/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_MV_H_ #define AOM_AV1_COMMON_MV_H_ #include #include "av1/common/common.h" #include "av1/common/common_data.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/flow_estimation/flow_estimation.h" #ifdef __cplusplus extern "C" { #endif #define INVALID_MV 0x80008000 #define INVALID_MV_ROW_COL -32768 #define GET_MV_RAWPEL(x) (((x) + 3 + ((x) >= 0)) >> 3) #define GET_MV_SUBPEL(x) ((x)*8) #define MARK_MV_INVALID(mv) \ do { \ ((int_mv *)(mv))->as_int = INVALID_MV; \ } while (0) #define CHECK_MV_EQUAL(x, y) (((x).row == (y).row) && ((x).col == (y).col)) // The motion vector in units of full pixel typedef struct fullpel_mv { int16_t row; int16_t col; } FULLPEL_MV; // The motion vector in units of 1/8-pel typedef struct mv { int16_t row; int16_t col; } MV; static const MV kZeroMv = { 0, 0 }; static const FULLPEL_MV kZeroFullMv = { 0, 0 }; typedef union int_mv { uint32_t as_int; MV as_mv; FULLPEL_MV as_fullmv; } int_mv; /* facilitates faster equality tests and copies */ typedef struct mv32 { int32_t row; int32_t col; } MV32; // The mv limit for fullpel mvs typedef struct { int col_min; int col_max; int row_min; int row_max; } FullMvLimits; // The mv limit for subpel mvs typedef struct { int col_min; int col_max; int row_min; int row_max; } SubpelMvLimits; static AOM_INLINE FULLPEL_MV get_fullmv_from_mv(const MV *subpel_mv) { const FULLPEL_MV full_mv = { (int16_t)GET_MV_RAWPEL(subpel_mv->row), (int16_t)GET_MV_RAWPEL(subpel_mv->col) }; return full_mv; } static AOM_INLINE MV get_mv_from_fullmv(const FULLPEL_MV *full_mv) { const MV subpel_mv = { (int16_t)GET_MV_SUBPEL(full_mv->row), (int16_t)GET_MV_SUBPEL(full_mv->col) }; return subpel_mv; } static AOM_INLINE void convert_fullmv_to_mv(int_mv *mv) { mv->as_mv = get_mv_from_fullmv(&mv->as_fullmv); } // Bits of precision used for the model #define WARPEDMODEL_PREC_BITS 16 #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS) #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3)) // Bits of subpel precision for warped interpolation #define WARPEDPIXEL_PREC_BITS 6 #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) #define WARP_PARAM_REDUCE_BITS 6 #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) typedef struct { int global_warp_allowed; int local_warp_allowed; } WarpTypesAllowed; // The order of values in the wmmat matrix below is best described // by the affine transformation: // [x' (m2 m3 m0 [x // z . y' = m4 m5 m1 * y // 1] 0 0 1) 1] typedef struct { int32_t wmmat[MAX_PARAMDIM]; int16_t alpha, beta, gamma, delta; TransformationType wmtype; int8_t invalid; } WarpedMotionParams; /* clang-format off */ static const WarpedMotionParams default_warp_params = { { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS) }, 0, 0, 0, 0, IDENTITY, 0, }; /* clang-format on */ // The following constants describe the various precisions // of different parameters in the global motion experiment. // // Given the general homography: // [x' (a b c [x // z . y' = d e f * y // 1] g h i) 1] // // Constants using the name ALPHA here are related to parameters // a, b, d, e. Constants using the name TRANS are related // to parameters c and f. // // Anything ending in PREC_BITS is the number of bits of precision // to maintain when converting from double to integer. // // The ABS parameters are used to create an upper and lower bound // for each parameter. In other words, after a parameter is integerized // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). // // XXX_PREC_DIFF and XXX_DECODE_FACTOR // are computed once here to prevent repetitive // computation on the decoder side. These are // to allow the global motion parameters to be encoded in a lower // precision than the warped model precision. This means that they // need to be changed to warped precision when they are decoded. // // XX_MIN, XX_MAX are also computed to avoid repeated computation #define SUBEXPFIN_K 3 #define GM_TRANS_PREC_BITS 6 #define GM_ABS_TRANS_BITS 12 #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) #define GM_ALPHA_PREC_BITS 15 #define GM_ABS_ALPHA_BITS 12 #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) #define GM_TRANS_MIN -GM_TRANS_MAX #define GM_ALPHA_MIN -GM_ALPHA_MAX static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { const int bw = block_size_wide[bs]; return mi_col * MI_SIZE + bw / 2 - 1; } static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { const int bh = block_size_high[bs]; return mi_row * MI_SIZE + bh / 2 - 1; } static INLINE int convert_to_trans_prec(int allow_hp, int coor) { if (allow_hp) return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); else return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; } static INLINE void integer_mv_precision(MV *mv) { int mod = (mv->row % 8); if (mod != 0) { mv->row -= mod; if (abs(mod) > 4) { if (mod > 0) { mv->row += 8; } else { mv->row -= 8; } } } mod = (mv->col % 8); if (mod != 0) { mv->col -= mod; if (abs(mod) > 4) { if (mod > 0) { mv->col += 8; } else { mv->col -= 8; } } } } // Convert a global motion vector into a motion vector at the centre of the // given block. // // The resulting motion vector will have three fractional bits of precision. If // allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and // is_integer is true, the bottom three bits will be zero (so the motion vector // represents an integer) static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, int allow_hp, BLOCK_SIZE bsize, int mi_col, int mi_row, int is_integer) { int_mv res; if (gm->wmtype == IDENTITY) { res.as_int = 0; return res; } const int32_t *mat = gm->wmmat; int x, y, tx, ty; if (gm->wmtype == TRANSLATION) { // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16) // bits of fractional precision. The offset for a translation is stored in // entries 0 and 1. For translations, all but the top three (two if // cm->features.allow_high_precision_mv is false) fractional bits are always // zero. // // After the right shifts, there are 3 fractional bits of precision. If // allow_hp is false, the bottom bit is always zero (so we don't need a // call to convert_to_trans_prec here) // // Note: There is an AV1 specification bug here: // // gm->wmmat[0] is supposed to be the horizontal translation, and so should // go into res.as_mv.col, and gm->wmmat[1] is supposed to be the vertical // translation and so should go into res.as_mv.row // // However, in the spec, these assignments are accidentally reversed, and so // we must keep this incorrect logic to match the spec. // // See also: https://crbug.com/aomedia/3328 res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp)); if (is_integer) { integer_mv_precision(&res.as_mv); } return res; } x = block_center_x(mi_col, bsize); y = block_center_y(mi_row, bsize); if (gm->wmtype == ROTZOOM) { assert(gm->wmmat[5] == gm->wmmat[2]); assert(gm->wmmat[4] == -gm->wmmat[3]); } const int xc = (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0]; const int yc = mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1]; tx = convert_to_trans_prec(allow_hp, xc); ty = convert_to_trans_prec(allow_hp, yc); res.as_mv.row = ty; res.as_mv.col = tx; if (is_integer) { integer_mv_precision(&res.as_mv); } return res; } static INLINE TransformationType get_wmtype(const WarpedMotionParams *gm) { if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] && gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) { return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION); } if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4]) return ROTZOOM; else return AFFINE; } typedef struct candidate_mv { int_mv this_mv; int_mv comp_mv; } CANDIDATE_MV; static INLINE int is_zero_mv(const MV *mv) { return *((const uint32_t *)mv) == 0; } static INLINE int is_equal_mv(const MV *a, const MV *b) { return *((const uint32_t *)a) == *((const uint32_t *)b); } static INLINE void clamp_mv(MV *mv, const SubpelMvLimits *mv_limits) { mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); } static INLINE void clamp_fullmv(FULLPEL_MV *mv, const FullMvLimits *mv_limits) { mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); } #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_COMMON_MV_H_