/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_scale_rtcd.h" #include "aom/aom_integer.h" #include "av1/common/av1_common_int.h" #include "av1/common/cdef.h" #include "av1/common/cdef_block.h" #include "av1/common/reconinter.h" #include "av1/common/thread_common.h" static int is_8x8_block_skip(MB_MODE_INFO **grid, int mi_row, int mi_col, int mi_stride) { MB_MODE_INFO **mbmi = grid + mi_row * mi_stride + mi_col; for (int r = 0; r < mi_size_high[BLOCK_8X8]; ++r, mbmi += mi_stride) { for (int c = 0; c < mi_size_wide[BLOCK_8X8]; ++c) { if (!mbmi[c]->skip_txfm) return 0; } } return 1; } int av1_cdef_compute_sb_list(const CommonModeInfoParams *const mi_params, int mi_row, int mi_col, cdef_list *dlist, BLOCK_SIZE bs) { MB_MODE_INFO **grid = mi_params->mi_grid_base; int maxc = mi_params->mi_cols - mi_col; int maxr = mi_params->mi_rows - mi_row; if (bs == BLOCK_128X128 || bs == BLOCK_128X64) maxc = AOMMIN(maxc, MI_SIZE_128X128); else maxc = AOMMIN(maxc, MI_SIZE_64X64); if (bs == BLOCK_128X128 || bs == BLOCK_64X128) maxr = AOMMIN(maxr, MI_SIZE_128X128); else maxr = AOMMIN(maxr, MI_SIZE_64X64); const int r_step = 2; // mi_size_high[BLOCK_8X8] const int c_step = 2; // mi_size_wide[BLOCK_8X8] const int r_shift = 1; const int c_shift = 1; int count = 0; for (int r = 0; r < maxr; r += r_step) { for (int c = 0; c < maxc; c += c_step) { if (!is_8x8_block_skip(grid, mi_row + r, mi_col + c, mi_params->mi_stride)) { dlist[count].by = r >> r_shift; dlist[count].bx = c >> c_shift; count++; } } } return count; } void cdef_copy_rect8_8bit_to_16bit_c(uint16_t *dst, int dstride, const uint8_t *src, int sstride, int width, int height) { for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } } void cdef_copy_rect8_16bit_to_16bit_c(uint16_t *dst, int dstride, const uint16_t *src, int sstride, int width, int height) { for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } } void av1_cdef_copy_sb8_16_lowbd(uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize) { const uint8_t *base = &src[src_voffset * sstride + src_hoffset]; cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, hsize, vsize); } void av1_cdef_copy_sb8_16_highbd(uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize) { const uint16_t *base = &CONVERT_TO_SHORTPTR(src)[src_voffset * sstride + src_hoffset]; cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, hsize, vsize); } void av1_cdef_copy_sb8_16(const AV1_COMMON *const cm, uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize) { if (cm->seq_params->use_highbitdepth) { av1_cdef_copy_sb8_16_highbd(dst, dstride, src, src_voffset, src_hoffset, sstride, vsize, hsize); } else { av1_cdef_copy_sb8_16_lowbd(dst, dstride, src, src_voffset, src_hoffset, sstride, vsize, hsize); } } static INLINE void copy_rect(uint16_t *dst, int dstride, const uint16_t *src, int sstride, int v, int h) { for (int i = 0; i < v; i++) { for (int j = 0; j < h; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } } // Prepares intermediate input buffer for CDEF. // Inputs: // cm: Pointer to common structure. // fb_info: Pointer to the CDEF block-level parameter structure. // colbuf: Left column buffer for CDEF. // cdef_left: Left block is filtered or not. // fbc, fbr: col and row index of a block. // plane: plane index Y/CB/CR. // Returns: // Nothing will be returned. static void cdef_prepare_fb(const AV1_COMMON *const cm, CdefBlockInfo *fb_info, uint16_t **const colbuf, const int cdef_left, int fbc, int fbr, int plane) { const CommonModeInfoParams *const mi_params = &cm->mi_params; uint16_t *src = fb_info->src; const int luma_stride = ALIGN_POWER_OF_TWO(mi_params->mi_cols << MI_SIZE_LOG2, 4); const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; int cstart = 0; if (!cdef_left) cstart = -CDEF_HBORDER; int rend, cend; const int nhb = AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc); const int nvb = AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr); const int hsize = nhb << fb_info->mi_wide_l2; const int vsize = nvb << fb_info->mi_high_l2; const uint16_t *top_linebuf = fb_info->top_linebuf[plane]; const uint16_t *bot_linebuf = fb_info->bot_linebuf[plane]; const int bot_offset = (vsize + CDEF_VBORDER) * CDEF_BSTRIDE; const int stride = luma_stride >> (plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x); if (fbc == nhfb - 1) cend = hsize; else cend = hsize + CDEF_HBORDER; if (fbr == nvfb - 1) rend = vsize; else rend = vsize + CDEF_VBORDER; /* Copy in the pixels we need from the current superblock for deringing.*/ av1_cdef_copy_sb8_16( cm, &src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER + cstart], CDEF_BSTRIDE, fb_info->dst, fb_info->roffset, fb_info->coffset + cstart, fb_info->dst_stride, vsize, cend - cstart); /* Copy in the pixels we need for the current superblock from bottom buffer.*/ if (fbr < nvfb - 1) { copy_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE, &bot_linebuf[fb_info->coffset], stride, CDEF_VBORDER, hsize); } else { fill_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize, CDEF_VERY_LARGE); } if (fbr < nvfb - 1 && fbc > 0) { copy_rect(&src[bot_offset], CDEF_BSTRIDE, &bot_linebuf[fb_info->coffset - CDEF_HBORDER], stride, CDEF_VBORDER, CDEF_HBORDER); } else { fill_rect(&src[bot_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } if (fbr < nvfb - 1 && fbc < nhfb - 1) { copy_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE, &bot_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER, CDEF_HBORDER); } else { fill_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } /* Copy in the pixels we need from the current superblock from top buffer.*/ if (fbr > 0) { copy_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset], stride, CDEF_VBORDER, hsize); } else { fill_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize, CDEF_VERY_LARGE); } if (fbr > 0 && fbc > 0) { copy_rect(src, CDEF_BSTRIDE, &top_linebuf[fb_info->coffset - CDEF_HBORDER], stride, CDEF_VBORDER, CDEF_HBORDER); } else { fill_rect(src, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } if (fbr > 0 && fbc < nhfb - 1) { copy_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER, CDEF_HBORDER); } else { fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } if (cdef_left) { /* If we deringed the superblock on the left then we need to copy in saved pixels. */ copy_rect(src, CDEF_BSTRIDE, colbuf[plane], CDEF_HBORDER, rend + CDEF_VBORDER, CDEF_HBORDER); } /* Saving pixels in case we need to dering the superblock on the right. */ copy_rect(colbuf[plane], CDEF_HBORDER, src + hsize, CDEF_BSTRIDE, rend + CDEF_VBORDER, CDEF_HBORDER); if (fb_info->frame_boundary[LEFT]) { fill_rect(src, CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } if (fb_info->frame_boundary[RIGHT]) { fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE); } } static INLINE void cdef_filter_fb(CdefBlockInfo *const fb_info, int plane, uint8_t use_highbitdepth) { int offset = fb_info->dst_stride * fb_info->roffset + fb_info->coffset; if (use_highbitdepth) { av1_cdef_filter_fb( NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride, &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER], fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane, fb_info->dlist, fb_info->cdef_count, fb_info->level, fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift); } else { av1_cdef_filter_fb( fb_info->dst + offset, NULL, fb_info->dst_stride, &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER], fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane, fb_info->dlist, fb_info->cdef_count, fb_info->level, fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift); } } // Initializes block-level parameters for CDEF. static INLINE void cdef_init_fb_col(const MACROBLOCKD *const xd, CdefBlockInfo *const fb_info, int *level, int *sec_strength, int fbc, int fbr, int plane) { const PLANE_TYPE plane_type = get_plane_type(plane); fb_info->level = level[plane_type]; fb_info->sec_strength = sec_strength[plane_type]; fb_info->dst = xd->plane[plane].dst.buf; fb_info->dst_stride = xd->plane[plane].dst.stride; fb_info->xdec = xd->plane[plane].subsampling_x; fb_info->ydec = xd->plane[plane].subsampling_y; fb_info->mi_wide_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_x; fb_info->mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; fb_info->roffset = MI_SIZE_64X64 * fbr << fb_info->mi_high_l2; fb_info->coffset = MI_SIZE_64X64 * fbc << fb_info->mi_wide_l2; } static void cdef_fb_col(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, CdefBlockInfo *const fb_info, uint16_t **const colbuf, int *cdef_left, int fbc, int fbr) { const CommonModeInfoParams *const mi_params = &cm->mi_params; const int mbmi_cdef_strength = mi_params ->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride + MI_SIZE_64X64 * fbc] ->cdef_strength; const int num_planes = av1_num_planes(cm); int is_zero_level[PLANE_TYPES] = { 1, 1 }; int level[PLANE_TYPES] = { 0 }; int sec_strength[PLANE_TYPES] = { 0 }; const CdefInfo *const cdef_info = &cm->cdef_info; if (mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride + MI_SIZE_64X64 * fbc] == NULL || mbmi_cdef_strength == -1) { av1_zero_array(cdef_left, num_planes); return; } // Compute level and secondary strength for planes level[PLANE_TYPE_Y] = cdef_info->cdef_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS; sec_strength[PLANE_TYPE_Y] = cdef_info->cdef_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS; sec_strength[PLANE_TYPE_Y] += sec_strength[PLANE_TYPE_Y] == 3; is_zero_level[PLANE_TYPE_Y] = (level[PLANE_TYPE_Y] == 0) && (sec_strength[PLANE_TYPE_Y] == 0); if (num_planes > 1) { level[PLANE_TYPE_UV] = cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS; sec_strength[PLANE_TYPE_UV] = cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS; sec_strength[PLANE_TYPE_UV] += sec_strength[PLANE_TYPE_UV] == 3; is_zero_level[PLANE_TYPE_UV] = (level[PLANE_TYPE_UV] == 0) && (sec_strength[PLANE_TYPE_UV] == 0); } if (is_zero_level[PLANE_TYPE_Y] && is_zero_level[PLANE_TYPE_UV]) { av1_zero_array(cdef_left, num_planes); return; } fb_info->cdef_count = av1_cdef_compute_sb_list(mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64, fb_info->dlist, BLOCK_64X64); if (!fb_info->cdef_count) { av1_zero_array(cdef_left, num_planes); return; } for (int plane = 0; plane < num_planes; plane++) { // Do not skip cdef filtering for luma plane as filter direction is // computed based on luma. if (plane && is_zero_level[get_plane_type(plane)]) { cdef_left[plane] = 0; continue; } cdef_init_fb_col(xd, fb_info, level, sec_strength, fbc, fbr, plane); cdef_prepare_fb(cm, fb_info, colbuf, cdef_left[plane], fbc, fbr, plane); cdef_filter_fb(fb_info, plane, cm->seq_params->use_highbitdepth); cdef_left[plane] = 1; } } // Initializes row-level parameters for CDEF frame. void av1_cdef_init_fb_row(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, CdefBlockInfo *const fb_info, uint16_t **const linebuf, uint16_t *const src, struct AV1CdefSyncData *const cdef_sync, int fbr) { (void)cdef_sync; const int num_planes = av1_num_planes(cm); const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; const int luma_stride = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4); const bool ping_pong = fbr & 1; // for the current filter block, it's top left corner mi structure (mi_tl) // is first accessed to check whether the top and left boundaries are // frame boundaries. Then bottom-left and top-right mi structures are // accessed to check whether the bottom and right boundaries // (respectively) are frame boundaries. // // Note that we can't just check the bottom-right mi structure - eg. if // we're at the right-hand edge of the frame but not the bottom, then // the bottom-right mi is NULL but the bottom-left is not. fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0; if (fbr != nvfb - 1) fb_info->frame_boundary[BOTTOM] = (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0; else fb_info->frame_boundary[BOTTOM] = 1; fb_info->src = src; fb_info->damping = cm->cdef_info.cdef_damping; fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0); av1_zero(fb_info->dir); av1_zero(fb_info->var); for (int plane = 0; plane < num_planes; plane++) { const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; const int offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; const int stride = luma_stride >> xd->plane[plane].subsampling_x; // here ping-pong buffers are maintained for top linebuf // to avoid linebuf over-write by consecutive row. uint16_t *const top_linebuf = &linebuf[plane][ping_pong * CDEF_VBORDER * stride]; fb_info->bot_linebuf[plane] = &linebuf[plane][(CDEF_VBORDER << 1) * stride]; if (fbr != nvfb - 1) // top line buffer copy av1_cdef_copy_sb8_16(cm, top_linebuf, stride, xd->plane[plane].dst.buf, offset - CDEF_VBORDER, 0, xd->plane[plane].dst.stride, CDEF_VBORDER, stride); fb_info->top_linebuf[plane] = &linebuf[plane][(!ping_pong) * CDEF_VBORDER * stride]; if (fbr != nvfb - 1) // bottom line buffer copy av1_cdef_copy_sb8_16(cm, fb_info->bot_linebuf[plane], stride, xd->plane[plane].dst.buf, offset, 0, xd->plane[plane].dst.stride, CDEF_VBORDER, stride); } } void av1_cdef_fb_row(const AV1_COMMON *const cm, MACROBLOCKD *xd, uint16_t **const linebuf, uint16_t **const colbuf, uint16_t *const src, int fbr, cdef_init_fb_row_t cdef_init_fb_row_fn, struct AV1CdefSyncData *const cdef_sync, struct aom_internal_error_info *error_info) { // TODO(aomedia:3276): Pass error_info to the low-level functions as required // in future to handle error propagation. (void)error_info; CdefBlockInfo fb_info; int cdef_left[MAX_MB_PLANE] = { 1, 1, 1 }; const int nhfb = (cm->mi_params.mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; cdef_init_fb_row_fn(cm, xd, &fb_info, linebuf, src, cdef_sync, fbr); #if CONFIG_MULTITHREAD if (cdef_sync && cm->cdef_info.allocated_num_workers > 1) { pthread_mutex_lock(cdef_sync->mutex_); const bool cdef_mt_exit = cdef_sync->cdef_mt_exit; pthread_mutex_unlock(cdef_sync->mutex_); // Exit in case any worker has encountered an error. if (cdef_mt_exit) return; } #endif for (int fbc = 0; fbc < nhfb; fbc++) { fb_info.frame_boundary[LEFT] = (MI_SIZE_64X64 * fbc == 0) ? 1 : 0; if (fbc != nhfb - 1) fb_info.frame_boundary[RIGHT] = (MI_SIZE_64X64 * (fbc + 1) == cm->mi_params.mi_cols) ? 1 : 0; else fb_info.frame_boundary[RIGHT] = 1; cdef_fb_col(cm, xd, &fb_info, colbuf, &cdef_left[0], fbc, fbr); } } // Perform CDEF on input frame. // Inputs: // frame: Pointer to input frame buffer. // cm: Pointer to common structure. // xd: Pointer to common current coding block structure. // Returns: // Nothing will be returned. void av1_cdef_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm, MACROBLOCKD *xd, cdef_init_fb_row_t cdef_init_fb_row_fn) { const int num_planes = av1_num_planes(cm); const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0, num_planes); for (int fbr = 0; fbr < nvfb; fbr++) av1_cdef_fb_row(cm, xd, cm->cdef_info.linebuf, cm->cdef_info.colbuf, cm->cdef_info.srcbuf, fbr, cdef_init_fb_row_fn, NULL, xd->error_info); }