/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_ #define AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_ #include #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" #include "config/av1_rtcd.h" #include "av1/common/warped_motion.h" #include "av1/common/scale.h" static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx, int alpha); static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx, int alpha); static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx); static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx); static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res, int sy); static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res, int sy, int gamma); static INLINE void vertical_filter_8x1_f1(const int16x8_t *src, int32x4_t *res_low, int32x4_t *res_high, int sy); static INLINE void vertical_filter_8x1_f8(const int16x8_t *src, int32x4_t *res_low, int32x4_t *res_high, int sy, int gamma); static INLINE void load_filters_4(int16x8_t out[], int offset, int stride) { out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >> WARPEDDIFF_PREC_BITS))); out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >> WARPEDDIFF_PREC_BITS))); out[2] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 2 * stride) >> WARPEDDIFF_PREC_BITS))); out[3] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 3 * stride) >> WARPEDDIFF_PREC_BITS))); } static INLINE void load_filters_8(int16x8_t out[], int offset, int stride) { out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >> WARPEDDIFF_PREC_BITS))); out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >> WARPEDDIFF_PREC_BITS))); out[2] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 2 * stride) >> WARPEDDIFF_PREC_BITS))); out[3] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 3 * stride) >> WARPEDDIFF_PREC_BITS))); out[4] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 4 * stride) >> WARPEDDIFF_PREC_BITS))); out[5] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 5 * stride) >> WARPEDDIFF_PREC_BITS))); out[6] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 6 * stride) >> WARPEDDIFF_PREC_BITS))); out[7] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 7 * stride) >> WARPEDDIFF_PREC_BITS))); } static INLINE int clamp_iy(int iy, int height) { return clamp(iy, 0, height - 1); } static INLINE void warp_affine_horizontal(const uint8_t *ref, int width, int height, int stride, int p_width, int p_height, int16_t alpha, int16_t beta, const int64_t x4, const int64_t y4, const int i, int16x8_t tmp[]) { const int bd = 8; const int reduce_bits_horiz = ROUND0_BITS; const int height_limit = AOMMIN(8, p_height - i) + 7; int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); sx4 += alpha * (-4) + beta * (-4) + (1 << (WARPEDDIFF_PREC_BITS - 1)) + (WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS); sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); if (ix4 <= -7) { for (int k = 0; k < height_limit; ++k) { int iy = clamp_iy(iy4 + k - 7, height); int16_t dup_val = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)) + ref[iy * stride] * (1 << (FILTER_BITS - reduce_bits_horiz)); tmp[k] = vdupq_n_s16(dup_val); } return; } else if (ix4 >= width + 6) { for (int k = 0; k < height_limit; ++k) { int iy = clamp_iy(iy4 + k - 7, height); int16_t dup_val = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)) + ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - reduce_bits_horiz)); tmp[k] = vdupq_n_s16(dup_val); } return; } static const uint8_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; const uint8x16_t indx = vld1q_u8(kIotaArr); const int out_of_boundary_left = -(ix4 - 6); const int out_of_boundary_right = (ix4 + 8) - width; #define APPLY_HORIZONTAL_SHIFT(fn, ...) \ do { \ if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \ for (int k = 0; k < height_limit; ++k) { \ const int iy = clamp_iy(iy4 + k - 7, height); \ const uint8_t *src = ref + iy * stride + ix4 - 7; \ uint8x16_t src_1 = vld1q_u8(src); \ \ if (out_of_boundary_left >= 0) { \ int limit = out_of_boundary_left + 1; \ uint8x16_t cmp_vec = vdupq_n_u8(out_of_boundary_left); \ uint8x16_t vec_dup = vdupq_n_u8(*(src + limit)); \ uint8x16_t mask_val = vcleq_u8(indx, cmp_vec); \ src_1 = vbslq_u8(mask_val, vec_dup, src_1); \ } \ if (out_of_boundary_right >= 0) { \ int limit = 15 - (out_of_boundary_right + 1); \ uint8x16_t cmp_vec = vdupq_n_u8(15 - out_of_boundary_right); \ uint8x16_t vec_dup = vdupq_n_u8(*(src + limit)); \ uint8x16_t mask_val = vcgeq_u8(indx, cmp_vec); \ src_1 = vbslq_u8(mask_val, vec_dup, src_1); \ } \ tmp[k] = (fn)(src_1, __VA_ARGS__); \ } \ } else { \ for (int k = 0; k < height_limit; ++k) { \ const int iy = clamp_iy(iy4 + k - 7, height); \ const uint8_t *src = ref + iy * stride + ix4 - 7; \ uint8x16_t src_1 = vld1q_u8(src); \ tmp[k] = (fn)(src_1, __VA_ARGS__); \ } \ } \ } while (0) if (p_width == 4) { if (beta == 0) { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1, sx4); } else { APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, sx4, alpha); } } else { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1, (sx4 + beta * (k - 3))); } else { APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, (sx4 + beta * (k - 3)), alpha); } } } else { if (beta == 0) { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1, sx4); } else { APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, sx4, alpha); } } else { if (alpha == 0) { APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1, (sx4 + beta * (k - 3))); } else { APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, (sx4 + beta * (k - 3)), alpha); } } } } static INLINE void warp_affine_vertical( uint8_t *pred, int p_width, int p_height, int p_stride, int is_compound, uint16_t *dst, int dst_stride, int do_average, int use_dist_wtd_comp_avg, int16_t gamma, int16_t delta, const int64_t y4, const int i, const int j, int16x8_t tmp[], const int fwd, const int bwd) { const int bd = 8; const int reduce_bits_horiz = ROUND0_BITS; const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; int add_const_vert; if (is_compound) { add_const_vert = (1 << offset_bits_vert) + (1 << (COMPOUND_ROUND1_BITS - 1)); } else { add_const_vert = (1 << offset_bits_vert) + (1 << (2 * FILTER_BITS - ROUND0_BITS - 1)); } const int sub_constant = (1 << (bd - 1)) + (1 << bd); const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; const int res_sub_const = (1 << (2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS - 1)) - (1 << (offset_bits - COMPOUND_ROUND1_BITS)) - (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); sy4 += gamma * (-4) + delta * (-4) + (1 << (WARPEDDIFF_PREC_BITS - 1)) + (WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS); sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); if (p_width > 4) { for (int k = -4; k < AOMMIN(4, p_height - i - 4); ++k) { int sy = sy4 + delta * (k + 4); const int16x8_t *v_src = tmp + (k + 4); int32x4_t res_lo, res_hi; if (gamma == 0) { vertical_filter_8x1_f1(v_src, &res_lo, &res_hi, sy); } else { vertical_filter_8x1_f8(v_src, &res_lo, &res_hi, sy, gamma); } res_lo = vaddq_s32(res_lo, vdupq_n_s32(add_const_vert)); res_hi = vaddq_s32(res_hi, vdupq_n_s32(add_const_vert)); if (is_compound) { uint16_t *const p = (uint16_t *)&dst[(i + k + 4) * dst_stride + j]; int16x8_t res_s16 = vcombine_s16(vshrn_n_s32(res_lo, COMPOUND_ROUND1_BITS), vshrn_n_s32(res_hi, COMPOUND_ROUND1_BITS)); if (do_average) { int16x8_t tmp16 = vreinterpretq_s16_u16(vld1q_u16(p)); if (use_dist_wtd_comp_avg) { int32x4_t tmp32_lo = vmull_n_s16(vget_low_s16(tmp16), fwd); int32x4_t tmp32_hi = vmull_n_s16(vget_high_s16(tmp16), fwd); tmp32_lo = vmlal_n_s16(tmp32_lo, vget_low_s16(res_s16), bwd); tmp32_hi = vmlal_n_s16(tmp32_hi, vget_high_s16(res_s16), bwd); tmp16 = vcombine_s16(vshrn_n_s32(tmp32_lo, DIST_PRECISION_BITS), vshrn_n_s32(tmp32_hi, DIST_PRECISION_BITS)); } else { tmp16 = vhaddq_s16(tmp16, res_s16); } int16x8_t res = vaddq_s16(tmp16, vdupq_n_s16(res_sub_const)); uint8x8_t res8 = vqshrun_n_s16( res, 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS); vst1_u8(&pred[(i + k + 4) * p_stride + j], res8); } else { vst1q_u16(p, vreinterpretq_u16_s16(res_s16)); } } else { int16x8_t res16 = vcombine_s16(vshrn_n_s32(res_lo, 2 * FILTER_BITS - ROUND0_BITS), vshrn_n_s32(res_hi, 2 * FILTER_BITS - ROUND0_BITS)); res16 = vsubq_s16(res16, vdupq_n_s16(sub_constant)); uint8_t *const p = (uint8_t *)&pred[(i + k + 4) * p_stride + j]; vst1_u8(p, vqmovun_s16(res16)); } } } else { // p_width == 4 for (int k = -4; k < AOMMIN(4, p_height - i - 4); ++k) { int sy = sy4 + delta * (k + 4); const int16x8_t *v_src = tmp + (k + 4); int32x4_t res_lo; if (gamma == 0) { vertical_filter_4x1_f1(v_src, &res_lo, sy); } else { vertical_filter_4x1_f4(v_src, &res_lo, sy, gamma); } res_lo = vaddq_s32(res_lo, vdupq_n_s32(add_const_vert)); if (is_compound) { uint16_t *const p = (uint16_t *)&dst[(i + k + 4) * dst_stride + j]; int16x4_t res_lo_s16 = vshrn_n_s32(res_lo, COMPOUND_ROUND1_BITS); if (do_average) { uint8_t *const dst8 = &pred[(i + k + 4) * p_stride + j]; int16x4_t tmp16_lo = vreinterpret_s16_u16(vld1_u16(p)); if (use_dist_wtd_comp_avg) { int32x4_t tmp32_lo = vmull_n_s16(tmp16_lo, fwd); tmp32_lo = vmlal_n_s16(tmp32_lo, res_lo_s16, bwd); tmp16_lo = vshrn_n_s32(tmp32_lo, DIST_PRECISION_BITS); } else { tmp16_lo = vhadd_s16(tmp16_lo, res_lo_s16); } int16x4_t res = vadd_s16(tmp16_lo, vdup_n_s16(res_sub_const)); uint8x8_t res8 = vqshrun_n_s16( vcombine_s16(res, vdup_n_s16(0)), 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS); vst1_lane_u32((uint32_t *)dst8, vreinterpret_u32_u8(res8), 0); } else { uint16x4_t res_u16_low = vreinterpret_u16_s16(res_lo_s16); vst1_u16(p, res_u16_low); } } else { int16x4_t res16 = vshrn_n_s32(res_lo, 2 * FILTER_BITS - ROUND0_BITS); res16 = vsub_s16(res16, vdup_n_s16(sub_constant)); uint8_t *const p = (uint8_t *)&pred[(i + k + 4) * p_stride + j]; uint8x8_t val = vqmovun_s16(vcombine_s16(res16, vdup_n_s16(0))); vst1_lane_u32((uint32_t *)p, vreinterpret_u32_u8(val), 0); } } } } static INLINE void av1_warp_affine_common( const int32_t *mat, const uint8_t *ref, int width, int height, int stride, uint8_t *pred, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma, int16_t delta) { const int w0 = conv_params->fwd_offset; const int w1 = conv_params->bck_offset; const int is_compound = conv_params->is_compound; uint16_t *const dst = conv_params->dst; const int dst_stride = conv_params->dst_stride; const int do_average = conv_params->do_average; const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; assert(IMPLIES(is_compound, dst != NULL)); assert(IMPLIES(do_average, is_compound)); for (int i = 0; i < p_height; i += 8) { for (int j = 0; j < p_width; j += 8) { const int32_t src_x = (p_col + j + 4) << subsampling_x; const int32_t src_y = (p_row + i + 4) << subsampling_y; const int64_t dst_x = (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; const int64_t dst_y = (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; const int64_t x4 = dst_x >> subsampling_x; const int64_t y4 = dst_y >> subsampling_y; int16x8_t tmp[15]; warp_affine_horizontal(ref, width, height, stride, p_width, p_height, alpha, beta, x4, y4, i, tmp); warp_affine_vertical(pred, p_width, p_height, p_stride, is_compound, dst, dst_stride, do_average, use_dist_wtd_comp_avg, gamma, delta, y4, i, j, tmp, w0, w1); } } } #endif // AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_