/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_ #define AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_ #include "config/av1_rtcd.h" #include "av1/common/cdef_block.h" /* partial A is a 16-bit vector of the form: [x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form: [0 y1 y2 y3 y4 y5 y6 y7]. This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1 and const2. */ static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1, v128 const2) { v128 tmp; /* Reverse partial B. */ partialb = v128_shuffle_8( partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c)); /* Interleave the x and y values of identical indices and pair x8 with 0. */ tmp = partiala; partiala = v128_ziplo_16(partialb, partiala); partialb = v128_ziphi_16(partialb, tmp); /* Square and add the corresponding x and y values. */ partiala = v128_madd_s16(partiala, partiala); partialb = v128_madd_s16(partialb, partialb); /* Multiply by constant. */ partiala = v128_mullo_s32(partiala, const1); partialb = v128_mullo_s32(partialb, const2); /* Sum all results. */ partiala = v128_add_32(partiala, partialb); return partiala; } static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) { v128 t0, t1, t2, t3; t0 = v128_ziplo_32(x1, x0); t1 = v128_ziplo_32(x3, x2); t2 = v128_ziphi_32(x1, x0); t3 = v128_ziphi_32(x3, x2); x0 = v128_ziplo_64(t1, t0); x1 = v128_ziphi_64(t1, t0); x2 = v128_ziplo_64(t3, t2); x3 = v128_ziphi_64(t3, t2); return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3)); } /* Computes cost for directions 0, 5, 6 and 7. We can call this function again to compute the remaining directions. */ static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) { v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; v128 partial6; v128 tmp; /* Partial sums for lines 0 and 1. */ partial4a = v128_shl_n_byte(lines[0], 14); partial4b = v128_shr_n_byte(lines[0], 2); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4)); tmp = v128_add_16(lines[0], lines[1]); partial5a = v128_shl_n_byte(tmp, 10); partial5b = v128_shr_n_byte(tmp, 6); partial7a = v128_shl_n_byte(tmp, 4); partial7b = v128_shr_n_byte(tmp, 12); partial6 = tmp; /* Partial sums for lines 2 and 3. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6)); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8)); tmp = v128_add_16(lines[2], lines[3]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10)); partial6 = v128_add_16(partial6, tmp); /* Partial sums for lines 4 and 5. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10)); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12)); tmp = v128_add_16(lines[4], lines[5]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8)); partial6 = v128_add_16(partial6, tmp); /* Partial sums for lines 6 and 7. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14)); partial4a = v128_add_16(partial4a, lines[7]); tmp = v128_add_16(lines[6], lines[7]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6)); partial6 = v128_add_16(partial6, tmp); /* Compute costs in terms of partial sums. */ partial4a = fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840), v128_from_32(105, 120, 140, 168)); partial7a = fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0), v128_from_32(105, 105, 105, 140)); partial5a = fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0), v128_from_32(105, 105, 105, 140)); partial6 = v128_madd_s16(partial6, partial6); partial6 = v128_mullo_s32(partial6, v128_dup_32(105)); partial4a = hsum4(partial4a, partial5a, partial6, partial7a); v128_store_unaligned(tmp_cost1, partial4a); return partial4a; } /* transpose and reverse the order of the lines -- equivalent to a 90-degree counter-clockwise rotation of the pixels. */ static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) { const v128 tr0_0 = v128_ziplo_16(in[1], in[0]); const v128 tr0_1 = v128_ziplo_16(in[3], in[2]); const v128 tr0_2 = v128_ziphi_16(in[1], in[0]); const v128 tr0_3 = v128_ziphi_16(in[3], in[2]); const v128 tr0_4 = v128_ziplo_16(in[5], in[4]); const v128 tr0_5 = v128_ziplo_16(in[7], in[6]); const v128 tr0_6 = v128_ziphi_16(in[5], in[4]); const v128 tr0_7 = v128_ziphi_16(in[7], in[6]); const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0); const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4); const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0); const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4); const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2); const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6); const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2); const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6); res[7] = v128_ziplo_64(tr1_1, tr1_0); res[6] = v128_ziphi_64(tr1_1, tr1_0); res[5] = v128_ziplo_64(tr1_3, tr1_2); res[4] = v128_ziphi_64(tr1_3, tr1_2); res[3] = v128_ziplo_64(tr1_5, tr1_4); res[2] = v128_ziphi_64(tr1_5, tr1_4); res[1] = v128_ziplo_64(tr1_7, tr1_6); res[0] = v128_ziphi_64(tr1_7, tr1_6); } int SIMD_FUNC(cdef_find_dir)(const uint16_t *img, int stride, int32_t *var, int coeff_shift) { int i; int32_t cost[8]; int32_t best_cost = 0; int best_dir = 0; v128 lines[8]; for (i = 0; i < 8; i++) { lines[i] = v128_load_unaligned(&img[i * stride]); lines[i] = v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128)); } /* Compute "mostly vertical" directions. */ v128 dir47 = compute_directions(lines, cost + 4); array_reverse_transpose_8x8(lines, lines); /* Compute "mostly horizontal" directions. */ v128 dir03 = compute_directions(lines, cost); v128 max = v128_max_s32(dir03, dir47); max = v128_max_s32(max, v128_align(max, max, 8)); max = v128_max_s32(max, v128_align(max, max, 4)); best_cost = v128_low_u32(max); v128 t = v128_pack_s32_s16(v128_cmpeq_32(max, dir47), v128_cmpeq_32(max, dir03)); best_dir = v128_movemask_8(v128_pack_s16_s8(t, t)); best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros /* Difference between the optimal variance and the variance along the orthogonal direction. Again, the sum(x^2) terms cancel out. */ *var = best_cost - cost[(best_dir + 4) & 7]; /* We'd normally divide by 840, but dividing by 1024 is close enough for what we're going to do with this. */ *var >>= 10; return best_dir; } // Work around compiler out of memory issues with Win32 builds. This issue has // been observed with Visual Studio 2017, 2019, and 2022 (version 17.4). #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1940 #define CDEF_INLINE static INLINE #else #define CDEF_INLINE SIMD_INLINE #endif // sign(a-b) * min(abs(a-b), max(0, threshold - (abs(a-b) >> adjdamp))) CDEF_INLINE v256 constrain16(v256 a, v256 b, unsigned int threshold, unsigned int adjdamp) { v256 diff = v256_sub_16(a, b); const v256 sign = v256_shr_n_s16(diff, 15); diff = v256_abs_s16(diff); const v256 s = v256_ssub_u16(v256_dup_16(threshold), v256_shr_u16(diff, adjdamp)); return v256_xor(v256_add_16(sign, v256_min_s16(diff, s)), sign); } SIMD_INLINE v256 get_max_primary(const int is_lowbd, v256 *tap, v256 max, v256 cdef_large_value_mask) { if (is_lowbd) { v256 max_u8; max_u8 = tap[0]; max_u8 = v256_max_u8(max_u8, tap[1]); max_u8 = v256_max_u8(max_u8, tap[2]); max_u8 = v256_max_u8(max_u8, tap[3]); /* The source is 16 bits, however, we only really care about the lower 8 bits. The upper 8 bits contain the "large" flag. After the final primary max has been calculated, zero out the upper 8 bits. Use this to find the "16 bit" max. */ max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask)); } else { /* Convert CDEF_VERY_LARGE to 0 before calculating max. */ max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask)); } return max; } SIMD_INLINE v256 get_max_secondary(const int is_lowbd, v256 *tap, v256 max, v256 cdef_large_value_mask) { if (is_lowbd) { v256 max_u8; max_u8 = tap[0]; max_u8 = v256_max_u8(max_u8, tap[1]); max_u8 = v256_max_u8(max_u8, tap[2]); max_u8 = v256_max_u8(max_u8, tap[3]); max_u8 = v256_max_u8(max_u8, tap[4]); max_u8 = v256_max_u8(max_u8, tap[5]); max_u8 = v256_max_u8(max_u8, tap[6]); max_u8 = v256_max_u8(max_u8, tap[7]); /* The source is 16 bits, however, we only really care about the lower 8 bits. The upper 8 bits contain the "large" flag. After the final primary max has been calculated, zero out the upper 8 bits. Use this to find the "16 bit" max. */ max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask)); } else { /* Convert CDEF_VERY_LARGE to 0 before calculating max. */ max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[4], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[5], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[6], cdef_large_value_mask)); max = v256_max_s16(max, v256_and(tap[7], cdef_large_value_mask)); } return max; } // MSVC takes far too much time optimizing these. // https://bugs.chromium.org/p/aomedia/issues/detail?id=3395 #if defined(_MSC_VER) && !defined(__clang__) #pragma optimize("", off) #endif CDEF_INLINE void filter_block_4x4(const int is_lowbd, void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int height, int enable_primary, int enable_secondary) { uint8_t *dst8 = (uint8_t *)dest; uint16_t *dst16 = (uint16_t *)dest; const int clipping_required = enable_primary && enable_secondary; v256 p0, p1, p2, p3; v256 sum, row, res; v256 max, min; const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE); const int po1 = cdef_directions[dir][0]; const int po2 = cdef_directions[dir][1]; const int s1o1 = cdef_directions[dir + 2][0]; const int s1o2 = cdef_directions[dir + 2][1]; const int s2o1 = cdef_directions[dir - 2][0]; const int s2o2 = cdef_directions[dir - 2][1]; const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1]; const int *sec_taps = cdef_sec_taps; int i; if (enable_primary && pri_strength) pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength)); if (enable_secondary && sec_strength) sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength)); for (i = 0; i < height; i += 4) { sum = v256_zero(); row = v256_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]), v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]), v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]), v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE])); max = min = row; if (enable_primary) { v256 tap[4]; // Primary near taps tap[0] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po1])); p0 = constrain16(tap[0], row, pri_strength, pri_damping); tap[1] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po1])); p1 = constrain16(tap[1], row, pri_strength, pri_damping); // sum += pri_taps[0] * (p0 + p1) sum = v256_add_16( sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1))); // Primary far taps tap[2] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po2])); p0 = constrain16(tap[2], row, pri_strength, pri_damping); tap[3] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po2])); p1 = constrain16(tap[3], row, pri_strength, pri_damping); // sum += pri_taps[1] * (p0 + p1) sum = v256_add_16( sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1))); if (clipping_required) { max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask); min = v256_min_s16(min, tap[0]); min = v256_min_s16(min, tap[1]); min = v256_min_s16(min, tap[2]); min = v256_min_s16(min, tap[3]); } } if (enable_secondary) { v256 tap[8]; // Secondary near taps tap[0] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o1])); p0 = constrain16(tap[0], row, sec_strength, sec_damping); tap[1] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o1])); p1 = constrain16(tap[1], row, sec_strength, sec_damping); tap[2] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o1])); p2 = constrain16(tap[2], row, sec_strength, sec_damping); tap[3] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o1]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o1]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o1])); p3 = constrain16(tap[3], row, sec_strength, sec_damping); // sum += sec_taps[0] * (p0 + p1 + p2 + p3) sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]), v256_add_16(v256_add_16(p0, p1), v256_add_16(p2, p3)))); // Secondary far taps tap[4] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o2])); p0 = constrain16(tap[4], row, sec_strength, sec_damping); tap[5] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o2])); p1 = constrain16(tap[5], row, sec_strength, sec_damping); tap[6] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o2])); p2 = constrain16(tap[6], row, sec_strength, sec_damping); tap[7] = v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o2]), v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]), v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o2]), v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o2])); p3 = constrain16(tap[7], row, sec_strength, sec_damping); // sum += sec_taps[1] * (p0 + p1 + p2 + p3) sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]), v256_add_16(v256_add_16(p0, p1), v256_add_16(p2, p3)))); if (clipping_required) { max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask); min = v256_min_s16(min, tap[0]); min = v256_min_s16(min, tap[1]); min = v256_min_s16(min, tap[2]); min = v256_min_s16(min, tap[3]); min = v256_min_s16(min, tap[4]); min = v256_min_s16(min, tap[5]); min = v256_min_s16(min, tap[6]); min = v256_min_s16(min, tap[7]); } } // res = row + ((sum - (sum < 0) + 8) >> 4) sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero())); res = v256_add_16(sum, v256_dup_16(8)); res = v256_shr_n_s16(res, 4); res = v256_add_16(row, res); if (clipping_required) { res = v256_min_s16(v256_max_s16(res, min), max); } if (is_lowbd) { const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res)); u32_store_aligned(&dst8[(i + 0) * dstride], v64_high_u32(v128_high_v64(res_128))); u32_store_aligned(&dst8[(i + 1) * dstride], v64_low_u32(v128_high_v64(res_128))); u32_store_aligned(&dst8[(i + 2) * dstride], v64_high_u32(v128_low_v64(res_128))); u32_store_aligned(&dst8[(i + 3) * dstride], v64_low_u32(v128_low_v64(res_128))); } else { v64_store_aligned(&dst16[(i + 0) * dstride], v128_high_v64(v256_high_v128(res))); v64_store_aligned(&dst16[(i + 1) * dstride], v128_low_v64(v256_high_v128(res))); v64_store_aligned(&dst16[(i + 2) * dstride], v128_high_v64(v256_low_v128(res))); v64_store_aligned(&dst16[(i + 3) * dstride], v128_low_v64(v256_low_v128(res))); } } } CDEF_INLINE void filter_block_8x8(const int is_lowbd, void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int height, int enable_primary, int enable_secondary) { uint8_t *dst8 = (uint8_t *)dest; uint16_t *dst16 = (uint16_t *)dest; const int clipping_required = enable_primary && enable_secondary; int i; v256 sum, p0, p1, p2, p3, row, res; const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE); v256 max, min; const int po1 = cdef_directions[dir][0]; const int po2 = cdef_directions[dir][1]; const int s1o1 = cdef_directions[dir + 2][0]; const int s1o2 = cdef_directions[dir + 2][1]; const int s2o1 = cdef_directions[dir - 2][0]; const int s2o2 = cdef_directions[dir - 2][1]; const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1]; const int *sec_taps = cdef_sec_taps; if (enable_primary && pri_strength) pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength)); if (enable_secondary && sec_strength) sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength)); for (i = 0; i < height; i += 2) { v256 tap[8]; sum = v256_zero(); row = v256_from_v128(v128_load_aligned(&in[i * CDEF_BSTRIDE]), v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE])); min = max = row; if (enable_primary) { // Primary near taps tap[0] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + po1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1])); tap[1] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - po1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1])); p0 = constrain16(tap[0], row, pri_strength, pri_damping); p1 = constrain16(tap[1], row, pri_strength, pri_damping); // sum += pri_taps[0] * (p0 + p1) sum = v256_add_16( sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1))); // Primary far taps tap[2] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + po2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2])); tap[3] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - po2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2])); p0 = constrain16(tap[2], row, pri_strength, pri_damping); p1 = constrain16(tap[3], row, pri_strength, pri_damping); // sum += pri_taps[1] * (p0 + p1) sum = v256_add_16( sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1))); if (clipping_required) { max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask); min = v256_min_s16(min, tap[0]); min = v256_min_s16(min, tap[1]); min = v256_min_s16(min, tap[2]); min = v256_min_s16(min, tap[3]); } // End primary } if (enable_secondary) { // Secondary near taps tap[0] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1])); tap[1] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1])); tap[2] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1])); tap[3] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o1]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1])); p0 = constrain16(tap[0], row, sec_strength, sec_damping); p1 = constrain16(tap[1], row, sec_strength, sec_damping); p2 = constrain16(tap[2], row, sec_strength, sec_damping); p3 = constrain16(tap[3], row, sec_strength, sec_damping); // sum += sec_taps[0] * (p0 + p1 + p2 + p3) sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]), v256_add_16(v256_add_16(p0, p1), v256_add_16(p2, p3)))); // Secondary far taps tap[4] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2])); tap[5] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2])); tap[6] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2])); tap[7] = v256_from_v128( v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o2]), v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2])); p0 = constrain16(tap[4], row, sec_strength, sec_damping); p1 = constrain16(tap[5], row, sec_strength, sec_damping); p2 = constrain16(tap[6], row, sec_strength, sec_damping); p3 = constrain16(tap[7], row, sec_strength, sec_damping); // sum += sec_taps[1] * (p0 + p1 + p2 + p3) sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]), v256_add_16(v256_add_16(p0, p1), v256_add_16(p2, p3)))); if (clipping_required) { max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask); min = v256_min_s16(min, tap[0]); min = v256_min_s16(min, tap[1]); min = v256_min_s16(min, tap[2]); min = v256_min_s16(min, tap[3]); min = v256_min_s16(min, tap[4]); min = v256_min_s16(min, tap[5]); min = v256_min_s16(min, tap[6]); min = v256_min_s16(min, tap[7]); } // End secondary } // res = row + ((sum - (sum < 0) + 8) >> 4) sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero())); res = v256_add_16(sum, v256_dup_16(8)); res = v256_shr_n_s16(res, 4); res = v256_add_16(row, res); if (clipping_required) { res = v256_min_s16(v256_max_s16(res, min), max); } if (is_lowbd) { const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res)); v64_store_aligned(&dst8[i * dstride], v128_high_v64(res_128)); v64_store_aligned(&dst8[(i + 1) * dstride], v128_low_v64(res_128)); } else { v128_store_unaligned(&dst16[i * dstride], v256_high_v128(res)); v128_store_unaligned(&dst16[(i + 1) * dstride], v256_low_v128(res)); } } } #if defined(_MSC_VER) && !defined(__clang__) #pragma optimize("", on) #endif SIMD_INLINE void copy_block_4xh(const int is_lowbd, void *dest, int dstride, const uint16_t *in, int height) { uint8_t *dst8 = (uint8_t *)dest; uint16_t *dst16 = (uint16_t *)dest; int i; for (i = 0; i < height; i += 4) { const v128 row0 = v128_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]), v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE])); const v128 row1 = v128_from_v64(v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]), v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE])); if (is_lowbd) { /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */ const v128 res_128 = v128_pack_s16_u8(row1, row0); u32_store_aligned(&dst8[(i + 0) * dstride], v64_high_u32(v128_low_v64(res_128))); u32_store_aligned(&dst8[(i + 1) * dstride], v64_low_u32(v128_low_v64(res_128))); u32_store_aligned(&dst8[(i + 2) * dstride], v64_high_u32(v128_high_v64(res_128))); u32_store_aligned(&dst8[(i + 3) * dstride], v64_low_u32(v128_high_v64(res_128))); } else { v64_store_aligned(&dst16[(i + 0) * dstride], v128_high_v64(row0)); v64_store_aligned(&dst16[(i + 1) * dstride], v128_low_v64(row0)); v64_store_aligned(&dst16[(i + 2) * dstride], v128_high_v64(row1)); v64_store_aligned(&dst16[(i + 3) * dstride], v128_low_v64(row1)); } } } SIMD_INLINE void copy_block_8xh(const int is_lowbd, void *dest, int dstride, const uint16_t *in, int height) { uint8_t *dst8 = (uint8_t *)dest; uint16_t *dst16 = (uint16_t *)dest; int i; for (i = 0; i < height; i += 2) { const v128 row0 = v128_load_aligned(&in[i * CDEF_BSTRIDE]); const v128 row1 = v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]); if (is_lowbd) { /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */ const v128 res_128 = v128_pack_s16_u8(row1, row0); v64_store_aligned(&dst8[i * dstride], v128_low_v64(res_128)); v64_store_aligned(&dst8[(i + 1) * dstride], v128_high_v64(res_128)); } else { v128_store_unaligned(&dst16[i * dstride], row0); v128_store_unaligned(&dst16[(i + 1) * dstride], row1); } } } void SIMD_FUNC(cdef_filter_8_0)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/1); } else { filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/1); } } void SIMD_FUNC(cdef_filter_8_1)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/0); } else { filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/0); } } void SIMD_FUNC(cdef_filter_8_2)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/0, /*enable_secondary=*/1); } else { filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/0, /*enable_secondary=*/1); } } void SIMD_FUNC(cdef_filter_8_3)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { (void)pri_strength; (void)sec_strength; (void)dir; (void)pri_damping; (void)sec_damping; (void)coeff_shift; (void)block_width; if (block_width == 8) { copy_block_8xh(/*is_lowbd=*/1, dest, dstride, in, block_height); } else { copy_block_4xh(/*is_lowbd=*/1, dest, dstride, in, block_height); } } void SIMD_FUNC(cdef_filter_16_0)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/1); } else { filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/1); } } void SIMD_FUNC(cdef_filter_16_1)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/0); } else { filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/1, /*enable_secondary=*/0); } } void SIMD_FUNC(cdef_filter_16_2)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { if (block_width == 8) { filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/0, /*enable_secondary=*/1); } else { filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength, sec_strength, dir, pri_damping, sec_damping, coeff_shift, block_height, /*enable_primary=*/0, /*enable_secondary=*/1); } } void SIMD_FUNC(cdef_filter_16_3)(void *dest, int dstride, const uint16_t *in, int pri_strength, int sec_strength, int dir, int pri_damping, int sec_damping, int coeff_shift, int block_width, int block_height) { (void)pri_strength; (void)sec_strength; (void)dir; (void)pri_damping; (void)sec_damping; (void)coeff_shift; (void)block_width; if (block_width == 8) { copy_block_8xh(/*is_lowbd=*/0, dest, dstride, in, block_height); } else { copy_block_4xh(/*is_lowbd=*/0, dest, dstride, in, block_height); } } void SIMD_FUNC(cdef_copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride, const uint16_t *src, int sstride, int width, int height) { int i, j; for (i = 0; i < height; i++) { for (j = 0; j < (width & ~0x7); j += 8) { v128 row = v128_load_unaligned(&src[i * sstride + j]); v128_store_unaligned(&dst[i * dstride + j], row); } for (; j < width; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } } #undef CDEF_INLINE #endif // AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_