/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "av1/common/av1_common_int.h" #include "av1/common/blockd.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" #include "av1/common/resize.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem.h" void av1_convolve_horiz_rs_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const int16_t *x_filters, int x0_qn, int x_step_qn) { src -= UPSCALE_NORMATIVE_TAPS / 2 - 1; for (int y = 0; y < h; ++y) { int x_qn = x0_qn; for (int x = 0; x < w; ++x) { const uint8_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS]; const int x_filter_idx = (x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS; assert(x_filter_idx <= RS_SUBPEL_MASK); const int16_t *const x_filter = &x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS]; int sum = 0; for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k) sum += src_x[k] * x_filter[k]; dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); x_qn += x_step_qn; } src += src_stride; dst += dst_stride; } } void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const int16_t *x_filters, int x0_qn, int x_step_qn, int bd) { src -= UPSCALE_NORMATIVE_TAPS / 2 - 1; for (int y = 0; y < h; ++y) { int x_qn = x0_qn; for (int x = 0; x < w; ++x) { const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS]; const int x_filter_idx = (x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS; assert(x_filter_idx <= RS_SUBPEL_MASK); const int16_t *const x_filter = &x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS]; int sum = 0; for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k) sum += src_x[k] * x_filter[k]; dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); x_qn += x_step_qn; } src += src_stride; dst += dst_stride; } } void av1_convolve_2d_sr_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; int im_h = h + filter_params_y->taps - 1; int im_stride = w; assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bd = 8; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; // horizontal filter const uint8_t *src_horiz = src - fo_vert * src_stride; const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < im_h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; } // TODO(aomedia:3393): for 12-tap filter, in extreme cases, the result can // be beyond the following range. For better prediction, a clamping can be // added for 12 tap filter to ensure the horizontal filtering result is // within 16 bit. The same applies to the vertical filtering. assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); im_block[y * im_stride + x] = (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); } } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = 1 << offset_bits; for (int k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); int16_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits)); } } } void av1_convolve_y_sr_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn) { const int fo_vert = filter_params_y->taps / 2 - 1; // vertical filter const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_y->taps; ++k) { res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; } dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, FILTER_BITS)); } } } void av1_convolve_x_sr_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { const int fo_horiz = filter_params_x->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_0; assert(bits >= 0); assert((FILTER_BITS - conv_params->round_1) >= 0 || ((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS)); // horizontal filter const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_x->taps; ++k) { res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; } res = ROUND_POWER_OF_TWO(res, conv_params->round_0); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits)); } } } // This function is exactly the same as av1_convolve_2d_sr_c, and is an // optimized version for intrabc. Use the following 2-tap filter: // DECLARE_ALIGNED(256, static const int16_t, // av1_intrabc_bilinear_filter[2 * SUBPEL_SHIFTS]) = { // 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // }; void av1_convolve_2d_sr_intrabc_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { assert(subpel_x_qn == 8); assert(subpel_y_qn == 8); assert(filter_params_x->taps == 2 && filter_params_y->taps == 2); assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS); (void)filter_params_x; (void)subpel_x_qn; (void)filter_params_y; (void)subpel_y_qn; (void)conv_params; int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; int im_h = h + 1; int im_stride = w; assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); const int bd = 8; // horizontal filter // explicitly operate for subpel_x_qn = 8. int16_t *im = im_block; for (int y = 0; y < im_h; ++y) { for (int x = 0; x < w; ++x) { const int32_t sum = (1 << bd) + src[x] + src[x + 1]; assert(0 <= sum && sum < (1 << (bd + 2))); im[x] = sum; } src += src_stride; im += im_stride; } // vertical filter // explicitly operate for subpel_y_qn = 8. int16_t *src_vert = im_block; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int32_t sum = (1 << (bd + 2)) + src_vert[x] + src_vert[im_stride + x]; assert(0 <= sum && sum < (1 << (bd + 4))); const int16_t res = ROUND_POWER_OF_TWO(sum, 2) - ((1 << bd) + (1 << (bd - 1))); dst[x] = clip_pixel(res); } src_vert += im_stride; dst += dst_stride; } } // This function is exactly the same as av1_convolve_y_sr_c, and is an // optimized version for intrabc. void av1_convolve_y_sr_intrabc_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn) { assert(subpel_y_qn == 8); assert(filter_params_y->taps == 2); (void)filter_params_y; (void)subpel_y_qn; // vertical filter // explicitly operate for subpel_y_qn = 8. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int32_t res = src[x] + src[src_stride + x]; dst[x] = clip_pixel(ROUND_POWER_OF_TWO(res, 1)); } src += src_stride; dst += dst_stride; } } // This function is exactly the same as av1_convolve_x_sr_c, and is an // optimized version for intrabc. void av1_convolve_x_sr_intrabc_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { assert(subpel_x_qn == 8); assert(filter_params_x->taps == 2); assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS); (void)filter_params_x; (void)subpel_x_qn; (void)conv_params; // horizontal filter // explicitly operate for subpel_x_qn = 8. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int32_t res = src[x] + src[x + 1]; dst[x] = clip_pixel(ROUND_POWER_OF_TWO(res, 1)); } src += src_stride; dst += dst_stride; } } void av1_dist_wtd_convolve_2d_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; int im_h = h + filter_params_y->taps - 1; int im_stride = w; const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bd = 8; const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; // horizontal filter const uint8_t *src_horiz = src - fo_vert * src_stride; const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < im_h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; } assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); im_block[y * im_stride + x] = (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); } } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = 1 << offset_bits; for (int k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits)); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_dist_wtd_convolve_y_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, ConvolveParams *conv_params) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int fo_vert = filter_params_y->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_0; const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; // vertical filter const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_y->taps; ++k) { res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; } res *= (1 << bits); res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits)); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_dist_wtd_convolve_x_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_1; const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; // horizontal filter const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_x->taps; ++k) { res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; } res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0); res += round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits)); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_dist_wtd_convolve_2d_copy_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, ConvolveParams *conv_params) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int bits = FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0; const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { CONV_BUF_TYPE res = src[y * src_stride + x] << bits; res += round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits)); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_convolve_2d_scale_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params) { int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]; int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; assert(bits >= 0); int im_stride = w; const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bd = 8; // horizontal filter const uint8_t *src_horiz = src - fo_vert * src_stride; for (int y = 0; y < im_h; ++y) { int x_qn = subpel_x_qn; for (int x = 0; x < w; ++x, x_qn += x_step_qn) { const uint8_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)]; const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(x_filter_idx < SUBPEL_SHIFTS); const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx); int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_x[k - fo_horiz]; } assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); im_block[y * im_stride + x] = (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); } src_horiz += src_stride; } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int x = 0; x < w; ++x) { int y_qn = subpel_y_qn; for (int y = 0; y < h; ++y, y_qn += y_step_qn) { const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride]; const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(y_filter_idx < SUBPEL_SHIFTS); const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx); int32_t sum = 1 << offset_bits; for (int k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_y[(k - fo_vert) * im_stride]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->is_compound) { if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } /* Subtract round offset and convolve round */ tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits)); } else { dst16[y * dst16_stride + x] = res; } } else { /* Subtract round offset and convolve round */ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits)); } } src_vert++; } } static void convolve_2d_scale_wrapper( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params) { if (conv_params->is_compound) { assert(conv_params->dst != NULL); } av1_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, x_step_qn, subpel_y_qn, y_step_qn, conv_params); } static void convolve_2d_facade_compound( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { const bool need_x = subpel_x_qn != 0; const bool need_y = subpel_y_qn != 0; if (!need_x && !need_y) { av1_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h, conv_params); } else if (need_x && !need_y) { av1_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params); } else if (!need_x && need_y) { av1_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, conv_params); } else { assert(need_y && need_x); av1_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); } } static void convolve_2d_facade_single( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { const bool need_x = subpel_x_qn != 0; const bool need_y = subpel_y_qn != 0; if (!need_x && !need_y) { aom_convolve_copy(src, src_stride, dst, dst_stride, w, h); } else if (need_x && !need_y) { av1_convolve_x_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params); } else if (!need_x && need_y) { av1_convolve_y_sr(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn); } else { assert(need_x && need_y); av1_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); } } void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *interp_filters[2], const int subpel_x_qn, int x_step_q4, const int subpel_y_qn, int y_step_q4, int scaled, ConvolveParams *conv_params) { (void)x_step_q4; (void)y_step_q4; (void)dst; (void)dst_stride; const InterpFilterParams *filter_params_x = interp_filters[0]; const InterpFilterParams *filter_params_y = interp_filters[1]; // TODO(jingning, yunqing): Add SIMD support to 2-tap filter case. // 2-tap filter indicates that it is for IntraBC. if (filter_params_x->taps == 2 || filter_params_y->taps == 2) { assert(filter_params_x->taps == 2 && filter_params_y->taps == 2); assert(!scaled); if (subpel_x_qn && subpel_y_qn) { av1_convolve_2d_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); return; } else if (subpel_x_qn) { av1_convolve_x_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params); return; } else if (subpel_y_qn) { av1_convolve_y_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn); return; } } if (scaled) { convolve_2d_scale_wrapper(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, x_step_q4, subpel_y_qn, y_step_q4, conv_params); } else if (conv_params->is_compound) { convolve_2d_facade_compound(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); } else { convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); } } #if CONFIG_AV1_HIGHBITDEPTH void av1_highbd_convolve_x_sr_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params, int bd) { const int fo_horiz = filter_params_x->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_0; assert(bits >= 0); assert((FILTER_BITS - conv_params->round_1) >= 0 || ((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS)); // horizontal filter const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_x->taps; ++k) { res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; } res = ROUND_POWER_OF_TWO(res, conv_params->round_0); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); } } } void av1_highbd_convolve_y_sr_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, int bd) { const int fo_vert = filter_params_y->taps / 2 - 1; // vertical filter const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_y->taps; ++k) { res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; } dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, FILTER_BITS), bd); } } } void av1_highbd_convolve_2d_sr_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; int im_h = h + filter_params_y->taps - 1; int im_stride = w; assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; assert(bits >= 0); // horizontal filter const uint16_t *src_horiz = src - fo_vert * src_stride; const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < im_h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; } assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); im_block[y * im_stride + x] = ROUND_POWER_OF_TWO(sum, conv_params->round_0); } } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = 1 << offset_bits; for (int k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); } } } // This function is exactly the same as av1_highbd_convolve_2d_sr_c, and is an // optimized version for intrabc. Use the following 2-tap filter: // DECLARE_ALIGNED(256, static const int16_t, // av1_intrabc_bilinear_filter[2 * SUBPEL_SHIFTS]) = { // 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // }; void av1_highbd_convolve_2d_sr_intrabc_c( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; assert(bits >= 0); assert(subpel_x_qn == 8); assert(subpel_y_qn == 8); assert(filter_params_x->taps == 2 && filter_params_y->taps == 2); assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS); (void)filter_params_x; (void)subpel_x_qn; (void)filter_params_y; (void)subpel_y_qn; (void)conv_params; int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; int im_h = h + 1; int im_stride = w; assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); // horizontal filter // explicitly operate for subpel_x_qn = 8. int16_t *im = im_block; for (int y = 0; y < im_h; ++y) { for (int x = 0; x < w; ++x) { int32_t sum = (1 << (bd + FILTER_BITS - 1)) + 64 * (src[x] + src[x + 1]); assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))); sum = ROUND_POWER_OF_TWO(sum, conv_params->round_0); im[x] = sum; } src += src_stride; im += im_stride; } // vertical filter // explicitly operate for subpel_y_qn = 8. int16_t *src_vert = im_block; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int32_t sum = (1 << offset_bits) + 64 * (src_vert[x] + src_vert[im_stride + x]); assert(0 <= sum && sum < (1 << (offset_bits + 2))); const int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); } src_vert += im_stride; dst += dst_stride; } } // This function is exactly the same as av1_highbd_convolve_y_sr_c, and is an // optimized version for intrabc. void av1_highbd_convolve_y_sr_intrabc_c( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, int bd) { assert(subpel_y_qn == 8); assert(filter_params_y->taps == 2); (void)filter_params_y; (void)subpel_y_qn; // vertical filter // explicitly operate for subpel_y_qn = 8. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int32_t res = src[x] + src[src_stride + x]; dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, 1), bd); } src += src_stride; dst += dst_stride; } } // This function is exactly the same as av1_highbd_convolve_x_sr_c, and is an // optimized version for intrabc. void av1_highbd_convolve_x_sr_intrabc_c( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params, int bd) { const int bits = FILTER_BITS - conv_params->round_0; assert(bits >= 0); assert(subpel_x_qn == 8); assert(filter_params_x->taps == 2); assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS); (void)filter_params_x; (void)subpel_x_qn; // horizontal filter // explicitly operate for subpel_x_qn = 8. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 64 * (src[x] + src[x + 1]); res = ROUND_POWER_OF_TWO(res, conv_params->round_0); dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); } src += src_stride; dst += dst_stride; } } void av1_highbd_dist_wtd_convolve_2d_c( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { int x, y, k; int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; int im_h = h + filter_params_y->taps - 1; int im_stride = w; const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; assert(round_bits >= 0); // horizontal filter const uint16_t *src_horiz = src - fo_vert * src_stride; const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (y = 0; y < im_h; ++y) { for (x = 0; x < w; ++x) { int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; } assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); (void)bd; im_block[y * im_stride + x] = (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); } } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { int32_t sum = 1 << offset_bits; for (k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_highbd_dist_wtd_convolve_x_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params, int bd) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int fo_horiz = filter_params_x->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_1; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; assert(round_bits >= 0); assert(bits >= 0); // horizontal filter const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_x->taps; ++k) { res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; } res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0); res += round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_highbd_dist_wtd_convolve_y_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int fo_vert = filter_params_y->taps / 2 - 1; const int bits = FILTER_BITS - conv_params->round_0; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; assert(round_bits >= 0); assert(bits >= 0); // vertical filter const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { int32_t res = 0; for (int k = 0; k < filter_params_y->taps; ++k) { res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; } res *= (1 << bits); res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_highbd_dist_wtd_convolve_2d_copy_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, ConvolveParams *conv_params, int bd) { CONV_BUF_TYPE *dst16 = conv_params->dst; int dst16_stride = conv_params->dst_stride; const int bits = FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); assert(bits >= 0); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { CONV_BUF_TYPE res = src[y * src_stride + x] << bits; res += round_offset; if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } tmp -= round_offset; dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); } else { dst16[y * dst16_stride + x] = res; } } } } void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params, int bd) { int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]; int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; int im_stride = w; const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; assert(bits >= 0); // horizontal filter const uint16_t *src_horiz = src - fo_vert * src_stride; for (int y = 0; y < im_h; ++y) { int x_qn = subpel_x_qn; for (int x = 0; x < w; ++x, x_qn += x_step_qn) { const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)]; const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(x_filter_idx < SUBPEL_SHIFTS); const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx); int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < filter_params_x->taps; ++k) { sum += x_filter[k] * src_x[k - fo_horiz]; } assert(filter_params_x->taps > 8 || (0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)))); im_block[y * im_stride + x] = (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); } src_horiz += src_stride; } // vertical filter int16_t *src_vert = im_block + fo_vert * im_stride; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; for (int x = 0; x < w; ++x) { int y_qn = subpel_y_qn; for (int y = 0; y < h; ++y, y_qn += y_step_qn) { const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride]; const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(y_filter_idx < SUBPEL_SHIFTS); const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx); int32_t sum = 1 << offset_bits; for (int k = 0; k < filter_params_y->taps; ++k) { sum += y_filter[k] * src_y[(k - fo_vert) * im_stride]; } assert(filter_params_y->taps > 8 || (0 <= sum && sum < (1 << (offset_bits + 2)))); CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->is_compound) { if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_dist_wtd_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } /* Subtract round offset and convolve round */ tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); } else { dst16[y * dst16_stride + x] = res; } } else { /* Subtract round offset and convolve round */ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); } } src_vert++; } } static void highbd_convolve_2d_facade_compound( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, const int w, const int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { const bool need_x = subpel_x_qn != 0; const bool need_y = subpel_y_qn != 0; if (!need_x && !need_y) { av1_highbd_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h, conv_params, bd); } else if (need_x && !need_y) { av1_highbd_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params, bd); } else if (!need_x && need_y) { av1_highbd_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, conv_params, bd); } else { assert(need_x && need_y); av1_highbd_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); } } static void highbd_convolve_2d_facade_single( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, const int w, const int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params, int bd) { const bool need_x = subpel_x_qn != 0; const bool need_y = subpel_y_qn != 0; if (!need_x && !need_y) { aom_highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h); } else if (need_x && !need_y) { av1_highbd_convolve_x_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params, bd); } else if (!need_x && need_y) { av1_highbd_convolve_y_sr(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, bd); } else { assert(need_x && need_y); av1_highbd_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); } } void av1_highbd_convolve_2d_facade(const uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, int w, int h, const InterpFilterParams *interp_filters[2], const int subpel_x_qn, int x_step_q4, const int subpel_y_qn, int y_step_q4, int scaled, ConvolveParams *conv_params, int bd) { (void)x_step_q4; (void)y_step_q4; (void)dst_stride; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const InterpFilterParams *filter_params_x = interp_filters[0]; const InterpFilterParams *filter_params_y = interp_filters[1]; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); // 2-tap filter indicates that it is for IntraBC. if (filter_params_x->taps == 2 || filter_params_y->taps == 2) { assert(filter_params_x->taps == 2 && filter_params_y->taps == 2); assert(!scaled); if (subpel_x_qn && subpel_y_qn) { av1_highbd_convolve_2d_sr_intrabc_c( src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); return; } else if (subpel_x_qn) { av1_highbd_convolve_x_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params, bd); return; } else if (subpel_y_qn) { av1_highbd_convolve_y_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn, bd); return; } } if (scaled) { if (conv_params->is_compound) { assert(conv_params->dst != NULL); } av1_highbd_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, x_step_q4, subpel_y_qn, y_step_q4, conv_params, bd); } else if (conv_params->is_compound) { highbd_convolve_2d_facade_compound( src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); } else { highbd_convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); } } #endif // CONFIG_AV1_HIGHBITDEPTH // Note: Fixed size intermediate buffers, place limits on parameters // of some functions. 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the temp buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 128x128 pixels. // --128 rows in the downscaled frame span a distance of (128 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((128 - 1) * 32 + 15) >> 4 + 8 = 263. #define WIENER_MAX_EXT_SIZE 263 static INLINE int horz_scalar_product(const uint8_t *a, const int16_t *b) { int sum = 0; for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k]; return sum; } #if CONFIG_AV1_HIGHBITDEPTH static INLINE int highbd_horz_scalar_product(const uint16_t *a, const int16_t *b) { int sum = 0; for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k]; return sum; } #endif static INLINE int highbd_vert_scalar_product(const uint16_t *a, ptrdiff_t a_stride, const int16_t *b) { int sum = 0; for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k * a_stride] * b[k]; return sum; } static const InterpKernel *get_filter_base(const int16_t *filter) { // NOTE: This assumes that the filter table is 256-byte aligned. // TODO(agrange) Modify to make independent of table alignment. return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF)); } static int get_filter_offset(const int16_t *f, const InterpKernel *base) { return (int)((const InterpKernel *)(intptr_t)f - base); } static void convolve_add_src_horiz_hip(const uint8_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4, int x_step_q4, int w, int h, int round0_bits) { const int bd = 8; src -= SUBPEL_TAPS / 2 - 1; for (int y = 0; y < h; ++y) { int x_q4 = x0_q4; for (int x = 0; x < w; ++x) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) + (1 << (bd + FILTER_BITS - 1)); const int sum = horz_scalar_product(src_x, x_filter) + rounding; dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0, WIENER_CLAMP_LIMIT(round0_bits, bd) - 1); x_q4 += x_step_q4; } src += src_stride; dst += dst_stride; } } static void convolve_add_src_vert_hip(const uint16_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, int y_step_q4, int w, int h, int round1_bits) { const int bd = 8; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (int x = 0; x < w; ++x) { int y_q4 = y0_q4; for (int y = 0; y < h; ++y) { const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; const int rounding = ((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) - (1 << (bd + round1_bits - 1)); const int sum = highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding; dst[y * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, round1_bits)); y_q4 += y_step_q4; } ++src; ++dst; } } void av1_wiener_convolve_add_src_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, const WienerConvolveParams *conv_params) { const InterpKernel *const filters_x = get_filter_base(filter_x); const int x0_q4 = get_filter_offset(filter_x, filters_x); const InterpKernel *const filters_y = get_filter_base(filter_y); const int y0_q4 = get_filter_offset(filter_y, filters_y); uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE]; const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS - 1; memset(temp + (intermediate_height * MAX_SB_SIZE), 0, MAX_SB_SIZE); assert(w <= MAX_SB_SIZE); assert(h <= MAX_SB_SIZE); assert(y_step_q4 <= 32); assert(x_step_q4 <= 32); convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, MAX_SB_SIZE, filters_x, x0_q4, x_step_q4, w, intermediate_height, conv_params->round_0); convolve_add_src_vert_hip(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst, dst_stride, filters_y, y0_q4, y_step_q4, w, h, conv_params->round_1); } #if CONFIG_AV1_HIGHBITDEPTH static void highbd_convolve_add_src_horiz_hip( const uint8_t *src8, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4, int x_step_q4, int w, int h, int round0_bits, int bd) { const int extraprec_clamp_limit = WIENER_CLAMP_LIMIT(round0_bits, bd); uint16_t *src = CONVERT_TO_SHORTPTR(src8); src -= SUBPEL_TAPS / 2 - 1; for (int y = 0; y < h; ++y) { int x_q4 = x0_q4; for (int x = 0; x < w; ++x) { const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) + (1 << (bd + FILTER_BITS - 1)); const int sum = highbd_horz_scalar_product(src_x, x_filter) + rounding; dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0, extraprec_clamp_limit - 1); x_q4 += x_step_q4; } src += src_stride; dst += dst_stride; } } static void highbd_convolve_add_src_vert_hip( const uint16_t *src, ptrdiff_t src_stride, uint8_t *dst8, ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, int y_step_q4, int w, int h, int round1_bits, int bd) { uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (int x = 0; x < w; ++x) { int y_q4 = y0_q4; for (int y = 0; y < h; ++y) { const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; const int rounding = ((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) - (1 << (bd + round1_bits - 1)); const int sum = highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding; dst[y * dst_stride] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, round1_bits), bd); y_q4 += y_step_q4; } ++src; ++dst; } } void av1_highbd_wiener_convolve_add_src_c( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, const WienerConvolveParams *conv_params, int bd) { const InterpKernel *const filters_x = get_filter_base(filter_x); const int x0_q4 = get_filter_offset(filter_x, filters_x); const InterpKernel *const filters_y = get_filter_base(filter_y); const int y0_q4 = get_filter_offset(filter_y, filters_y); uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE]; const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; assert(w <= MAX_SB_SIZE); assert(h <= MAX_SB_SIZE); assert(y_step_q4 <= 32); assert(x_step_q4 <= 32); assert(bd + FILTER_BITS - conv_params->round_0 + 2 <= 16); highbd_convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, MAX_SB_SIZE, filters_x, x0_q4, x_step_q4, w, intermediate_height, conv_params->round_0, bd); highbd_convolve_add_src_vert_hip( temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst, dst_stride, filters_y, y0_q4, y_step_q4, w, h, conv_params->round_1, bd); } #endif // CONFIG_AV1_HIGHBITDEPTH