/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #define MAX_UPSAMPLE_SZ 16 // These kernels are a transposed version of those defined in reconintra.c, // with the absolute value of the negatives taken in the top row. DECLARE_ALIGNED(16, const uint8_t, av1_filter_intra_taps_neon[FILTER_INTRA_MODES][7][8]) = { // clang-format off { { 6, 5, 3, 3, 4, 3, 3, 3 }, { 10, 2, 1, 1, 6, 2, 2, 1 }, { 0, 10, 1, 1, 0, 6, 2, 2 }, { 0, 0, 10, 2, 0, 0, 6, 2 }, { 0, 0, 0, 10, 0, 0, 0, 6 }, { 12, 9, 7, 5, 2, 2, 2, 3 }, { 0, 0, 0, 0, 12, 9, 7, 5 } }, { { 10, 6, 4, 2, 10, 6, 4, 2 }, { 16, 0, 0, 0, 16, 0, 0, 0 }, { 0, 16, 0, 0, 0, 16, 0, 0 }, { 0, 0, 16, 0, 0, 0, 16, 0 }, { 0, 0, 0, 16, 0, 0, 0, 16 }, { 10, 6, 4, 2, 0, 0, 0, 0 }, { 0, 0, 0, 0, 10, 6, 4, 2 } }, { { 8, 8, 8, 8, 4, 4, 4, 4 }, { 8, 0, 0, 0, 4, 0, 0, 0 }, { 0, 8, 0, 0, 0, 4, 0, 0 }, { 0, 0, 8, 0, 0, 0, 4, 0 }, { 0, 0, 0, 8, 0, 0, 0, 4 }, { 16, 16, 16, 16, 0, 0, 0, 0 }, { 0, 0, 0, 0, 16, 16, 16, 16 } }, { { 2, 1, 1, 0, 1, 1, 1, 1 }, { 8, 3, 2, 1, 4, 3, 2, 2 }, { 0, 8, 3, 2, 0, 4, 3, 2 }, { 0, 0, 8, 3, 0, 0, 4, 3 }, { 0, 0, 0, 8, 0, 0, 0, 4 }, { 10, 6, 4, 2, 3, 4, 4, 3 }, { 0, 0, 0, 0, 10, 6, 4, 3 } }, { { 12, 10, 9, 8, 10, 9, 8, 7 }, { 14, 0, 0, 0, 12, 1, 0, 0 }, { 0, 14, 0, 0, 0, 12, 0, 0 }, { 0, 0, 14, 0, 0, 0, 12, 1 }, { 0, 0, 0, 14, 0, 0, 0, 12 }, { 14, 12, 11, 10, 0, 0, 1, 1 }, { 0, 0, 0, 0, 14, 12, 11, 9 } } // clang-format on }; #define FILTER_INTRA_SCALE_BITS 4 void av1_filter_intra_predictor_neon(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint8_t *above, const uint8_t *left, int mode) { const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; assert(width <= 32 && height <= 32); const uint8x8_t f0 = vld1_u8(av1_filter_intra_taps_neon[mode][0]); const uint8x8_t f1 = vld1_u8(av1_filter_intra_taps_neon[mode][1]); const uint8x8_t f2 = vld1_u8(av1_filter_intra_taps_neon[mode][2]); const uint8x8_t f3 = vld1_u8(av1_filter_intra_taps_neon[mode][3]); const uint8x8_t f4 = vld1_u8(av1_filter_intra_taps_neon[mode][4]); const uint8x8_t f5 = vld1_u8(av1_filter_intra_taps_neon[mode][5]); const uint8x8_t f6 = vld1_u8(av1_filter_intra_taps_neon[mode][6]); uint8_t buffer[33][33]; // Populate the top row in the scratch buffer with data from above. memcpy(buffer[0], &above[-1], (width + 1) * sizeof(uint8_t)); // Populate the first column in the scratch buffer with data from the left. int r = 0; do { buffer[r + 1][0] = left[r]; } while (++r < height); // Computing 4 cols per iteration (instead of 8) for 8x blocks is faster. if (width <= 8) { r = 1; do { int c = 1; uint8x8_t s0 = vld1_dup_u8(&buffer[r - 1][c - 1]); uint8x8_t s5 = vld1_dup_u8(&buffer[r + 0][c - 1]); uint8x8_t s6 = vld1_dup_u8(&buffer[r + 1][c - 1]); do { uint8x8_t s1234 = load_u8_4x1(&buffer[r - 1][c - 1] + 1); uint8x8_t s1 = vdup_lane_u8(s1234, 0); uint8x8_t s2 = vdup_lane_u8(s1234, 1); uint8x8_t s3 = vdup_lane_u8(s1234, 2); uint8x8_t s4 = vdup_lane_u8(s1234, 3); uint16x8_t sum = vmull_u8(s1, f1); // First row of each filter has all negative values so subtract. sum = vmlsl_u8(sum, s0, f0); sum = vmlal_u8(sum, s2, f2); sum = vmlal_u8(sum, s3, f3); sum = vmlal_u8(sum, s4, f4); sum = vmlal_u8(sum, s5, f5); sum = vmlal_u8(sum, s6, f6); uint8x8_t res = vqrshrun_n_s16(vreinterpretq_s16_u16(sum), FILTER_INTRA_SCALE_BITS); // Store buffer[r + 0][c] and buffer[r + 1][c]. store_u8x4_strided_x2(&buffer[r][c], 33, res); store_u8x4_strided_x2(dst + (r - 1) * stride + c - 1, stride, res); s0 = s4; s5 = vdup_lane_u8(res, 3); s6 = vdup_lane_u8(res, 7); c += 4; } while (c < width + 1); r += 2; } while (r < height + 1); } else { r = 1; do { int c = 1; uint8x8_t s0_lo = vld1_dup_u8(&buffer[r - 1][c - 1]); uint8x8_t s5_lo = vld1_dup_u8(&buffer[r + 0][c - 1]); uint8x8_t s6_lo = vld1_dup_u8(&buffer[r + 1][c - 1]); do { uint8x8_t s1234 = vld1_u8(&buffer[r - 1][c - 1] + 1); uint8x8_t s1_lo = vdup_lane_u8(s1234, 0); uint8x8_t s2_lo = vdup_lane_u8(s1234, 1); uint8x8_t s3_lo = vdup_lane_u8(s1234, 2); uint8x8_t s4_lo = vdup_lane_u8(s1234, 3); uint16x8_t sum_lo = vmull_u8(s1_lo, f1); // First row of each filter has all negative values so subtract. sum_lo = vmlsl_u8(sum_lo, s0_lo, f0); sum_lo = vmlal_u8(sum_lo, s2_lo, f2); sum_lo = vmlal_u8(sum_lo, s3_lo, f3); sum_lo = vmlal_u8(sum_lo, s4_lo, f4); sum_lo = vmlal_u8(sum_lo, s5_lo, f5); sum_lo = vmlal_u8(sum_lo, s6_lo, f6); uint8x8_t res_lo = vqrshrun_n_s16(vreinterpretq_s16_u16(sum_lo), FILTER_INTRA_SCALE_BITS); uint8x8_t s0_hi = s4_lo; uint8x8_t s1_hi = vdup_lane_u8(s1234, 4); uint8x8_t s2_hi = vdup_lane_u8(s1234, 5); uint8x8_t s3_hi = vdup_lane_u8(s1234, 6); uint8x8_t s4_hi = vdup_lane_u8(s1234, 7); uint8x8_t s5_hi = vdup_lane_u8(res_lo, 3); uint8x8_t s6_hi = vdup_lane_u8(res_lo, 7); uint16x8_t sum_hi = vmull_u8(s1_hi, f1); // First row of each filter has all negative values so subtract. sum_hi = vmlsl_u8(sum_hi, s0_hi, f0); sum_hi = vmlal_u8(sum_hi, s2_hi, f2); sum_hi = vmlal_u8(sum_hi, s3_hi, f3); sum_hi = vmlal_u8(sum_hi, s4_hi, f4); sum_hi = vmlal_u8(sum_hi, s5_hi, f5); sum_hi = vmlal_u8(sum_hi, s6_hi, f6); uint8x8_t res_hi = vqrshrun_n_s16(vreinterpretq_s16_u16(sum_hi), FILTER_INTRA_SCALE_BITS); uint32x2x2_t res = vzip_u32(vreinterpret_u32_u8(res_lo), vreinterpret_u32_u8(res_hi)); vst1_u8(&buffer[r + 0][c], vreinterpret_u8_u32(res.val[0])); vst1_u8(&buffer[r + 1][c], vreinterpret_u8_u32(res.val[1])); vst1_u8(dst + (r - 1) * stride + c - 1, vreinterpret_u8_u32(res.val[0])); vst1_u8(dst + (r + 0) * stride + c - 1, vreinterpret_u8_u32(res.val[1])); s0_lo = s4_hi; s5_lo = vdup_lane_u8(res_hi, 3); s6_lo = vdup_lane_u8(res_hi, 7); c += 8; } while (c < width + 1); r += 2; } while (r < height + 1); } } void av1_filter_intra_edge_neon(uint8_t *p, int sz, int strength) { if (!strength) return; assert(sz >= 0 && sz <= 129); uint8_t edge[160]; // Max value of sz + enough padding for vector accesses. memcpy(edge + 1, p, sz * sizeof(*p)); // Populate extra space appropriately. edge[0] = edge[1]; edge[sz + 1] = edge[sz]; edge[sz + 2] = edge[sz]; // Don't overwrite first pixel. uint8_t *dst = p + 1; sz--; if (strength == 1) { // Filter: {4, 8, 4}. const uint8_t *src = edge + 1; while (sz >= 8) { uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); // Make use of the identity: // (4*a + 8*b + 4*c) >> 4 == (a + (b << 1) + c) >> 2 uint16x8_t t0 = vaddl_u8(s0, s2); uint16x8_t t1 = vaddl_u8(s1, s1); uint16x8_t sum = vaddq_u16(t0, t1); uint8x8_t res = vrshrn_n_u16(sum, 2); vst1_u8(dst, res); src += 8; dst += 8; sz -= 8; } if (sz > 0) { // Handle sz < 8 to avoid modifying out-of-bounds values. uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint16x8_t t0 = vaddl_u8(s0, s2); uint16x8_t t1 = vaddl_u8(s1, s1); uint16x8_t sum = vaddq_u16(t0, t1); uint8x8_t res = vrshrn_n_u16(sum, 2); // Mask off out-of-bounds indices. uint8x8_t current_dst = vld1_u8(dst); uint8x8_t mask = vcgt_u8(vdup_n_u8(sz), vcreate_u8(0x0706050403020100)); res = vbsl_u8(mask, res, current_dst); vst1_u8(dst, res); } } else if (strength == 2) { // Filter: {5, 6, 5}. const uint8_t *src = edge + 1; const uint8x8x3_t filter = { { vdup_n_u8(5), vdup_n_u8(6), vdup_n_u8(5) } }; while (sz >= 8) { uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint16x8_t accum = vmull_u8(s0, filter.val[0]); accum = vmlal_u8(accum, s1, filter.val[1]); accum = vmlal_u8(accum, s2, filter.val[2]); uint8x8_t res = vrshrn_n_u16(accum, 4); vst1_u8(dst, res); src += 8; dst += 8; sz -= 8; } if (sz > 0) { // Handle sz < 8 to avoid modifying out-of-bounds values. uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint16x8_t accum = vmull_u8(s0, filter.val[0]); accum = vmlal_u8(accum, s1, filter.val[1]); accum = vmlal_u8(accum, s2, filter.val[2]); uint8x8_t res = vrshrn_n_u16(accum, 4); // Mask off out-of-bounds indices. uint8x8_t current_dst = vld1_u8(dst); uint8x8_t mask = vcgt_u8(vdup_n_u8(sz), vcreate_u8(0x0706050403020100)); res = vbsl_u8(mask, res, current_dst); vst1_u8(dst, res); } } else { // Filter {2, 4, 4, 4, 2}. const uint8_t *src = edge; while (sz >= 8) { uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint8x8_t s3 = vld1_u8(src + 3); uint8x8_t s4 = vld1_u8(src + 4); // Make use of the identity: // (2*a + 4*b + 4*c + 4*d + 2*e) >> 4 == (a + ((b + c + d) << 1) + e) >> 3 uint16x8_t t0 = vaddl_u8(s0, s4); uint16x8_t t1 = vaddl_u8(s1, s2); t1 = vaddw_u8(t1, s3); t1 = vaddq_u16(t1, t1); uint16x8_t sum = vaddq_u16(t0, t1); uint8x8_t res = vrshrn_n_u16(sum, 3); vst1_u8(dst, res); src += 8; dst += 8; sz -= 8; } if (sz > 0) { // Handle sz < 8 to avoid modifying out-of-bounds values. uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint8x8_t s3 = vld1_u8(src + 3); uint8x8_t s4 = vld1_u8(src + 4); uint16x8_t t0 = vaddl_u8(s0, s4); uint16x8_t t1 = vaddl_u8(s1, s2); t1 = vaddw_u8(t1, s3); t1 = vaddq_u16(t1, t1); uint16x8_t sum = vaddq_u16(t0, t1); uint8x8_t res = vrshrn_n_u16(sum, 3); // Mask off out-of-bounds indices. uint8x8_t current_dst = vld1_u8(dst); uint8x8_t mask = vcgt_u8(vdup_n_u8(sz), vcreate_u8(0x0706050403020100)); res = vbsl_u8(mask, res, current_dst); vst1_u8(dst, res); } } } void av1_upsample_intra_edge_neon(uint8_t *p, int sz) { if (!sz) return; assert(sz <= MAX_UPSAMPLE_SZ); uint8_t edge[MAX_UPSAMPLE_SZ + 3]; const uint8_t *src = edge; // Copy p[-1..(sz-1)] and pad out both ends. edge[0] = p[-1]; edge[1] = p[-1]; memcpy(edge + 2, p, sz); edge[sz + 2] = p[sz - 1]; p[-2] = p[-1]; uint8_t *dst = p - 1; do { uint8x8_t s0 = vld1_u8(src); uint8x8_t s1 = vld1_u8(src + 1); uint8x8_t s2 = vld1_u8(src + 2); uint8x8_t s3 = vld1_u8(src + 3); int16x8_t t0 = vreinterpretq_s16_u16(vaddl_u8(s0, s3)); int16x8_t t1 = vreinterpretq_s16_u16(vaddl_u8(s1, s2)); t1 = vmulq_n_s16(t1, 9); t1 = vsubq_s16(t1, t0); uint8x8x2_t res = { { vqrshrun_n_s16(t1, 4), s2 } }; vst2_u8(dst, res); src += 8; dst += 16; sz -= 8; } while (sz > 0); }