/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/reconinter.h" #include "av1/common/seg_common.h" enum { USE_SINGLE, USE_DUAL, USE_QUAD, } UENUM1BYTE(USE_FILTER_TYPE); static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } }; static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { { 0, 1 }, { 2, 2 }, { 3, 3 } }; static const int mode_lf_lut[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) }; static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int lvl; // For each possible value for the loop filter fill out limits for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { // Set loop filter parameters that control sharpness. int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), SIMD_WIDTH); } } uint8_t av1_get_filter_level(const AV1_COMMON *cm, const loop_filter_info_n *lfi_n, const int dir_idx, int plane, const MB_MODE_INFO *mbmi) { const int segment_id = mbmi->segment_id; if (cm->delta_q_info.delta_lf_present_flag) { int8_t delta_lf; if (cm->delta_q_info.delta_lf_multi) { const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; delta_lf = mbmi->delta_lf[delta_lf_idx]; } else { delta_lf = mbmi->delta_lf_from_base; } int base_level; if (plane == 0) base_level = cm->lf.filter_level[dir_idx]; else if (plane == 1) base_level = cm->lf.filter_level_u; else base_level = cm->lf.filter_level_v; int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER); assert(plane >= 0 && plane <= 2); const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); } if (cm->lf.mode_ref_delta_enabled) { const int scale = 1 << (lvl_seg >> 5); lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; if (mbmi->ref_frame[0] > INTRA_FRAME) lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); } return lvl_seg; } else { return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]] [mode_lf_lut[mbmi->mode]]; } } void av1_loop_filter_init(AV1_COMMON *cm) { assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); loop_filter_info_n *lfi = &cm->lf_info; struct loopfilter *lf = &cm->lf; int lvl; // init limits for given sharpness update_sharpness(lfi, lf->sharpness_level); // init hev threshold const vectors for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); } // Update the loop filter for the current frame. // This should be called before loop_filter_rows(), // av1_loop_filter_frame() calls this function directly. void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start, int plane_end) { int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE]; int plane; int seg_id; // n_shift is the multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 loop_filter_info_n *const lfi = &cm->lf_info; struct loopfilter *const lf = &cm->lf; const struct segmentation *const seg = &cm->seg; // update sharpness limits update_sharpness(lfi, lf->sharpness_level); filt_lvl[0] = cm->lf.filter_level[0]; filt_lvl[1] = cm->lf.filter_level_u; filt_lvl[2] = cm->lf.filter_level_v; filt_lvl_r[0] = cm->lf.filter_level[1]; filt_lvl_r[1] = cm->lf.filter_level_u; filt_lvl_r[2] = cm->lf.filter_level_v; assert(plane_start >= AOM_PLANE_Y); assert(plane_end <= MAX_MB_PLANE); for (plane = plane_start; plane < plane_end; plane++) { if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0]) break; else if (plane == 1 && !filt_lvl[1]) continue; else if (plane == 2 && !filt_lvl[2]) continue; for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { for (int dir = 0; dir < 2; ++dir) { int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane]; const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); } if (!lf->mode_ref_delta_enabled) { // we could get rid of this if we assume that deltas are set to // zero when not in use; encoder always uses deltas memset(lfi->lvl[plane][seg_id][dir], lvl_seg, sizeof(lfi->lvl[plane][seg_id][dir])); } else { int ref, mode; const int scale = 1 << (lvl_seg >> 5); const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) { for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + lf->mode_deltas[mode] * scale; lfi->lvl[plane][seg_id][dir][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); } } } } } } } static AOM_FORCE_INLINE TX_SIZE get_transform_size(const MACROBLOCKD *const xd, const MB_MODE_INFO *const mbmi, const int mi_row, const int mi_col, const int plane, const int ss_x, const int ss_y) { assert(mbmi != NULL); if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4; TX_SIZE tx_size = (plane == AOM_PLANE_Y) ? mbmi->tx_size : av1_get_max_uv_txsize(mbmi->bsize, ss_x, ss_y); assert(tx_size < TX_SIZES_ALL); if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip_txfm) { const BLOCK_SIZE sb_type = mbmi->bsize; const int blk_row = mi_row & (mi_size_high[sb_type] - 1); const int blk_col = mi_col & (mi_size_wide[sb_type] - 1); const TX_SIZE mb_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)]; assert(mb_tx_size < TX_SIZES_ALL); tx_size = mb_tx_size; } return tx_size; } static const int tx_dim_to_filter_length[TX_SIZES] = { 4, 8, 14, 14, 14 }; // Return TX_SIZE from get_transform_size(), so it is plane and direction // aware static TX_SIZE set_lpf_parameters( AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y, const int plane, const struct macroblockd_plane *const plane_ptr) { // reset to initial values params->filter_length = 0; // no deblocking is required const uint32_t width = plane_ptr->dst.width; const uint32_t height = plane_ptr->dst.height; if ((width <= x) || (height <= y)) { // just return the smallest transform unit size return TX_4X4; } const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; // for sub8x8 block, chroma prediction mode is obtained from the bottom/right // mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row // and mi_col should map to the bottom/right mi structure, i.e, both mi_row // and mi_col should be odd number for chroma plane. const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2); const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2); MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col; const MB_MODE_INFO *mbmi = mi[0]; // If current mbmi is not correctly setup, return an invalid value to stop // filtering. One example is that if this tile is not coded, then its mbmi // it not set up. if (mbmi == NULL) return TX_INVALID; const TX_SIZE ts = get_transform_size(xd, mi[0], mi_row, mi_col, plane, scale_horz, scale_vert); { const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); const uint32_t transform_masks = edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; const int32_t tu_edge = (coord & transform_masks) ? (0) : (1); if (!tu_edge) return ts; // prepare outer edge parameters. deblock the edge if it's an edge of a TU { const uint32_t curr_level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); const int curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi); uint32_t level = curr_level; if (coord) { { const MB_MODE_INFO *const mi_prev = *(mi - mode_step); if (mi_prev == NULL) return TX_INVALID; const int pv_row = (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); const int pv_col = (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); const TX_SIZE pv_ts = get_transform_size( xd, mi_prev, pv_row, pv_col, plane, scale_horz, scale_vert); const uint32_t pv_lvl = av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); const int pv_skip_txfm = mi_prev->skip_txfm && is_inter_block(mi_prev); const BLOCK_SIZE bsize = get_plane_block_size( mbmi->bsize, plane_ptr->subsampling_x, plane_ptr->subsampling_y); assert(bsize < BLOCK_SIZES_ALL); const int prediction_masks = edge_dir == VERT_EDGE ? block_size_wide[bsize] - 1 : block_size_high[bsize] - 1; const int32_t pu_edge = !(coord & prediction_masks); // if the current and the previous blocks are skipped, // deblock the edge if the edge belongs to a PU's edge only. if ((curr_level || pv_lvl) && (!pv_skip_txfm || !curr_skipped || pu_edge)) { const int dim = (VERT_EDGE == edge_dir) ? AOMMIN(tx_size_wide_unit_log2[ts], tx_size_wide_unit_log2[pv_ts]) : AOMMIN(tx_size_high_unit_log2[ts], tx_size_high_unit_log2[pv_ts]); if (plane) { params->filter_length = (dim == 0) ? 4 : 6; } else { assert(dim < TX_SIZES); assert(dim >= 0); params->filter_length = tx_dim_to_filter_length[dim]; } // update the level if the current block is skipped, // but the previous one is not level = (curr_level) ? (curr_level) : (pv_lvl); } } } // prepare common parameters if (params->filter_length) { const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; params->lfthr = limits; } } } return ts; } static const uint32_t vert_filter_length_luma[TX_SIZES_ALL][TX_SIZES_ALL] = { // TX_4X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X8 { 4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, }, // TX_16X16 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_32X32 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_64X64 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_4X8 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X4 { 4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, }, // TX_8X16 { 4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, }, // TX_16X8 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_16X32 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_32X16 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_32X64 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_64X32 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_4X16 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_16X4 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_8X32 { 4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, }, // TX_32X8 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_16X64 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, // TX_64X16 { 4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14, }, }; static const uint32_t horz_filter_length_luma[TX_SIZES_ALL][TX_SIZES_ALL] = { // TX_4X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X8 { 4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, }, // TX_16X16 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_32X32 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_64X64 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_4X8 { 4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, }, // TX_8X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X16 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_16X8 { 4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, }, // TX_16X32 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_32X16 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_32X64 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_64X32 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_4X16 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_16X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X32 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_32X8 { 4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, }, // TX_16X64 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, // TX_64X16 { 4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, }, }; static const uint32_t vert_filter_length_chroma[TX_SIZES_ALL][TX_SIZES_ALL] = { // TX_4X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X8 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_16X16 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_32X32 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_64X64 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_4X8 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X4 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_8X16 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_16X8 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_16X32 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_32X16 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_32X64 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_64X32 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_4X16 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_16X4 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_8X32 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_32X8 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_16X64 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, // TX_64X16 { 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, }, }; static const uint32_t horz_filter_length_chroma[TX_SIZES_ALL][TX_SIZES_ALL] = { // TX_4X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X8 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_16X16 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_32X32 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_64X64 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_4X8 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_8X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X16 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_16X8 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_16X32 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_32X16 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_32X64 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_64X32 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_4X16 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_16X4 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, // TX_8X32 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_32X8 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_16X64 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, // TX_64X16 { 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, }, }; static AOM_FORCE_INLINE void set_one_param_for_line_luma( AV1_DEBLOCKING_PARAMETERS *const params, TX_SIZE *tx_size, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row, const struct macroblockd_plane *const plane_ptr, int coord, bool is_first_block, TX_SIZE prev_tx_size, const ptrdiff_t mode_step, int *min_dim) { (void)plane_ptr; assert(mi_col << MI_SIZE_LOG2 < (uint32_t)plane_ptr->dst.width && mi_row << MI_SIZE_LOG2 < (uint32_t)plane_ptr->dst.height); const int is_vert = edge_dir == VERT_EDGE; // reset to initial values params->filter_length = 0; MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col; const MB_MODE_INFO *mbmi = mi[0]; assert(mbmi); const TX_SIZE ts = get_transform_size(xd, mi[0], mi_row, mi_col, AOM_PLANE_Y, 0, 0); #ifndef NDEBUG const uint32_t transform_masks = is_vert ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; const int32_t tu_edge = ((coord * MI_SIZE) & transform_masks) ? (0) : (1); assert(tu_edge); #endif // NDEBUG // If we are not the first block, then coord is always true, so // !is_first_block is technically redundant. But we are keeping it here so the // compiler can compile away this conditional if we pass in is_first_block := // false bool curr_skipped = false; if (!is_first_block || coord) { const MB_MODE_INFO *const mi_prev = *(mi - mode_step); const int pv_row = is_vert ? mi_row : (mi_row - 1); const int pv_col = is_vert ? (mi_col - 1) : mi_col; const TX_SIZE pv_ts = is_first_block ? get_transform_size(xd, mi_prev, pv_row, pv_col, AOM_PLANE_Y, 0, 0) : prev_tx_size; if (is_first_block) { *min_dim = is_vert ? block_size_high[mi_prev->bsize] : block_size_wide[mi_prev->bsize]; } assert(mi_prev); uint8_t level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_Y, mbmi); if (!level) { level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_Y, mi_prev); } const int32_t pu_edge = mi_prev != mbmi; // The quad loop filter assumes that all the transform blocks within a // 8x16/16x8/16x16 prediction block are of the same size. assert(IMPLIES( !pu_edge && (mbmi->bsize >= BLOCK_8X16 && mbmi->bsize <= BLOCK_16X16), pv_ts == ts)); if (!pu_edge) { curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi); } if ((pu_edge || !curr_skipped) && level) { params->filter_length = is_vert ? vert_filter_length_luma[ts][pv_ts] : horz_filter_length_luma[ts][pv_ts]; // prepare common parameters const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; params->lfthr = limits; } } const int block_dim = is_vert ? block_size_high[mbmi->bsize] : block_size_wide[mbmi->bsize]; *min_dim = AOMMIN(*min_dim, block_dim); *tx_size = ts; } // Similar to set_lpf_parameters, but does so one row/col at a time to reduce // calls to \ref get_transform_size and \ref av1_get_filter_level static AOM_FORCE_INLINE void set_lpf_parameters_for_line_luma( AV1_DEBLOCKING_PARAMETERS *const params_buf, TX_SIZE *tx_buf, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row, const struct macroblockd_plane *const plane_ptr, const uint32_t mi_range, const ptrdiff_t mode_step, int *min_dim) { const int is_vert = edge_dir == VERT_EDGE; AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; uint32_t *counter_ptr = is_vert ? &mi_col : &mi_row; TX_SIZE prev_tx_size = TX_INVALID; // Unroll the first iteration of the loop set_one_param_for_line_luma(params, tx_size, cm, xd, edge_dir, mi_col, mi_row, plane_ptr, *counter_ptr, true, prev_tx_size, mode_step, min_dim); // Advance int advance_units = is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size]; prev_tx_size = *tx_size; *counter_ptr += advance_units; params += advance_units; tx_size += advance_units; while (*counter_ptr < mi_range) { set_one_param_for_line_luma(params, tx_size, cm, xd, edge_dir, mi_col, mi_row, plane_ptr, *counter_ptr, false, prev_tx_size, mode_step, min_dim); // Advance advance_units = is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size]; prev_tx_size = *tx_size; *counter_ptr += advance_units; params += advance_units; tx_size += advance_units; } } static AOM_FORCE_INLINE void set_one_param_for_line_chroma( AV1_DEBLOCKING_PARAMETERS *const params, TX_SIZE *tx_size, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row, int coord, bool is_first_block, TX_SIZE prev_tx_size, const struct macroblockd_plane *const plane_ptr, const ptrdiff_t mode_step, const int scale_horz, const int scale_vert, int *min_dim, int plane, int joint_filter_chroma) { const int is_vert = edge_dir == VERT_EDGE; (void)plane_ptr; assert((mi_col << MI_SIZE_LOG2) < (uint32_t)(plane_ptr->dst.width << scale_horz) && (mi_row << MI_SIZE_LOG2) < (uint32_t)(plane_ptr->dst.height << scale_vert)); // reset to initial values params->filter_length = 0; // for sub8x8 block, chroma prediction mode is obtained from the // bottom/right mi structure of the co-located 8x8 luma block. so for chroma // plane, mi_row and mi_col should map to the bottom/right mi structure, // i.e, both mi_row and mi_col should be odd number for chroma plane. mi_row |= scale_vert; mi_col |= scale_horz; MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col; const MB_MODE_INFO *mbmi = mi[0]; assert(mbmi); const TX_SIZE ts = get_transform_size(xd, mi[0], mi_row, mi_col, plane, scale_horz, scale_vert); *tx_size = ts; #ifndef NDEBUG const uint32_t transform_masks = is_vert ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; const int32_t tu_edge = ((coord * MI_SIZE) & transform_masks) ? (0) : (1); assert(tu_edge); #endif // NDEBUG // If we are not the first block, then coord is always true, so // !is_first_block is technically redundant. But we are keeping it here so the // compiler can compile away this conditional if we pass in is_first_block := // false bool curr_skipped = false; if (!is_first_block || coord) { const MB_MODE_INFO *const mi_prev = *(mi - mode_step); assert(mi_prev); const int pv_row = is_vert ? (mi_row) : (mi_row - (1 << scale_vert)); const int pv_col = is_vert ? (mi_col - (1 << scale_horz)) : (mi_col); const TX_SIZE pv_ts = is_first_block ? get_transform_size(xd, mi_prev, pv_row, pv_col, plane, scale_horz, scale_vert) : prev_tx_size; if (is_first_block) { *min_dim = is_vert ? tx_size_high[pv_ts] : tx_size_wide[pv_ts]; } uint8_t level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); if (!level) { level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); } #ifndef NDEBUG if (joint_filter_chroma) { uint8_t v_level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_V, mbmi); if (!v_level) { v_level = av1_get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_V, mi_prev); } assert(level == v_level); } #else (void)joint_filter_chroma; #endif // NDEBUG const int32_t pu_edge = mi_prev != mbmi; if (!pu_edge) { curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi); } // For realtime mode, u and v have the same level if ((!curr_skipped || pu_edge) && level) { params->filter_length = is_vert ? vert_filter_length_chroma[ts][pv_ts] : horz_filter_length_chroma[ts][pv_ts]; const loop_filter_thresh *const limits = cm->lf_info.lfthr; params->lfthr = limits + level; } } const int tx_dim = is_vert ? tx_size_high[ts] : tx_size_wide[ts]; *min_dim = AOMMIN(*min_dim, tx_dim); } static AOM_FORCE_INLINE void set_lpf_parameters_for_line_chroma( AV1_DEBLOCKING_PARAMETERS *const params_buf, TX_SIZE *tx_buf, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row, const struct macroblockd_plane *const plane_ptr, const uint32_t mi_range, const ptrdiff_t mode_step, const int scale_horz, const int scale_vert, int *min_dim, int plane, int joint_filter_chroma) { const int is_vert = edge_dir == VERT_EDGE; AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; uint32_t *counter_ptr = is_vert ? &mi_col : &mi_row; const uint32_t scale = is_vert ? scale_horz : scale_vert; TX_SIZE prev_tx_size = TX_INVALID; // Unroll the first iteration of the loop set_one_param_for_line_chroma(params, tx_size, cm, xd, edge_dir, mi_col, mi_row, *counter_ptr, true, prev_tx_size, plane_ptr, mode_step, scale_horz, scale_vert, min_dim, plane, joint_filter_chroma); // Advance int advance_units = is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size]; prev_tx_size = *tx_size; *counter_ptr += advance_units << scale; params += advance_units; tx_size += advance_units; while (*counter_ptr < mi_range) { set_one_param_for_line_chroma(params, tx_size, cm, xd, edge_dir, mi_col, mi_row, *counter_ptr, false, prev_tx_size, plane_ptr, mode_step, scale_horz, scale_vert, min_dim, plane, joint_filter_chroma); // Advance advance_units = is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size]; prev_tx_size = *tx_size; *counter_ptr += advance_units << scale; params += advance_units; tx_size += advance_units; } } static AOM_INLINE void filter_vert(uint8_t *dst, int dst_stride, const AV1_DEBLOCKING_PARAMETERS *params, const SequenceHeader *seq_params, USE_FILTER_TYPE use_filter_type) { const loop_filter_thresh *limits = params->lfthr; #if CONFIG_AV1_HIGHBITDEPTH const int use_highbitdepth = seq_params->use_highbitdepth; const aom_bit_depth_t bit_depth = seq_params->bit_depth; if (use_highbitdepth) { uint16_t *dst_shortptr = CONVERT_TO_SHORTPTR(dst); if (use_filter_type == USE_QUAD) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4_dual( dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6_dual( dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_vertical_8_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_8_dual( dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_vertical_14_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_14_dual( dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_vertical_8_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_vertical_14_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_vertical_8(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_vertical_14(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } return; } #endif // CONFIG_AV1_HIGHBITDEPTH if (use_filter_type == USE_QUAD) { // Only one set of loop filter parameters (mblim, lim and hev_thr) is // passed as argument to quad loop filter because quad loop filter is // called for those cases where all the 4 set of loop filter parameters // are equal. switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_vertical_8_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_vertical_14_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_vertical_8_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_vertical_14_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_vertical_8(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_vertical_14(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } #if !CONFIG_AV1_HIGHBITDEPTH (void)seq_params; #endif // !CONFIG_AV1_HIGHBITDEPTH } static AOM_INLINE void filter_vert_chroma( uint8_t *u_dst, uint8_t *v_dst, int dst_stride, const AV1_DEBLOCKING_PARAMETERS *params, const SequenceHeader *seq_params, USE_FILTER_TYPE use_filter_type) { const loop_filter_thresh *u_limits = params->lfthr; const loop_filter_thresh *v_limits = params->lfthr; #if CONFIG_AV1_HIGHBITDEPTH const int use_highbitdepth = seq_params->use_highbitdepth; const aom_bit_depth_t bit_depth = seq_params->bit_depth; if (use_highbitdepth) { uint16_t *u_dst_shortptr = CONVERT_TO_SHORTPTR(u_dst); uint16_t *v_dst_shortptr = CONVERT_TO_SHORTPTR(v_dst); if (use_filter_type == USE_QUAD) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4_dual( u_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4_dual( v_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6_dual( u_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6_dual( v_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_vertical_4(u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_4(v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_vertical_6(u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_vertical_6(v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); break; // no filtering default: break; } } return; } #endif // CONFIG_AV1_HIGHBITDEPTH if (use_filter_type == USE_QUAD) { // Only one set of loop filter parameters (mblim, lim and hev_thr) is // passed as argument to quad loop filter because quad loop filter is // called for those cases where all the 4 set of loop filter parameters // are equal. switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4_quad(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_4_quad(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6_quad(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_6_quad(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4_dual(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_4_dual(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6_dual(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_6_dual(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_vertical_4(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_4(v_dst, dst_stride, v_limits->mblim, v_limits->lim, u_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_vertical_6(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_vertical_6(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); break; // no filtering default: break; } } #if !CONFIG_AV1_HIGHBITDEPTH (void)seq_params; #endif // !CONFIG_AV1_HIGHBITDEPTH } void av1_filter_block_plane_vert(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const int plane, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col) { const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; const int plane_mi_rows = ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, scale_vert); const int plane_mi_cols = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, scale_horz); const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)), (MAX_MIB_SIZE >> scale_vert)); const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)), (MAX_MIB_SIZE >> scale_horz)); for (int y = 0; y < y_range; y++) { uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; for (int x = 0; x < x_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will filter the vertical edge aligned with a 8x8 block. // If 4x4 transform is used, it will then filter the internal edge // aligned with a 4x4 block const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; uint32_t advance_units; TX_SIZE tx_size; AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); tx_size = set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, VERT_EDGE, curr_x, curr_y, plane, plane_ptr); if (tx_size == TX_INVALID) { params.filter_length = 0; tx_size = TX_4X4; } filter_vert(p, dst_stride, ¶ms, cm->seq_params, USE_SINGLE); // advance the destination pointer advance_units = tx_size_wide_unit[tx_size]; x += advance_units; p += advance_units * MI_SIZE; } } } void av1_filter_block_plane_vert_opt( const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, int num_mis_in_lpf_unit_height_log2) { uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; // Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned // to MI_SIZE. const int plane_mi_cols = CEIL_POWER_OF_TWO(plane_ptr->dst.width, MI_SIZE_LOG2); const int plane_mi_rows = CEIL_POWER_OF_TWO(plane_ptr->dst.height, MI_SIZE_LOG2); // Whenever 'pipeline_lpf_mt_with_enc' is enabled, height of the unit to // filter (i.e., y_range) is calculated based on the size of the superblock // used. const int y_range = AOMMIN((int)(plane_mi_rows - mi_row), (1 << num_mis_in_lpf_unit_height_log2)); // Width of the unit to filter (i.e., x_range) should always be calculated // based on maximum superblock size as this function is called for mi_col = 0, // MAX_MIB_SIZE, 2 * MAX_MIB_SIZE etc. const int x_range = AOMMIN((int)(plane_mi_cols - mi_col), MAX_MIB_SIZE); const ptrdiff_t mode_step = 1; for (int y = 0; y < y_range; y++) { const uint32_t curr_y = mi_row + y; const uint32_t x_start = mi_col; const uint32_t x_end = mi_col + x_range; int min_block_height = block_size_high[BLOCK_128X128]; set_lpf_parameters_for_line_luma(params_buf, tx_buf, cm, xd, VERT_EDGE, x_start, curr_y, plane_ptr, x_end, mode_step, &min_block_height); AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; USE_FILTER_TYPE use_filter_type = USE_SINGLE; uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; if ((y & 3) == 0 && (y + 3) < y_range && min_block_height >= 16) { // If we are on a row which is a multiple of 4, and the minimum height is // 16 pixels, then the current and right 3 cols must contain the same // prediction block. This is because dim 16 can only happen every unit of // 4 mi's. use_filter_type = USE_QUAD; y += 3; } else if ((y + 1) < y_range && min_block_height >= 8) { use_filter_type = USE_DUAL; y += 1; } for (int x = 0; x < x_range;) { if (*tx_size == TX_INVALID) { params->filter_length = 0; *tx_size = TX_4X4; } filter_vert(p, dst_stride, params, cm->seq_params, use_filter_type); // advance the destination pointer const uint32_t advance_units = tx_size_wide_unit[*tx_size]; x += advance_units; p += advance_units * MI_SIZE; params += advance_units; tx_size += advance_units; } } } void av1_filter_block_plane_vert_opt_chroma( const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, int plane, bool joint_filter_chroma, int num_mis_in_lpf_unit_height_log2) { const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; const int dst_stride = plane_ptr->dst.stride; // Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned // to MI_SIZE. const int mi_cols = ((plane_ptr->dst.width << scale_horz) + MI_SIZE - 1) >> MI_SIZE_LOG2; const int mi_rows = ((plane_ptr->dst.height << scale_vert) + MI_SIZE - 1) >> MI_SIZE_LOG2; const int plane_mi_rows = ROUND_POWER_OF_TWO(mi_rows, scale_vert); const int plane_mi_cols = ROUND_POWER_OF_TWO(mi_cols, scale_horz); const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)), ((1 << num_mis_in_lpf_unit_height_log2) >> scale_vert)); const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)), (MAX_MIB_SIZE >> scale_horz)); const ptrdiff_t mode_step = (ptrdiff_t)1 << scale_horz; for (int y = 0; y < y_range; y++) { const uint32_t curr_y = mi_row + (y << scale_vert); const uint32_t x_start = mi_col + (0 << scale_horz); const uint32_t x_end = mi_col + (x_range << scale_horz); int min_height = tx_size_high[TX_64X64]; set_lpf_parameters_for_line_chroma(params_buf, tx_buf, cm, xd, VERT_EDGE, x_start, curr_y, plane_ptr, x_end, mode_step, scale_horz, scale_vert, &min_height, plane, joint_filter_chroma); AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; int use_filter_type = USE_SINGLE; int y_inc = 0; if ((y & 3) == 0 && (y + 3) < y_range && min_height >= 16) { // If we are on a row which is a multiple of 4, and the minimum height is // 16 pixels, then the current and below 3 rows must contain the same tx // block. This is because dim 16 can only happen every unit of 4 mi's. use_filter_type = USE_QUAD; y_inc = 3; } else if (y % 2 == 0 && (y + 1) < y_range && min_height >= 8) { // If we are on an even row, and the minimum height is 8 pixels, then the // current and below rows must contain the same tx block. This is because // dim 4 can only happen every unit of 2**0, and 8 every unit of 2**1, // etc. use_filter_type = USE_DUAL; y_inc = 1; } for (int x = 0; x < x_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will filter the vertical edge aligned with a 8x8 block. // If 4x4 transform is used, it will then filter the internal edge // aligned with a 4x4 block if (*tx_size == TX_INVALID) { params->filter_length = 0; *tx_size = TX_4X4; } const int offset = y * MI_SIZE * dst_stride + x * MI_SIZE; if (joint_filter_chroma) { uint8_t *u_dst = plane_ptr[0].dst.buf + offset; uint8_t *v_dst = plane_ptr[1].dst.buf + offset; filter_vert_chroma(u_dst, v_dst, dst_stride, params, cm->seq_params, use_filter_type); } else { uint8_t *dst_ptr = plane_ptr->dst.buf + offset; filter_vert(dst_ptr, dst_stride, params, cm->seq_params, use_filter_type); } // advance the destination pointer const uint32_t advance_units = tx_size_wide_unit[*tx_size]; x += advance_units; params += advance_units; tx_size += advance_units; } y += y_inc; } } static AOM_INLINE void filter_horz(uint8_t *dst, int dst_stride, const AV1_DEBLOCKING_PARAMETERS *params, const SequenceHeader *seq_params, USE_FILTER_TYPE use_filter_type) { const loop_filter_thresh *limits = params->lfthr; #if CONFIG_AV1_HIGHBITDEPTH const int use_highbitdepth = seq_params->use_highbitdepth; const aom_bit_depth_t bit_depth = seq_params->bit_depth; if (use_highbitdepth) { uint16_t *dst_shortptr = CONVERT_TO_SHORTPTR(dst); if (use_filter_type == USE_QUAD) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4_dual( dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6_dual( dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_horizontal_8_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_8_dual( dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_horizontal_14_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_14_dual( dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_horizontal_8_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_horizontal_14_dual( dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 8-tap filtering case 8: aom_highbd_lpf_horizontal_8(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // apply 14-tap filtering case 14: aom_highbd_lpf_horizontal_14(dst_shortptr, dst_stride, limits->mblim, limits->lim, limits->hev_thr, bit_depth); break; // no filtering default: break; } } return; } #endif // CONFIG_AV1_HIGHBITDEPTH if (use_filter_type == USE_QUAD) { // Only one set of loop filter parameters (mblim, lim and hev_thr) is // passed as argument to quad loop filter because quad loop filter is // called for those cases where all the 4 set of loop filter parameters // are equal. switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_horizontal_8_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_horizontal_14_quad(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_horizontal_8_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_horizontal_14_dual(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 8-tap filtering case 8: aom_lpf_horizontal_8(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // apply 14-tap filtering case 14: aom_lpf_horizontal_14(dst, dst_stride, limits->mblim, limits->lim, limits->hev_thr); break; // no filtering default: break; } } #if !CONFIG_AV1_HIGHBITDEPTH (void)seq_params; #endif // !CONFIG_AV1_HIGHBITDEPTH } static AOM_INLINE void filter_horz_chroma( uint8_t *u_dst, uint8_t *v_dst, int dst_stride, const AV1_DEBLOCKING_PARAMETERS *params, const SequenceHeader *seq_params, USE_FILTER_TYPE use_filter_type) { const loop_filter_thresh *u_limits = params->lfthr; const loop_filter_thresh *v_limits = params->lfthr; #if CONFIG_AV1_HIGHBITDEPTH const int use_highbitdepth = seq_params->use_highbitdepth; const aom_bit_depth_t bit_depth = seq_params->bit_depth; if (use_highbitdepth) { uint16_t *u_dst_shortptr = CONVERT_TO_SHORTPTR(u_dst); uint16_t *v_dst_shortptr = CONVERT_TO_SHORTPTR(v_dst); if (use_filter_type == USE_QUAD) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4_dual( u_dst_shortptr + (2 * MI_SIZE), dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4_dual( v_dst_shortptr + (2 * MI_SIZE), dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6_dual( u_dst_shortptr + (2 * MI_SIZE), dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6_dual( v_dst_shortptr + (2 * MI_SIZE), dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6_dual( u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6_dual( v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_highbd_lpf_horizontal_4(u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_4(v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 6: // apply 6-tap filter for chroma plane only aom_highbd_lpf_horizontal_6(u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth); aom_highbd_lpf_horizontal_6(v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth); break; case 8: case 14: assert(0); break; // no filtering default: break; } } return; } #endif // CONFIG_AV1_HIGHBITDEPTH if (use_filter_type == USE_QUAD) { // Only one set of loop filter parameters (mblim, lim and hev_thr) is // passed as argument to quad loop filter because quad loop filter is // called for those cases where all the 4 set of loop filter parameters // are equal. switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4_quad(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_4_quad(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6_quad(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_6_quad(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); // no filtering default: break; } } else if (use_filter_type == USE_DUAL) { switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4_dual(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_4_dual(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6_dual(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_6_dual(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); // no filtering default: break; } } else { assert(use_filter_type == USE_SINGLE); switch (params->filter_length) { // apply 4-tap filtering case 4: aom_lpf_horizontal_4(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_4(v_dst, dst_stride, v_limits->mblim, v_limits->lim, u_limits->hev_thr); break; case 6: // apply 6-tap filter for chroma plane only aom_lpf_horizontal_6(u_dst, dst_stride, u_limits->mblim, u_limits->lim, u_limits->hev_thr); aom_lpf_horizontal_6(v_dst, dst_stride, v_limits->mblim, v_limits->lim, v_limits->hev_thr); break; case 8: case 14: assert(0); break; // no filtering default: break; } } #if !CONFIG_AV1_HIGHBITDEPTH (void)seq_params; #endif // !CONFIG_AV1_HIGHBITDEPTH } void av1_filter_block_plane_horz(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const int plane, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col) { const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; const int plane_mi_rows = ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, scale_vert); const int plane_mi_cols = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, scale_horz); const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)), (MAX_MIB_SIZE >> scale_vert)); const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)), (MAX_MIB_SIZE >> scale_horz)); for (int x = 0; x < x_range; x++) { uint8_t *p = dst_ptr + x * MI_SIZE; for (int y = 0; y < y_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will first filter the vertical edge aligned with a 8x8 // block. If 4x4 transform is used, it will then filter the internal // edge aligned with a 4x4 block const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; uint32_t advance_units; TX_SIZE tx_size; AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); tx_size = set_lpf_parameters( ¶ms, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); if (tx_size == TX_INVALID) { params.filter_length = 0; tx_size = TX_4X4; } filter_horz(p, dst_stride, ¶ms, cm->seq_params, USE_SINGLE); // advance the destination pointer advance_units = tx_size_high_unit[tx_size]; y += advance_units; p += advance_units * dst_stride * MI_SIZE; } } } void av1_filter_block_plane_horz_opt( const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, int num_mis_in_lpf_unit_height_log2) { uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; // Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned // to MI_SIZE. const int plane_mi_cols = CEIL_POWER_OF_TWO(plane_ptr->dst.width, MI_SIZE_LOG2); const int plane_mi_rows = CEIL_POWER_OF_TWO(plane_ptr->dst.height, MI_SIZE_LOG2); const int y_range = AOMMIN((int)(plane_mi_rows - mi_row), (1 << num_mis_in_lpf_unit_height_log2)); const int x_range = AOMMIN((int)(plane_mi_cols - mi_col), MAX_MIB_SIZE); const ptrdiff_t mode_step = cm->mi_params.mi_stride; for (int x = 0; x < x_range; x++) { const uint32_t curr_x = mi_col + x; const uint32_t y_start = mi_row; const uint32_t y_end = mi_row + y_range; int min_block_width = block_size_high[BLOCK_128X128]; set_lpf_parameters_for_line_luma(params_buf, tx_buf, cm, xd, HORZ_EDGE, curr_x, y_start, plane_ptr, y_end, mode_step, &min_block_width); AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; USE_FILTER_TYPE filter_type = USE_SINGLE; uint8_t *p = dst_ptr + x * MI_SIZE; if ((x & 3) == 0 && (x + 3) < x_range && min_block_width >= 16) { // If we are on a col which is a multiple of 4, and the minimum width is // 16 pixels, then the current and right 3 cols must contain the same // prediction block. This is because dim 16 can only happen every unit of // 4 mi's. filter_type = USE_QUAD; x += 3; } else if ((x + 1) < x_range && min_block_width >= 8) { filter_type = USE_DUAL; x += 1; } for (int y = 0; y < y_range;) { if (*tx_size == TX_INVALID) { params->filter_length = 0; *tx_size = TX_4X4; } filter_horz(p, dst_stride, params, cm->seq_params, filter_type); // advance the destination pointer const uint32_t advance_units = tx_size_high_unit[*tx_size]; y += advance_units; p += advance_units * dst_stride * MI_SIZE; params += advance_units; tx_size += advance_units; } } } void av1_filter_block_plane_horz_opt_chroma( const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, int plane, bool joint_filter_chroma, int num_mis_in_lpf_unit_height_log2) { const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; const int dst_stride = plane_ptr->dst.stride; // Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned // to MI_SIZE. const int mi_cols = ((plane_ptr->dst.width << scale_horz) + MI_SIZE - 1) >> MI_SIZE_LOG2; const int mi_rows = ((plane_ptr->dst.height << scale_vert) + MI_SIZE - 1) >> MI_SIZE_LOG2; const int plane_mi_rows = ROUND_POWER_OF_TWO(mi_rows, scale_vert); const int plane_mi_cols = ROUND_POWER_OF_TWO(mi_cols, scale_horz); const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)), ((1 << num_mis_in_lpf_unit_height_log2) >> scale_vert)); const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)), (MAX_MIB_SIZE >> scale_horz)); const ptrdiff_t mode_step = cm->mi_params.mi_stride << scale_vert; for (int x = 0; x < x_range; x++) { const uint32_t y_start = mi_row + (0 << scale_vert); const uint32_t curr_x = mi_col + (x << scale_horz); const uint32_t y_end = mi_row + (y_range << scale_vert); int min_width = tx_size_wide[TX_64X64]; set_lpf_parameters_for_line_chroma(params_buf, tx_buf, cm, xd, HORZ_EDGE, curr_x, y_start, plane_ptr, y_end, mode_step, scale_horz, scale_vert, &min_width, plane, joint_filter_chroma); AV1_DEBLOCKING_PARAMETERS *params = params_buf; TX_SIZE *tx_size = tx_buf; USE_FILTER_TYPE use_filter_type = USE_SINGLE; int x_inc = 0; if ((x & 3) == 0 && (x + 3) < x_range && min_width >= 16) { // If we are on a col which is a multiple of 4, and the minimum width is // 16 pixels, then the current and right 3 cols must contain the same tx // block. This is because dim 16 can only happen every unit of 4 mi's. use_filter_type = USE_QUAD; x_inc = 3; } else if (x % 2 == 0 && (x + 1) < x_range && min_width >= 8) { // If we are on an even col, and the minimum width is 8 pixels, then the // current and left cols must contain the same tx block. This is because // dim 4 can only happen every unit of 2**0, and 8 every unit of 2**1, // etc. use_filter_type = USE_DUAL; x_inc = 1; } for (int y = 0; y < y_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will first filter the vertical edge aligned with a 8x8 // block. If 4x4 transform is used, it will then filter the internal // edge aligned with a 4x4 block if (*tx_size == TX_INVALID) { params->filter_length = 0; *tx_size = TX_4X4; } const int offset = y * MI_SIZE * dst_stride + x * MI_SIZE; if (joint_filter_chroma) { uint8_t *u_dst = plane_ptr[0].dst.buf + offset; uint8_t *v_dst = plane_ptr[1].dst.buf + offset; filter_horz_chroma(u_dst, v_dst, dst_stride, params, cm->seq_params, use_filter_type); } else { uint8_t *dst_ptr = plane_ptr->dst.buf + offset; filter_horz(dst_ptr, dst_stride, params, cm->seq_params, use_filter_type); } // advance the destination pointer const int advance_units = tx_size_high_unit[*tx_size]; y += advance_units; params += advance_units; tx_size += advance_units; } x += x_inc; } }