/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/aom_neon_sve_bridge.h" #include "aom_dsp/arm/aom_neon_sve2_bridge.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_ports/mem.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" #include "av1/common/arm/highbd_convolve_sve2.h" DECLARE_ALIGNED(16, static const uint16_t, kDotProdTbl[32]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 0, 6, 7, 0, 1, 7, 0, 1, 2, }; static INLINE uint16x4_t convolve12_4_x( int16x8_t s0, int16x8_t s1, int16x8_t filter_0_7, int16x8_t filter_4_11, const int64x2_t offset, uint16x8x4_t permute_tbl, uint16x4_t max) { int16x8_t permuted_samples[6]; permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]); permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]); permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]); permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]); permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]); permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1); int32x4_t res0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(res0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t convolve12_8_x(int16x8_t s0, int16x8_t s1, int16x8_t s2, int16x8_t filter_0_7, int16x8_t filter_4_11, int64x2_t offset, uint16x8x4_t permute_tbl, uint16x8_t max) { int16x8_t permuted_samples[8]; permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]); permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]); permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]); permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]); permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]); permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]); permuted_samples[6] = aom_tbl2_s16(s1, s2, permute_tbl.val[2]); permuted_samples[7] = aom_tbl2_s16(s1, s2, permute_tbl.val[3]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1); int64x2_t sum45 = aom_svdot_lane_s16(offset, permuted_samples[2], filter_0_7, 0); sum45 = aom_svdot_lane_s16(sum45, permuted_samples[4], filter_0_7, 1); sum45 = aom_svdot_lane_s16(sum45, permuted_samples[6], filter_4_11, 1); int64x2_t sum67 = aom_svdot_lane_s16(offset, permuted_samples[3], filter_0_7, 0); sum67 = aom_svdot_lane_s16(sum67, permuted_samples[5], filter_0_7, 1); sum67 = aom_svdot_lane_s16(sum67, permuted_samples[7], filter_4_11, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS), vqrshrun_n_s32(sum4567, FILTER_BITS)); return vminq_u16(res, max); } static INLINE void highbd_convolve_x_sr_12tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, ConvolveParams *conv_params, int bd) { // This shim allows to do only one rounding shift instead of two. const int64x2_t offset = vdupq_n_s64(1 << (conv_params->round_0 - 1)); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4); uint16x8x4_t permute_tbl = vld1q_u16_x4(kDotProdTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vcombine_u64( vdup_n_u64(0), vdup_n_u64(svcnth() * 0x0001000000000000ULL))); permute_tbl.val[2] = vaddq_u16(permute_tbl.val[2], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64( vcombine_u64(vdup_n_u64(svcnth() * 0x0001000100000000ULL), vdup_n_u64(svcnth() * 0x0001000100010000ULL))); permute_tbl.val[3] = vaddq_u16(permute_tbl.val[3], correction1); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); const int16_t *s = (const int16_t *)src; do { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6); load_s16_8x4(s + 8, src_stride, &s1, &s3, &s5, &s7); uint16x4_t d0 = convolve12_4_x(s0, s1, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x4_t d1 = convolve12_4_x(s2, s3, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x4_t d2 = convolve12_4_x(s4, s5, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x4_t d3 = convolve12_4_x(s6, s7, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11; load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9); load_s16_8x4(s + 8, src_stride, &s1, &s4, &s7, &s10); load_s16_8x4(s + 16, src_stride, &s2, &s5, &s8, &s11); uint16x8_t d0 = convolve12_8_x(s0, s1, s2, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x8_t d1 = convolve12_8_x(s3, s4, s5, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x8_t d2 = convolve12_8_x(s6, s7, s8, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); uint16x8_t d3 = convolve12_8_x(s9, s10, s11, y_filter_0_7, y_filter_4_11, offset, permute_tbl, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } } static INLINE uint16x8_t convolve8_8_x(int16x8_t s0[8], int16x8_t filter, int64x2_t offset, uint16x8_t max) { int64x2_t sum[8]; sum[0] = aom_sdotq_s16(offset, s0[0], filter); sum[1] = aom_sdotq_s16(offset, s0[1], filter); sum[2] = aom_sdotq_s16(offset, s0[2], filter); sum[3] = aom_sdotq_s16(offset, s0[3], filter); sum[4] = aom_sdotq_s16(offset, s0[4], filter); sum[5] = aom_sdotq_s16(offset, s0[5], filter); sum[6] = aom_sdotq_s16(offset, s0[6], filter); sum[7] = aom_sdotq_s16(offset, s0[7], filter); sum[0] = vpaddq_s64(sum[0], sum[1]); sum[2] = vpaddq_s64(sum[2], sum[3]); sum[4] = vpaddq_s64(sum[4], sum[5]); sum[6] = vpaddq_s64(sum[6], sum[7]); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2])); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6])); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS), vqrshrun_n_s32(sum4567, FILTER_BITS)); return vminq_u16(res, max); } static INLINE void highbd_convolve_x_sr_8tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, ConvolveParams *conv_params, int bd) { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); // This shim allows to do only one rounding shift instead of two. const int64_t offset = 1 << (conv_params->round_0 - 1); const int64x2_t offset_lo = vcombine_s64((int64x1_t)(offset), vdup_n_s64(0)); const int16x8_t filter = vld1q_s16(y_filter_ptr); do { const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0[8], s1[8], s2[8], s3[8]; load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4], &s0[5], &s0[6], &s0[7]); load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4], &s1[5], &s1[6], &s1[7]); load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4], &s2[5], &s2[6], &s2[7]); load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3], &s3[4], &s3[5], &s3[6], &s3[7]); uint16x8_t d0 = convolve8_8_x(s0, filter, offset_lo, max); uint16x8_t d1 = convolve8_8_x(s1, filter, offset_lo, max); uint16x8_t d2 = convolve8_8_x(s2, filter, offset_lo, max); uint16x8_t d3 = convolve8_8_x(s3, filter, offset_lo, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } // clang-format off DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = { 0, 2, 4, 6, 1, 3, 5, 7, }; // clang-format on static INLINE uint16x4_t convolve4_4_x(int16x8_t s0, int16x8_t filter, int64x2_t offset, uint16x8x2_t permute_tbl, uint16x4_t max) { int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]); int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t convolve4_8_x(int16x8_t s0[4], int16x8_t filter, int64x2_t offset, uint16x8_t tbl, uint16x8_t max) { int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0); int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0); int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0); int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0); int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15)); int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, FILTER_BITS), vqrshrun_n_s32(sum2637, FILTER_BITS)); res = aom_tbl_u16(res, tbl); return vminq_u16(res, max); } static INLINE void highbd_convolve_x_sr_4tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *x_filter_ptr, ConvolveParams *conv_params, int bd) { // This shim allows to do only one rounding shift instead of two. const int64x2_t offset = vdupq_n_s64(1 << (conv_params->round_0 - 1)); const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2); const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0)); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl); const int16_t *s = (const int16_t *)(src); do { int16x8_t s0, s1, s2, s3; load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = convolve4_4_x(s0, filter, offset, permute_tbl, max); uint16x4_t d1 = convolve4_4_x(s1, filter, offset, permute_tbl, max); uint16x4_t d2 = convolve4_4_x(s2, filter, offset, permute_tbl, max); uint16x4_t d3 = convolve4_4_x(s3, filter, offset, permute_tbl, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); uint16x8_t idx = vld1q_u16(kDeinterleaveTbl); do { const int16_t *s = (const int16_t *)(src); uint16_t *d = dst; int w = width; do { int16x8_t s0[4], s1[4], s2[4], s3[4]; load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]); load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]); load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]); load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]); uint16x8_t d0 = convolve4_8_x(s0, filter, offset, idx, max); uint16x8_t d1 = convolve4_8_x(s1, filter, offset, idx, max); uint16x8_t d2 = convolve4_8_x(s2, filter, offset, idx, max); uint16x8_t d3 = convolve4_8_x(s3, filter, offset, idx, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } } void av1_highbd_convolve_x_sr_sve2(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params, int bd) { if (w == 2 || h == 2) { av1_highbd_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params, bd); return; } const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); if (x_filter_taps == 6) { av1_highbd_convolve_x_sr_neon(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params, bd); return; } const int horiz_offset = filter_params_x->taps / 2 - 1; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); src -= horiz_offset; if (x_filter_taps == 12) { highbd_convolve_x_sr_12tap_sve2(src, src_stride, dst, dst_stride, w, h, x_filter_ptr, conv_params, bd); return; } if (x_filter_taps == 8) { highbd_convolve_x_sr_8tap_sve2(src, src_stride, dst, dst_stride, w, h, x_filter_ptr, conv_params, bd); return; } highbd_convolve_x_sr_4tap_sve2(src + 2, src_stride, dst, dst_stride, w, h, x_filter_ptr, conv_params, bd); } static INLINE uint16x4_t highbd_convolve12_4_y(int16x8_t s0[2], int16x8_t s1[2], int16x8_t s2[2], int16x8_t filter_0_7, int16x8_t filter_4_11, uint16x4_t max) { int64x2_t sum[2]; sum[0] = aom_svdot_lane_s16(vdupq_n_s64(0), s0[0], filter_0_7, 0); sum[0] = aom_svdot_lane_s16(sum[0], s1[0], filter_0_7, 1); sum[0] = aom_svdot_lane_s16(sum[0], s2[0], filter_4_11, 1); sum[1] = aom_svdot_lane_s16(vdupq_n_s64(0), s0[1], filter_0_7, 0); sum[1] = aom_svdot_lane_s16(sum[1], s1[1], filter_0_7, 1); sum[1] = aom_svdot_lane_s16(sum[1], s2[1], filter_4_11, 1); int32x4_t res_s32 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[1])); uint16x4_t res = vqrshrun_n_s32(res_s32, FILTER_BITS); return vmin_u16(res, max); } static INLINE void highbd_convolve_y_sr_12tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, int bd) { const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4); uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL)); merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL)); merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1); uint16x8_t correction2 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL)); merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2); const uint16x4_t max = vdup_n_u16((1 << bd) - 1); do { int16_t *s = (int16_t *)src; uint16_t *d = dst; int h = height; int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &sA); s += 11 * src_stride; int16x8_t s0123[2], s1234[2], s2345[2], s3456[2], s4567[2], s5678[2], s6789[2], s789A[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); transpose_concat_4x4(s4, s5, s6, s7, s4567); transpose_concat_4x4(s5, s6, s7, s8, s5678); transpose_concat_4x4(s6, s7, s8, s9, s6789); transpose_concat_4x4(s7, s8, s9, sA, s789A); do { int16x4_t sB, sC, sD, sE; load_s16_4x4(s, src_stride, &sB, &sC, &sD, &sE); int16x8_t s89AB[2], s9ABC[2], sABCD[2], sBCDE[2]; transpose_concat_4x4(sB, sC, sD, sE, sBCDE); // Use the above transpose and reuse data from the previous loop to get // the rest. aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[0], s89AB); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[1], s9ABC); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[2], sABCD); uint16x4_t d0 = highbd_convolve12_4_y(s0123, s4567, s89AB, y_filter_0_7, y_filter_4_11, max); uint16x4_t d1 = highbd_convolve12_4_y(s1234, s5678, s9ABC, y_filter_0_7, y_filter_4_11, max); uint16x4_t d2 = highbd_convolve12_4_y(s2345, s6789, sABCD, y_filter_0_7, y_filter_4_11, max); uint16x4_t d3 = highbd_convolve12_4_y(s3456, s789A, sBCDE, y_filter_0_7, y_filter_4_11, max); store_u16_4x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s4567[0] = s89AB[0]; s4567[1] = s89AB[1]; s5678[0] = s9ABC[0]; s5678[1] = s9ABC[1]; s6789[0] = sABCD[0]; s6789[1] = sABCD[1]; s789A[0] = sBCDE[0]; s789A[1] = sBCDE[1]; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 4; dst += 4; width -= 4; } while (width != 0); } static INLINE uint16x4_t highbd_convolve8_4_y(int16x8_t samples_lo[2], int16x8_t samples_hi[2], int16x8_t filter, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0); sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0); sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve8_8_y(int16x8_t samples_lo[4], int16x8_t samples_hi[4], int16x8_t filter, uint16x8_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0); sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0); sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1); int64x2_t sum45 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[2], filter, 0); sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1); int64x2_t sum67 = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[3], filter, 0); sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS), vqrshrun_n_s32(sum4567, FILTER_BITS)); return vminq_u16(res, max); } void highbd_convolve_y_sr_8tap_sve2(const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_y, int bd) { assert(w >= 4 && h >= 4); const int16x8_t y_filter = vld1q_s16(filter_y); uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL)); merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL)); merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1); uint16x8_t correction2 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL)); merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)src; int16x4_t s0, s1, s2, s3, s4, s5, s6; load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); do { int16x4_t s7, s8, s9, s10; load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[2], s5678[2], s6789[2], s789A[2]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_4x4(s7, s8, s9, s10, s789A); // Merge new data into block from previous iteration. aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567); aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678); aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789); uint16x4_t d0 = highbd_convolve8_4_y(s0123, s4567, y_filter, max); uint16x4_t d1 = highbd_convolve8_4_y(s1234, s5678, y_filter, max); uint16x4_t d2 = highbd_convolve8_4_y(s2345, s6789, y_filter, max); uint16x4_t d3 = highbd_convolve8_4_y(s3456, s789A, y_filter, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)src; uint16_t *d = dst; int16x8_t s0, s1, s2, s3, s4, s5, s6; load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); do { int16x8_t s7, s8, s9, s10; load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[4], s5678[4], s6789[4], s789A[4]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_8x4(s7, s8, s9, s10, s789A); // Merge new data into block from previous iteration. aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567); aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678); aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789); uint16x8_t d0 = highbd_convolve8_8_y(s0123, s4567, y_filter, max); uint16x8_t d1 = highbd_convolve8_8_y(s1234, s5678, y_filter, max); uint16x8_t d2 = highbd_convolve8_8_y(s2345, s6789, y_filter, max); uint16x8_t d3 = highbd_convolve8_8_y(s3456, s789A, y_filter, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s0123[2] = s4567[2]; s0123[3] = s4567[3]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s1234[2] = s5678[2]; s1234[3] = s5678[3]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s2345[2] = s6789[2]; s2345[3] = s6789[3]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s3456[2] = s789A[2]; s3456[3] = s789A[3]; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } static INLINE uint16x4_t highbd_convolve4_4_y(int16x8_t samples[2], int16x8_t filter, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[1], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve4_8_y(int16x8_t samples[4], int16x8_t filter, uint16x8_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[1], filter, 0); int64x2_t sum45 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[2], filter, 0); int64x2_t sum67 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[3], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS), vqrshrun_n_s32(sum4567, FILTER_BITS)); return vminq_u16(res, max); } void highbd_convolve_y_sr_4tap_sve2(const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_y, int bd) { assert(w >= 4 && h >= 4); const int16x8_t y_filter = vcombine_s16(vld1_s16(filter_y + 2), vdup_n_s16(0)); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)src; int16x4_t s0, s1, s2; load_s16_4x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x4_t s3, s4, s5, s6; load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); uint16x4_t d0 = highbd_convolve4_4_y(s0123, y_filter, max); uint16x4_t d1 = highbd_convolve4_4_y(s1234, y_filter, max); uint16x4_t d2 = highbd_convolve4_4_y(s2345, y_filter, max); uint16x4_t d3 = highbd_convolve4_4_y(s3456, y_filter, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)src; uint16_t *d = dst; int16x8_t s0, s1, s2; load_s16_8x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x8_t s3, s4, s5, s6; load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample // permute required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); uint16x8_t d0 = highbd_convolve4_8_y(s0123, y_filter, max); uint16x8_t d1 = highbd_convolve4_8_y(s1234, y_filter, max); uint16x8_t d2 = highbd_convolve4_8_y(s2345, y_filter, max); uint16x8_t d3 = highbd_convolve4_8_y(s3456, y_filter, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } void av1_highbd_convolve_y_sr_sve2(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, int bd) { if (w == 2 || h == 2) { av1_highbd_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, bd); return; } const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); if (y_filter_taps == 6) { av1_highbd_convolve_y_sr_neon(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, bd); return; } const int vert_offset = filter_params_y->taps / 2 - 1; const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); src -= vert_offset * src_stride; if (y_filter_taps > 8) { highbd_convolve_y_sr_12tap_sve2(src, src_stride, dst, dst_stride, w, h, y_filter_ptr, bd); return; } if (y_filter_taps == 4) { highbd_convolve_y_sr_4tap_sve2(src + 2 * src_stride, src_stride, dst, dst_stride, w, h, y_filter_ptr, bd); return; } highbd_convolve_y_sr_8tap_sve2(src, src_stride, dst, dst_stride, w, h, y_filter_ptr, bd); } static INLINE uint16x4_t convolve12_4_2d_h( int16x8_t s0, int16x8_t s1, int16x8_t filter_0_7, int16x8_t filter_4_11, const int64x2_t offset, int32x4_t shift, uint16x8x4_t permute_tbl) { int16x8_t permuted_samples[6]; permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]); permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]); permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]); permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]); permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]); permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); sum0123 = vqrshlq_s32(sum0123, shift); return vqmovun_s32(sum0123); } static INLINE uint16x8_t convolve12_8_2d_h(int16x8_t s0, int16x8_t s1, int16x8_t s2, int16x8_t filter_0_7, int16x8_t filter_4_11, int64x2_t offset, int32x4_t shift, uint16x8x4_t permute_tbl) { int16x8_t permuted_samples[8]; permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]); permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]); permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]); permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]); permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]); permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]); permuted_samples[6] = aom_tbl2_s16(s1, s2, permute_tbl.val[2]); permuted_samples[7] = aom_tbl2_s16(s1, s2, permute_tbl.val[3]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1); int64x2_t sum45 = aom_svdot_lane_s16(offset, permuted_samples[2], filter_0_7, 0); sum45 = aom_svdot_lane_s16(sum45, permuted_samples[4], filter_0_7, 1); sum45 = aom_svdot_lane_s16(sum45, permuted_samples[6], filter_4_11, 1); int64x2_t sum67 = aom_svdot_lane_s16(offset, permuted_samples[3], filter_0_7, 0); sum67 = aom_svdot_lane_s16(sum67, permuted_samples[5], filter_0_7, 1); sum67 = aom_svdot_lane_s16(sum67, permuted_samples[7], filter_4_11, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); sum0123 = vqrshlq_s32(sum0123, shift); sum4567 = vqrshlq_s32(sum4567, shift); return vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567)); } static INLINE void highbd_convolve_2d_sr_horiz_12tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, ConvolveParams *conv_params, const int x_offset) { const int64x2_t offset = vdupq_n_s64(x_offset); const int32x4_t shift = vdupq_n_s32(-conv_params->round_0); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4); uint16x8x4_t permute_tbl = vld1q_u16_x4(kDotProdTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vcombine_u64( vdup_n_u64(0), vdup_n_u64(svcnth() * 0x0001000000000000ULL))); permute_tbl.val[2] = vaddq_u16(permute_tbl.val[2], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64( vcombine_u64(vdup_n_u64(svcnth() * 0x0001000100000000ULL), vdup_n_u64(svcnth() * 0x0001000100010000ULL))); permute_tbl.val[3] = vaddq_u16(permute_tbl.val[3], correction1); if (width == 4) { const int16_t *s = (const int16_t *)src; do { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6); load_s16_8x4(s + 8, src_stride, &s1, &s3, &s5, &s7); uint16x4_t d0 = convolve12_4_2d_h(s0, s1, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x4_t d1 = convolve12_4_2d_h(s2, s3, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x4_t d2 = convolve12_4_2d_h(s4, s5, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x4_t d3 = convolve12_4_2d_h(s6, s7, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; s += 4 * src_stride; height -= 4; } while (height > 0); } else { do { const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11; load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9); load_s16_8x4(s + 8, src_stride, &s1, &s4, &s7, &s10); load_s16_8x4(s + 16, src_stride, &s2, &s5, &s8, &s11); uint16x8_t d0 = convolve12_8_2d_h(s0, s1, s2, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x8_t d1 = convolve12_8_2d_h(s3, s4, s5, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x8_t d2 = convolve12_8_2d_h(s6, s7, s8, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); uint16x8_t d3 = convolve12_8_2d_h(s9, s10, s11, y_filter_0_7, y_filter_4_11, offset, shift, permute_tbl); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } } static INLINE uint16x8_t convolve8_8_2d_h(int16x8_t s0[8], int16x8_t filter, int64x2_t offset, int32x4_t shift) { int64x2_t sum[8]; sum[0] = aom_sdotq_s16(offset, s0[0], filter); sum[1] = aom_sdotq_s16(offset, s0[1], filter); sum[2] = aom_sdotq_s16(offset, s0[2], filter); sum[3] = aom_sdotq_s16(offset, s0[3], filter); sum[4] = aom_sdotq_s16(offset, s0[4], filter); sum[5] = aom_sdotq_s16(offset, s0[5], filter); sum[6] = aom_sdotq_s16(offset, s0[6], filter); sum[7] = aom_sdotq_s16(offset, s0[7], filter); sum[0] = vpaddq_s64(sum[0], sum[1]); sum[2] = vpaddq_s64(sum[2], sum[3]); sum[4] = vpaddq_s64(sum[4], sum[5]); sum[6] = vpaddq_s64(sum[6], sum[7]); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2])); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6])); sum0123 = vqrshlq_s32(sum0123, shift); sum4567 = vqrshlq_s32(sum4567, shift); return vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567)); } static INLINE void highbd_convolve_2d_sr_horiz_8tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, ConvolveParams *conv_params, const int x_offset) { const int64x2_t offset = vdupq_n_s64(x_offset); const int64x2_t offset_lo = vcombine_s64(vget_low_s64(offset), vdup_n_s64(0)); const int32x4_t shift = vdupq_n_s32(-conv_params->round_0); const int16x8_t filter = vld1q_s16(y_filter_ptr); do { const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0[8], s1[8], s2[8], s3[8]; load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4], &s0[5], &s0[6], &s0[7]); load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4], &s1[5], &s1[6], &s1[7]); load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4], &s2[5], &s2[6], &s2[7]); load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3], &s3[4], &s3[5], &s3[6], &s3[7]); uint16x8_t d0 = convolve8_8_2d_h(s0, filter, offset_lo, shift); uint16x8_t d1 = convolve8_8_2d_h(s1, filter, offset_lo, shift); uint16x8_t d2 = convolve8_8_2d_h(s2, filter, offset_lo, shift); uint16x8_t d3 = convolve8_8_2d_h(s3, filter, offset_lo, shift); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } static INLINE uint16x4_t convolve4_4_2d_h(int16x8_t s0, int16x8_t filter, int64x2_t offset, int32x4_t shift, uint16x8x2_t permute_tbl) { int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]); int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]); int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); sum0123 = vqrshlq_s32(sum0123, shift); return vqmovun_s32(sum0123); } static INLINE uint16x8_t convolve4_8_2d_h(int16x8_t s0[8], int16x8_t filter, int64x2_t offset, int32x4_t shift, uint16x8_t tbl) { int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0); int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0); int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0); int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37)); sum0123 = vqrshlq_s32(sum0123, shift); sum4567 = vqrshlq_s32(sum4567, shift); uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567)); return aom_tbl_u16(res, tbl); } static INLINE void highbd_convolve_2d_sr_horiz_4tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *x_filter_ptr, ConvolveParams *conv_params, const int x_offset) { const int64x2_t offset = vdupq_n_s64(x_offset); const int32x4_t shift = vdupq_n_s32(-conv_params->round_0); const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2); const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0)); if (width == 4) { const int16_t *s = (const int16_t *)(src); uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl); do { int16x8_t s0, s1, s2, s3; load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = convolve4_4_2d_h(s0, filter, offset, shift, permute_tbl); uint16x4_t d1 = convolve4_4_2d_h(s1, filter, offset, shift, permute_tbl); uint16x4_t d2 = convolve4_4_2d_h(s2, filter, offset, shift, permute_tbl); uint16x4_t d3 = convolve4_4_2d_h(s3, filter, offset, shift, permute_tbl); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } else { uint16x8_t idx = vld1q_u16(kDeinterleaveTbl); do { const int16_t *s = (const int16_t *)(src); uint16_t *d = dst; int w = width; do { int16x8_t s0[8], s1[8], s2[8], s3[8]; load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4], &s0[5], &s0[6], &s0[7]); load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4], &s1[5], &s1[6], &s1[7]); load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4], &s2[5], &s2[6], &s2[7]); load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3], &s3[4], &s3[5], &s3[6], &s3[7]); uint16x8_t d0 = convolve4_8_2d_h(s0, filter, offset, shift, idx); uint16x8_t d1 = convolve4_8_2d_h(s1, filter, offset, shift, idx); uint16x8_t d2 = convolve4_8_2d_h(s2, filter, offset, shift, idx); uint16x8_t d3 = convolve4_8_2d_h(s3, filter, offset, shift, idx); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } } static INLINE uint16x4_t highbd_convolve12_4_2d_v( int16x8_t s0[2], int16x8_t s1[2], int16x8_t s2[2], int16x8_t filter_0_7, int16x8_t filter_4_11, int32x4_t shift, int64x2_t offset, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(offset, s0[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, s1[0], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, s2[0], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, s0[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, s1[1], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, s2[1], filter_4_11, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); sum0123 = vshlq_s32(sum0123, shift); uint16x4_t res = vqmovun_s32(sum0123); return vmin_u16(res, max); } static INLINE void highbd_convolve_2d_sr_vert_12tap_sve2( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int width, int height, const int16_t *y_filter_ptr, ConvolveParams *conv_params, int bd, const int y_offset) { const int64x2_t offset = vdupq_n_s64(y_offset); const int32x4_t shift = vdupq_n_s32(-conv_params->round_1); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4); uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL)); merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL)); merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1); uint16x8_t correction2 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL)); merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2); const uint16x4_t max = vdup_n_u16((1 << bd) - 1); do { int16_t *s = (int16_t *)src; uint16_t *d = (uint16_t *)dst; int h = height; int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &sA); s += 11 * src_stride; int16x8_t s0123[2], s1234[2], s2345[2], s3456[2], s4567[2], s5678[2], s6789[2], s789A[2]; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); transpose_concat_4x4(s4, s5, s6, s7, s4567); transpose_concat_4x4(s5, s6, s7, s8, s5678); transpose_concat_4x4(s6, s7, s8, s9, s6789); transpose_concat_4x4(s7, s8, s9, sA, s789A); do { int16x4_t sB, sC, sD, sE; load_s16_4x4(s, src_stride, &sB, &sC, &sD, &sE); int16x8_t s89AB[2], s9ABC[2], sABCD[2], sBCDE[2]; transpose_concat_4x4(sB, sC, sD, sE, sBCDE); // Use the above transpose and reuse data from the previous loop to get // the rest. aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[0], s89AB); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[1], s9ABC); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[2], sABCD); uint16x4_t d0 = highbd_convolve12_4_2d_v( s0123, s4567, s89AB, y_filter_0_7, y_filter_4_11, shift, offset, max); uint16x4_t d1 = highbd_convolve12_4_2d_v( s1234, s5678, s9ABC, y_filter_0_7, y_filter_4_11, shift, offset, max); uint16x4_t d2 = highbd_convolve12_4_2d_v( s2345, s6789, sABCD, y_filter_0_7, y_filter_4_11, shift, offset, max); uint16x4_t d3 = highbd_convolve12_4_2d_v( s3456, s789A, sBCDE, y_filter_0_7, y_filter_4_11, shift, offset, max); store_u16_4x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s4567[0] = s89AB[0]; s4567[1] = s89AB[1]; s5678[0] = s9ABC[0]; s5678[1] = s9ABC[1]; s6789[0] = sABCD[0]; s6789[1] = sABCD[1]; s789A[0] = sBCDE[0]; s789A[1] = sBCDE[1]; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 4; dst += 4; width -= 4; } while (width != 0); } static INLINE uint16x4_t highbd_convolve8_4_2d_v( int16x8_t samples_lo[2], int16x8_t samples_hi[2], int16x8_t filter, int32x4_t shift, int64x2_t offset, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0); sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0); sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); sum0123 = vshlq_s32(sum0123, shift); uint16x4_t res = vqmovun_s32(sum0123); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve8_8_2d_v( int16x8_t samples_lo[4], int16x8_t samples_hi[4], int16x8_t filter, int32x4_t shift, int64x2_t offset, uint16x8_t max) { int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0); sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1); int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0); sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1); int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0); sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1); int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0); sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); sum0123 = vshlq_s32(sum0123, shift); sum4567 = vshlq_s32(sum4567, shift); uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567)); return vminq_u16(res, max); } void highbd_convolve_2d_sr_vert_8tap_sve2(const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_y, ConvolveParams *conv_params, int bd, const int y_offset) { assert(w >= 4 && h >= 4); const int64x2_t offset = vdupq_n_s64(y_offset); const int32x4_t shift = vdupq_n_s32(-conv_params->round_1); const int16x8_t y_filter = vld1q_s16(filter_y); uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL)); merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL)); merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1); uint16x8_t correction2 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL)); merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)src; int16x4_t s0, s1, s2, s3, s4, s5, s6; load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); do { int16x4_t s7, s8, s9, s10; load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[2], s5678[2], s6789[2], s789A[2]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_4x4(s7, s8, s9, s10, s789A); // Merge new data into block from previous iteration. aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567); aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678); aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789); uint16x4_t d0 = highbd_convolve8_4_2d_v(s0123, s4567, y_filter, shift, offset, max); uint16x4_t d1 = highbd_convolve8_4_2d_v(s1234, s5678, y_filter, shift, offset, max); uint16x4_t d2 = highbd_convolve8_4_2d_v(s2345, s6789, y_filter, shift, offset, max); uint16x4_t d3 = highbd_convolve8_4_2d_v(s3456, s789A, y_filter, shift, offset, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)src; uint16_t *d = dst; int16x8_t s0, s1, s2, s3, s4, s5, s6; load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); do { int16x8_t s7, s8, s9, s10; load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[4], s5678[4], s6789[4], s789A[4]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_8x4(s7, s8, s9, s10, s789A); // Merge new data into block from previous iteration. aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567); aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678); aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789); uint16x8_t d0 = highbd_convolve8_8_2d_v(s0123, s4567, y_filter, shift, offset, max); uint16x8_t d1 = highbd_convolve8_8_2d_v(s1234, s5678, y_filter, shift, offset, max); uint16x8_t d2 = highbd_convolve8_8_2d_v(s2345, s6789, y_filter, shift, offset, max); uint16x8_t d3 = highbd_convolve8_8_2d_v(s3456, s789A, y_filter, shift, offset, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s0123[2] = s4567[2]; s0123[3] = s4567[3]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s1234[2] = s5678[2]; s1234[3] = s5678[3]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s2345[2] = s6789[2]; s2345[3] = s6789[3]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s3456[2] = s789A[2]; s3456[3] = s789A[3]; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } static INLINE uint16x4_t highbd_convolve4_4_2d_v(int16x8_t samples[2], int16x8_t filter, int32x4_t shift, int64x2_t offset, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(offset, samples[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(offset, samples[1], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); sum0123 = vshlq_s32(sum0123, shift); uint16x4_t res = vqmovun_s32(sum0123); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve4_8_2d_v(int16x8_t samples[4], int16x8_t filter, int32x4_t shift, int64x2_t offset, uint16x8_t max) { int64x2_t sum01 = aom_svdot_lane_s16(offset, samples[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(offset, samples[1], filter, 0); int64x2_t sum45 = aom_svdot_lane_s16(offset, samples[2], filter, 0); int64x2_t sum67 = aom_svdot_lane_s16(offset, samples[3], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); sum0123 = vshlq_s32(sum0123, shift); sum4567 = vshlq_s32(sum4567, shift); uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567)); return vminq_u16(res, max); } void highbd_convolve_2d_sr_vert_4tap_sve2(const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_y, ConvolveParams *conv_params, int bd, const int y_offset) { assert(w >= 4 && h >= 4); const int64x2_t offset = vdupq_n_s64(y_offset); const int32x4_t shift = vdupq_n_s32(-conv_params->round_1); const int16x8_t y_filter = vcombine_s16(vld1_s16(filter_y + 2), vdup_n_s16(0)); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)(src); int16x4_t s0, s1, s2; load_s16_4x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x4_t s3, s4, s5, s6; load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); uint16x4_t d0 = highbd_convolve4_4_2d_v(s0123, y_filter, shift, offset, max); uint16x4_t d1 = highbd_convolve4_4_2d_v(s1234, y_filter, shift, offset, max); uint16x4_t d2 = highbd_convolve4_4_2d_v(s2345, y_filter, shift, offset, max); uint16x4_t d3 = highbd_convolve4_4_2d_v(s3456, y_filter, shift, offset, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)(src); uint16_t *d = dst; int16x8_t s0, s1, s2; load_s16_8x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x8_t s3, s4, s5, s6; load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample // permute required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); uint16x8_t d0 = highbd_convolve4_8_2d_v(s0123, y_filter, shift, offset, max); uint16x8_t d1 = highbd_convolve4_8_2d_v(s1234, y_filter, shift, offset, max); uint16x8_t d2 = highbd_convolve4_8_2d_v(s2345, y_filter, shift, offset, max); uint16x8_t d3 = highbd_convolve4_8_2d_v(s3456, y_filter, shift, offset, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } void av1_highbd_convolve_2d_sr_sve2(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { if (w == 2 || h == 2) { av1_highbd_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); return; } DECLARE_ALIGNED(16, uint16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); if (x_filter_taps == 6 || y_filter_taps == 6) { av1_highbd_convolve_2d_sr_neon(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); return; } const int clamped_x_taps = x_filter_taps < 4 ? 4 : x_filter_taps; const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps; const int im_stride = MAX_SB_SIZE; const int vert_offset = clamped_y_taps / 2 - 1; const int horiz_offset = clamped_x_taps / 2 - 1; const int x_offset = (1 << (bd + FILTER_BITS - 1)); const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; // The extra shim of (1 << (conv_params->round_1 - 1)) allows us to do a // simple shift left instead of a rounding saturating shift left. const int y_offset = (1 << (conv_params->round_1 - 1)) - (1 << (y_offset_bits - 1)); const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const int im_h = h + clamped_y_taps - 1; if (x_filter_taps > 8) { highbd_convolve_2d_sr_horiz_12tap_sve2(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, conv_params, x_offset); highbd_convolve_2d_sr_vert_12tap_sve2(im_block, im_stride, dst, dst_stride, w, h, y_filter_ptr, conv_params, bd, y_offset); return; } if (x_filter_taps <= 4) { highbd_convolve_2d_sr_horiz_4tap_sve2(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, conv_params, x_offset); } else { highbd_convolve_2d_sr_horiz_8tap_sve2(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, conv_params, x_offset); } if (y_filter_taps <= 4) { highbd_convolve_2d_sr_vert_4tap_sve2(im_block, im_stride, dst, dst_stride, w, h, y_filter_ptr, conv_params, bd, y_offset); } else { highbd_convolve_2d_sr_vert_8tap_sve2(im_block, im_stride, dst, dst_stride, w, h, y_filter_ptr, conv_params, bd, y_offset); } }