/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_ #define AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_ #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_ports/mem.h" #include "av1/common/scale.h" #include "av1/common/warped_motion.h" #include "config/av1_rtcd.h" static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd, int sx, int alpha); static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd, int sx, int alpha); static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd, int sx); static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd, int sx); static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy); static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy); static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy, int gamma); static INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, int sy, int gamma); static INLINE int16x8_t load_filters_1(int ofs) { const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS); const int16_t *base = (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; return vld1q_s16(base + ofs0 * 8); } static INLINE void load_filters_4(int16x8_t out[], int ofs, int stride) { const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); const int16_t *base = (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; out[0] = vld1q_s16(base + ofs0 * 8); out[1] = vld1q_s16(base + ofs1 * 8); out[2] = vld1q_s16(base + ofs2 * 8); out[3] = vld1q_s16(base + ofs3 * 8); } static INLINE void load_filters_8(int16x8_t out[], int ofs, int stride) { const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS); const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS); const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS); const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS); const int16_t *base = (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; out[0] = vld1q_s16(base + ofs0 * 8); out[1] = vld1q_s16(base + ofs1 * 8); out[2] = vld1q_s16(base + ofs2 * 8); out[3] = vld1q_s16(base + ofs3 * 8); out[4] = vld1q_s16(base + ofs4 * 8); out[5] = vld1q_s16(base + ofs5 * 8); out[6] = vld1q_s16(base + ofs6 * 8); out[7] = vld1q_s16(base + ofs7 * 8); } static INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val, int bd) { const int limit = (1 << bd) - 1; return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit))); } static INLINE void warp_affine_horizontal(const uint16_t *ref, int width, int height, int stride, int p_width, int16_t alpha, int16_t beta, int iy4, int sx4, int ix4, int16x8_t tmp[], int bd) { const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; if (ix4 <= -7) { for (int k = 0; k < 15; ++k) { int iy = clamp(iy4 + k - 7, 0, height - 1); int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) + ref[iy * stride] * (1 << (FILTER_BITS - round0)); tmp[k] = vdupq_n_s16(dup_val); } return; } else if (ix4 >= width + 6) { for (int k = 0; k < 15; ++k) { int iy = clamp(iy4 + k - 7, 0, height - 1); int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) + ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0)); tmp[k] = vdupq_n_s16(dup_val); } return; } static const uint16_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; const uint16x8_t indx0 = vld1q_u16(kIotaArr); const uint16x8_t indx1 = vld1q_u16(kIotaArr + 8); const int out_of_boundary_left = -(ix4 - 6); const int out_of_boundary_right = (ix4 + 8) - width; #define APPLY_HORIZONTAL_SHIFT(fn, ...) \ do { \ if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \ for (int k = 0; k < 15; ++k) { \ const int iy = clamp(iy4 + k - 7, 0, height - 1); \ uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \ \ if (out_of_boundary_left >= 0) { \ uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left); \ uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]); \ uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec); \ uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec); \ src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); \ src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); \ } \ if (out_of_boundary_right >= 0) { \ uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right); \ uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]); \ uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec); \ uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec); \ src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); \ src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); \ } \ tmp[k] = (fn)(src_1, __VA_ARGS__); \ } \ } else { \ for (int k = 0; k < 15; ++k) { \ const int iy = clamp(iy4 + k - 7, 0, height - 1); \ uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \ tmp[k] = (fn)(src_1, __VA_ARGS__); \ } \ } \ } while (0) if (p_width == 4) { if (beta == 0) { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd, sx4); } else { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd, sx4, alpha); } } else { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd, (sx4 + beta * (k - 3))); } else { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd, (sx4 + beta * (k - 3)), alpha); } } } else { if (beta == 0) { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd, sx4); } else { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd, sx4, alpha); } } else { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd, (sx4 + beta * (k - 3))); } else { APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd, (sx4 + beta * (k - 3)), alpha); } } } } static INLINE void highbd_vertical_filter_4x1_f4( uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { int32x4_t sum0 = gamma == 0 ? vertical_filter_4x1_f1(tmp, sy) : vertical_filter_4x1_f4(tmp, sy, gamma); const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); uint16_t *dst16 = &pred[i * p_stride + j]; if (!is_compound) { const int reduce_bits_vert = 2 * FILTER_BITS - round0; sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); const int res_sub_const = (1 << (bd - 1)) + (1 << bd); sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); vst1_u16(dst16, res0); return; } sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); uint16_t *p = &dst[i * dst_stride + j]; if (!do_average) { vst1_u16(p, vqmovun_s32(sum0)); return; } uint16x4_t p0 = vld1_u16(p); int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0)); if (use_dist_wtd_comp_avg) { p_vec0 = vmulq_n_s32(p_vec0, fwd); p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); } else { p_vec0 = vhaddq_s32(p_vec0, sum0); } const int offset_bits = bd + 2 * FILTER_BITS - round0; const int round1 = COMPOUND_ROUND1_BITS; const int res_sub_const = (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); const int round_bits = 2 * FILTER_BITS - round0 - round1; p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); vst1_u16(dst16, res0); } static INLINE void highbd_vertical_filter_8x1_f8( uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { int32x4x2_t sums = gamma == 0 ? vertical_filter_8x1_f1(tmp, sy) : vertical_filter_8x1_f8(tmp, sy, gamma); int32x4_t sum0 = sums.val[0]; int32x4_t sum1 = sums.val[1]; const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert)); uint16_t *dst16 = &pred[i * p_stride + j]; if (!is_compound) { const int reduce_bits_vert = 2 * FILTER_BITS - round0; sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert)); const int res_sub_const = (1 << (bd - 1)) + (1 << bd); sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const)); uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd); vst1_u16(dst16, res0); vst1_u16(dst16 + 4, res1); return; } sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS); uint16_t *p = &dst[i * dst_stride + j]; if (!do_average) { vst1_u16(p, vqmovun_s32(sum0)); vst1_u16(p + 4, vqmovun_s32(sum1)); return; } uint16x8_t p0 = vld1q_u16(p); int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0))); int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0))); if (use_dist_wtd_comp_avg) { p_vec0 = vmulq_n_s32(p_vec0, fwd); p_vec1 = vmulq_n_s32(p_vec1, fwd); p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd); p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS); } else { p_vec0 = vhaddq_s32(p_vec0, sum0); p_vec1 = vhaddq_s32(p_vec1, sum1); } const int offset_bits = bd + 2 * FILTER_BITS - round0; const int round1 = COMPOUND_ROUND1_BITS; const int res_sub_const = (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); const int round_bits = 2 * FILTER_BITS - round0 - round1; p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const)); p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits)); uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd); vst1_u16(dst16, res0); vst1_u16(dst16 + 4, res1); } static INLINE void warp_affine_vertical( uint16_t *pred, int p_width, int p_height, int p_stride, int bd, uint16_t *dst, int dst_stride, bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta, const int16x8_t *tmp, int i, int sy4, int j) { int limit_height = p_height > 4 ? 8 : 4; if (p_width > 4) { // p_width == 8 for (int k = 0; k < limit_height; ++k) { int sy = sy4 + delta * k; highbd_vertical_filter_8x1_f8( pred, p_stride, bd, dst, dst_stride, is_compound, do_average, use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); } } else { // p_width == 4 for (int k = 0; k < limit_height; ++k) { int sy = sy4 + delta * k; highbd_vertical_filter_4x1_f4( pred, p_stride, bd, dst, dst_stride, is_compound, do_average, use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); } } } static INLINE void highbd_warp_affine_common( const int32_t *mat, const uint16_t *ref, int width, int height, int stride, uint16_t *pred, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int bd, ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma, int16_t delta) { uint16_t *const dst = conv_params->dst; const int dst_stride = conv_params->dst_stride; const bool is_compound = conv_params->is_compound; const bool do_average = conv_params->do_average; const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; const int fwd = conv_params->fwd_offset; const int bwd = conv_params->bck_offset; assert(IMPLIES(is_compound, dst != NULL)); for (int i = 0; i < p_height; i += 8) { for (int j = 0; j < p_width; j += 8) { // Calculate the center of this 8x8 block, // project to luma coordinates (if in a subsampled chroma plane), // apply the affine transformation, // then convert back to the original coordinates (if necessary) const int32_t src_x = (j + 4 + p_col) << subsampling_x; const int32_t src_y = (i + 4 + p_row) << subsampling_y; const int64_t dst_x = (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; const int64_t dst_y = (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; const int64_t x4 = dst_x >> subsampling_x; const int64_t y4 = dst_y >> subsampling_y; const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); sx4 += alpha * (-4) + beta * (-4); sy4 += gamma * (-4) + delta * (-4); sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); // Each horizontal filter result is formed by the sum of up to eight // multiplications by filter values and then a shift. Although both the // inputs and filters are loaded as int16, the input data is at most bd // bits and the filters are at most 8 bits each. Additionally since we // know all possible filter values we know that the sum of absolute // filter values will fit in at most 9 bits. With this in mind we can // conclude that the sum of each filter application will fit in bd + 9 // bits. The shift following the summation is ROUND0_BITS (which is 3), // +2 for 12-bit, which gives us a final storage of: // bd == 8: ( 8 + 9) - 3 => 14 bits // bd == 10: (10 + 9) - 3 => 16 bits // bd == 12: (12 + 9) - 5 => 16 bits // So it is safe to use int16x8_t as the intermediate storage type here. int16x8_t tmp[15]; warp_affine_horizontal(ref, width, height, stride, p_width, alpha, beta, iy4, sx4, ix4, tmp, bd); warp_affine_vertical(pred, p_width, p_height, p_stride, bd, dst, dst_stride, is_compound, do_average, use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, tmp, i, sy4, j); } } } #endif // AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_