; // Load source int16x8_t s0 = vld1q_s16(src4_ptr[0]); int16x8_t s1 = vld1q_s16(src4_ptr[1]); int16x8_t s2 = vld1q_s16(src4_ptr[2]); int16x8_t s3 = vld1q_s16(src4_ptr[3]); // We could easily do this using SIMD as well instead of calling the // inline function 4 times. x_filter4_ptr[0] = av1_get_interp_filter_subpel_kernel( filter_params, x_filter4_idx[0]); x_filter4_ptr[1] = av1_get_interp_filter_subpel_kernel( filter_params, x_filter4_idx[1]); x_filter4_ptr[2] = av1_get_interp_filter_subpel_kernel( filter_params, x_filter4_idx[2]); x_filter4_ptr[3] = av1_get_interp_filter_subpel_kernel( filter_params, x_filter4_idx[3]); // Actually load the filters const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]); const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]); const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]); const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]); // Group low and high parts and transpose int16x4_t filters_lo[] = { vget_low_s16(x_filter0), vget_low_s16(x_filter1), vget_low_s16(x_filter2), vget_low_s16(x_filter3) }; int16x4_t filters_hi[] = { vget_high_s16(x_filter0), vget_high_s16(x_filter1), vget_high_s16(x_filter2), vget_high_s16(x_filter3) }; transpose_array_inplace_u16_4x4((uint16x4_t *)filters_lo); transpose_array_inplace_u16_4x4((uint16x4_t *)filters_hi); // Run the 2D Scale X convolution uint16x4_t d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16( s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32); vst1_u16(d, d0); x_qn += 4 * x_step_qn; d += 4; width -= 4; } while (width > 0); src_ptr += src_stride; dst_ptr += dst_stride; height--; } while (height > 0); } } static INLINE void highbd_convolve_2d_y_scale_8tap_neon( const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride, int w, int h, const int subpel_y_qn, const int y_step_qn, const InterpFilterParams *filter_params, const int round1_bits, const int offset) { const int32x4_t offset_s32 = vdupq_n_s32(1 << offset); const int32x4_t round1_shift_s32 = vdupq_n_s32(-round1_bits); if (w <= 4) { int height = h; uint16_t *d = dst_ptr; int y_qn = subpel_y_qn; do { const int16_t *s = (const int16_t *)&src_ptr[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; int16x4_t s0, s1, s2, s3, s4, s5, s6, s7; load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx); const int16x8_t y_filter = vld1q_s16(y_filter_ptr); uint16x4_t d0 = highbd_convolve8_4_srsub_s32_s16( s0, s1, s2, s3, s4, s5, s6, s7, y_filter, round1_shift_s32, offset_s32, vdupq_n_s32(0)); if (w == 2) { store_u16_2x1(d, d0); } else { vst1_u16(d, d0); } y_qn += y_step_qn; d += dst_stride; height--; } while (height > 0); } else { int width = w; do { int height = h; int y_qn = subpel_y_qn; uint16_t *d = dst_ptr; do { const int16_t *s = (const int16_t *)&src_ptr[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx); const int16x8_t y_filter = vld1q_s16(y_filter_ptr); uint16x8_t d0 = highbd_convolve8_8_srsub_s32_s16( s0, s1, s2, s3, s4, s5, s6, s7, y_filter, round1_shift_s32, offset_s32, vdupq_n_s32(0)); vst1q_u16(d, d0); y_qn += y_step_qn; d += dst_stride; height--; } while (height > 0); src_ptr += 8; dst_ptr += 8; width -= 8; } while (width > 0); } } static INLINE void highbd_convolve_correct_offset_neon( const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride, int w, int h, const int round_bits, const int offset, const int bd) { const int32x4_t round_shift_s32 = vdupq_n_s32(-round_bits); const int16x4_t offset_s16 = vdup_n_s16(offset); const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); if (w <= 4) { for (int y = 0; y < h; ++y) { const int16x4_t s = vld1_s16((const int16_t *)src_ptr + y * src_stride); const int32x4_t d0 = vqrshlq_s32(vsubl_s16(s, offset_s16), round_shift_s32); uint16x4_t d = vqmovun_s32(d0); d = vmin_u16(d, vget_low_u16(max)); if (w == 2) { store_u16_2x1(dst_ptr + y * dst_stride, d); } else { vst1_u16(dst_ptr + y * dst_stride, d); } } } else { for (int y = 0; y < h; ++y) { for (int x = 0; x < w; x += 8) { // Subtract round offset and convolve round const int16x8_t s = vld1q_s16((const int16_t *)src_ptr + y * src_stride + x); const int32x4_t d0 = vqrshlq_s32(vsubl_s16(vget_low_s16(s), offset_s16), round_shift_s32); const int32x4_t d1 = vqrshlq_s32( vsubl_s16(vget_high_s16(s), offset_s16), round_shift_s32); uint16x8_t d01 = vcombine_u16(vqmovun_s32(d0), vqmovun_s32(d1)); d01 = vminq_u16(d01, max); vst1q_u16(dst_ptr + y * dst_stride + x, d01); } } } } void av1_highbd_convolve_2d_scale_neon( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params, int bd) { uint16_t *im_block = (uint16_t *)aom_memalign( 16, 2 * sizeof(uint16_t) * MAX_SB_SIZE * (MAX_SB_SIZE + MAX_FILTER_TAP)); if (!im_block) return; uint16_t *im_block2 = (uint16_t *)aom_memalign( 16, 2 * sizeof(uint16_t) * MAX_SB_SIZE * (MAX_SB_SIZE + MAX_FILTER_TAP)); if (!im_block2) { aom_free(im_block); // free the first block and return. return; } int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; const int im_stride = MAX_SB_SIZE; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; assert(bits >= 0); const int vert_offset = filter_params_y->taps / 2 - 1; const int horiz_offset = filter_params_x->taps / 2 - 1; const int x_offset_bits = (1 << (bd + FILTER_BITS - 1)); const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int y_offset_correction = ((1 << (y_offset_bits - conv_params->round_1)) + (1 << (y_offset_bits - conv_params->round_1 - 1))); CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset; highbd_convolve_2d_x_scale_8tap_neon( src_ptr, src_stride, im_block, im_stride, w, im_h, subpel_x_qn, x_step_qn, filter_params_x, conv_params, x_offset_bits); if (conv_params->is_compound && !conv_params->do_average) { highbd_convolve_2d_y_scale_8tap_neon( im_block, im_stride, dst16, dst16_stride, w, h, subpel_y_qn, y_step_qn, filter_params_y, conv_params->round_1, y_offset_bits); } else { highbd_convolve_2d_y_scale_8tap_neon( im_block, im_stride, im_block2, im_stride, w, h, subpel_y_qn, y_step_qn, filter_params_y, conv_params->round_1, y_offset_bits); } // Do the compound averaging outside the loop, avoids branching within the // main loop if (conv_params->is_compound) { if (conv_params->do_average) { if (conv_params->use_dist_wtd_comp_avg) { highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h, conv_params, bits, y_offset_correction, bd); } else { highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h, conv_params, bits, y_offset_correction, bd); } } } else { highbd_convolve_correct_offset_neon(im_block2, im_stride, dst, dst_stride, w, h, bits, y_offset_correction, bd); } aom_free(im_block); aom_free(im_block2); }