/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/mvref_common.h" #include "av1/common/warped_motion.h" // Although we assign 32 bit integers, all the values are strictly under 14 // bits. static int div_mult[32] = { 0, 16384, 8192, 5461, 4096, 3276, 2730, 2340, 2048, 1820, 1638, 1489, 1365, 1260, 1170, 1092, 1024, 963, 910, 862, 819, 780, 744, 712, 682, 655, 630, 606, 585, 564, 546, 528 }; // TODO(jingning): Consider the use of lookup table for (num / den) // altogether. static AOM_INLINE void get_mv_projection(MV *output, MV ref, int num, int den) { den = AOMMIN(den, MAX_FRAME_DISTANCE); num = num > 0 ? AOMMIN(num, MAX_FRAME_DISTANCE) : AOMMAX(num, -MAX_FRAME_DISTANCE); const int mv_row = ROUND_POWER_OF_TWO_SIGNED(ref.row * num * div_mult[den], 14); const int mv_col = ROUND_POWER_OF_TWO_SIGNED(ref.col * num * div_mult[den], 14); const int clamp_max = MV_UPP - 1; const int clamp_min = MV_LOW + 1; output->row = (int16_t)clamp(mv_row, clamp_min, clamp_max); output->col = (int16_t)clamp(mv_col, clamp_min, clamp_max); } void av1_copy_frame_mvs(const AV1_COMMON *const cm, const MB_MODE_INFO *const mi, int mi_row, int mi_col, int x_mis, int y_mis) { const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1); MV_REF *frame_mvs = cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1); x_mis = ROUND_POWER_OF_TWO(x_mis, 1); y_mis = ROUND_POWER_OF_TWO(y_mis, 1); int w, h; for (h = 0; h < y_mis; h++) { MV_REF *mv = frame_mvs; for (w = 0; w < x_mis; w++) { mv->ref_frame = NONE_FRAME; mv->mv.as_int = 0; for (int idx = 0; idx < 2; ++idx) { MV_REFERENCE_FRAME ref_frame = mi->ref_frame[idx]; if (ref_frame > INTRA_FRAME) { int8_t ref_idx = cm->ref_frame_side[ref_frame]; if (ref_idx) continue; if ((abs(mi->mv[idx].as_mv.row) > REFMVS_LIMIT) || (abs(mi->mv[idx].as_mv.col) > REFMVS_LIMIT)) continue; mv->ref_frame = ref_frame; mv->mv.as_int = mi->mv[idx].as_int; } } mv++; } frame_mvs += frame_mvs_stride; } } static AOM_INLINE void add_ref_mv_candidate( const MB_MODE_INFO *const candidate, const MV_REFERENCE_FRAME rf[2], uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, CANDIDATE_MV *ref_mv_stack, uint16_t *ref_mv_weight, int_mv *gm_mv_candidates, const WarpedMotionParams *gm_params, uint16_t weight) { if (!is_inter_block(candidate)) return; assert(weight % 2 == 0); int index, ref; if (rf[1] == NONE_FRAME) { // single reference frame for (ref = 0; ref < 2; ++ref) { if (candidate->ref_frame[ref] == rf[0]) { const int is_gm_block = is_global_mv_block(candidate, gm_params[rf[0]].wmtype); const int_mv this_refmv = is_gm_block ? gm_mv_candidates[0] : get_block_mv(candidate, ref); for (index = 0; index < *refmv_count; ++index) { if (ref_mv_stack[index].this_mv.as_int == this_refmv.as_int) { ref_mv_weight[index] += weight; break; } } // Add a new item to the list. if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[index].this_mv = this_refmv; ref_mv_weight[index] = weight; ++(*refmv_count); } if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count; ++*ref_match_count; } } } else { // compound reference frame if (candidate->ref_frame[0] == rf[0] && candidate->ref_frame[1] == rf[1]) { int_mv this_refmv[2]; for (ref = 0; ref < 2; ++ref) { if (is_global_mv_block(candidate, gm_params[rf[ref]].wmtype)) this_refmv[ref] = gm_mv_candidates[ref]; else this_refmv[ref] = get_block_mv(candidate, ref); } for (index = 0; index < *refmv_count; ++index) { if ((ref_mv_stack[index].this_mv.as_int == this_refmv[0].as_int) && (ref_mv_stack[index].comp_mv.as_int == this_refmv[1].as_int)) { ref_mv_weight[index] += weight; break; } } // Add a new item to the list. if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[index].this_mv = this_refmv[0]; ref_mv_stack[index].comp_mv = this_refmv[1]; ref_mv_weight[index] = weight; ++(*refmv_count); } if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count; ++*ref_match_count; } } } static AOM_INLINE void scan_row_mbmi( const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_col, const MV_REFERENCE_FRAME rf[2], int row_offset, CANDIDATE_MV *ref_mv_stack, uint16_t *ref_mv_weight, uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, int max_row_offset, int *processed_rows) { int end_mi = AOMMIN(xd->width, cm->mi_params.mi_cols - mi_col); end_mi = AOMMIN(end_mi, mi_size_wide[BLOCK_64X64]); const int width_8x8 = mi_size_wide[BLOCK_8X8]; const int width_16x16 = mi_size_wide[BLOCK_16X16]; int col_offset = 0; // TODO(jingning): Revisit this part after cb4x4 is stable. if (abs(row_offset) > 1) { col_offset = 1; if ((mi_col & 0x01) && xd->width < width_8x8) --col_offset; } const int use_step_16 = (xd->width >= 16); MB_MODE_INFO **const candidate_mi0 = xd->mi + row_offset * xd->mi_stride; for (int i = 0; i < end_mi;) { const MB_MODE_INFO *const candidate = candidate_mi0[col_offset + i]; const int candidate_bsize = candidate->bsize; const int n4_w = mi_size_wide[candidate_bsize]; int len = AOMMIN(xd->width, n4_w); if (use_step_16) len = AOMMAX(width_16x16, len); else if (abs(row_offset) > 1) len = AOMMAX(len, width_8x8); uint16_t weight = 2; if (xd->width >= width_8x8 && xd->width <= n4_w) { uint16_t inc = AOMMIN(-max_row_offset + row_offset + 1, mi_size_high[candidate_bsize]); // Obtain range used in weight calculation. weight = AOMMAX(weight, inc); // Update processed rows. *processed_rows = inc - row_offset - 1; } add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, ref_mv_weight, gm_mv_candidates, cm->global_motion, len * weight); i += len; } } static AOM_INLINE void scan_col_mbmi( const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, const MV_REFERENCE_FRAME rf[2], int col_offset, CANDIDATE_MV *ref_mv_stack, uint16_t *ref_mv_weight, uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, int max_col_offset, int *processed_cols) { int end_mi = AOMMIN(xd->height, cm->mi_params.mi_rows - mi_row); end_mi = AOMMIN(end_mi, mi_size_high[BLOCK_64X64]); const int n8_h_8 = mi_size_high[BLOCK_8X8]; const int n8_h_16 = mi_size_high[BLOCK_16X16]; int i; int row_offset = 0; if (abs(col_offset) > 1) { row_offset = 1; if ((mi_row & 0x01) && xd->height < n8_h_8) --row_offset; } const int use_step_16 = (xd->height >= 16); for (i = 0; i < end_mi;) { const MB_MODE_INFO *const candidate = xd->mi[(row_offset + i) * xd->mi_stride + col_offset]; const int candidate_bsize = candidate->bsize; const int n4_h = mi_size_high[candidate_bsize]; int len = AOMMIN(xd->height, n4_h); if (use_step_16) len = AOMMAX(n8_h_16, len); else if (abs(col_offset) > 1) len = AOMMAX(len, n8_h_8); int weight = 2; if (xd->height >= n8_h_8 && xd->height <= n4_h) { int inc = AOMMIN(-max_col_offset + col_offset + 1, mi_size_wide[candidate_bsize]); // Obtain range used in weight calculation. weight = AOMMAX(weight, inc); // Update processed cols. *processed_cols = inc - col_offset - 1; } add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, ref_mv_weight, gm_mv_candidates, cm->global_motion, len * weight); i += len; } } static AOM_INLINE void scan_blk_mbmi( const AV1_COMMON *cm, const MACROBLOCKD *xd, const int mi_row, const int mi_col, const MV_REFERENCE_FRAME rf[2], int row_offset, int col_offset, CANDIDATE_MV *ref_mv_stack, uint16_t *ref_mv_weight, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, uint8_t *refmv_count) { const TileInfo *const tile = &xd->tile; POSITION mi_pos; mi_pos.row = row_offset; mi_pos.col = col_offset; if (is_inside(tile, mi_col, mi_row, &mi_pos)) { const MB_MODE_INFO *const candidate = xd->mi[mi_pos.row * xd->mi_stride + mi_pos.col]; const int len = mi_size_wide[BLOCK_8X8]; add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, ref_mv_weight, gm_mv_candidates, cm->global_motion, 2 * len); } // Analyze a single 8x8 block motion information. } static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, int bs) { const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size]; const int mask_row = mi_row & (sb_mi_size - 1); const int mask_col = mi_col & (sb_mi_size - 1); if (bs > mi_size_wide[BLOCK_64X64]) return 0; // In a split partition all apart from the bottom right has a top right int has_tr = !((mask_row & bs) && (mask_col & bs)); // bs > 0 and bs is a power of 2 assert(bs > 0 && !(bs & (bs - 1))); // For each 4x4 group of blocks, when the bottom right is decoded the blocks // to the right have not been decoded therefore the bottom right does // not have a top right while (bs < sb_mi_size) { if (mask_col & bs) { if ((mask_col & (2 * bs)) && (mask_row & (2 * bs))) { has_tr = 0; break; } } else { break; } bs <<= 1; } // In a VERTICAL or VERTICAL_4 partition, all partition before the last one // always have a top right (as the block above will have been decoded). if (xd->width < xd->height) { if (!xd->is_last_vertical_rect) has_tr = 1; } // In a HORIZONTAL or HORIZONTAL_4 partition, partitions after the first one // never have a top right (as the block to the right won't have been decoded). if (xd->width > xd->height) { if (!xd->is_first_horizontal_rect) has_tr = 0; } // The bottom left square of a Vertical A (in the old format) does // not have a top right as it is decoded before the right hand // rectangle of the partition if (xd->mi[0]->partition == PARTITION_VERT_A) { if (xd->width == xd->height) if (mask_row & bs) has_tr = 0; } return has_tr; } static int check_sb_border(const int mi_row, const int mi_col, const int row_offset, const int col_offset) { const int sb_mi_size = mi_size_wide[BLOCK_64X64]; const int row = mi_row & (sb_mi_size - 1); const int col = mi_col & (sb_mi_size - 1); if (row + row_offset < 0 || row + row_offset >= sb_mi_size || col + col_offset < 0 || col + col_offset >= sb_mi_size) return 0; return 1; } static int add_tpl_ref_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, MV_REFERENCE_FRAME ref_frame, int blk_row, int blk_col, int_mv *gm_mv_candidates, uint8_t *const refmv_count, CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE], uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE], int16_t *mode_context) { POSITION mi_pos; mi_pos.row = (mi_row & 0x01) ? blk_row : blk_row + 1; mi_pos.col = (mi_col & 0x01) ? blk_col : blk_col + 1; if (!is_inside(&xd->tile, mi_col, mi_row, &mi_pos)) return 0; const TPL_MV_REF *prev_frame_mvs = cm->tpl_mvs + ((mi_row + mi_pos.row) >> 1) * (cm->mi_params.mi_stride >> 1) + ((mi_col + mi_pos.col) >> 1); if (prev_frame_mvs->mfmv0.as_int == INVALID_MV) return 0; MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_frame); const uint16_t weight_unit = 1; // mi_size_wide[BLOCK_8X8]; const int cur_frame_index = cm->cur_frame->order_hint; const RefCntBuffer *const buf_0 = get_ref_frame_buf(cm, rf[0]); const int frame0_index = buf_0->order_hint; const int cur_offset_0 = get_relative_dist(&cm->seq_params->order_hint_info, cur_frame_index, frame0_index); int idx; const int allow_high_precision_mv = cm->features.allow_high_precision_mv; const int force_integer_mv = cm->features.cur_frame_force_integer_mv; int_mv this_refmv; get_mv_projection(&this_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv, cur_offset_0, prev_frame_mvs->ref_frame_offset); lower_mv_precision(&this_refmv.as_mv, allow_high_precision_mv, force_integer_mv); if (rf[1] == NONE_FRAME) { if (blk_row == 0 && blk_col == 0) { if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 || abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); } for (idx = 0; idx < *refmv_count; ++idx) if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int) break; if (idx < *refmv_count) ref_mv_weight[idx] += 2 * weight_unit; if (idx == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int; ref_mv_weight[idx] = 2 * weight_unit; ++(*refmv_count); } } else { // Process compound inter mode const RefCntBuffer *const buf_1 = get_ref_frame_buf(cm, rf[1]); const int frame1_index = buf_1->order_hint; const int cur_offset_1 = get_relative_dist(&cm->seq_params->order_hint_info, cur_frame_index, frame1_index); int_mv comp_refmv; get_mv_projection(&comp_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv, cur_offset_1, prev_frame_mvs->ref_frame_offset); lower_mv_precision(&comp_refmv.as_mv, allow_high_precision_mv, force_integer_mv); if (blk_row == 0 && blk_col == 0) { if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 || abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16 || abs(comp_refmv.as_mv.row - gm_mv_candidates[1].as_mv.row) >= 16 || abs(comp_refmv.as_mv.col - gm_mv_candidates[1].as_mv.col) >= 16) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); } for (idx = 0; idx < *refmv_count; ++idx) { if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int && comp_refmv.as_int == ref_mv_stack[idx].comp_mv.as_int) break; } if (idx < *refmv_count) ref_mv_weight[idx] += 2 * weight_unit; if (idx == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int; ref_mv_stack[idx].comp_mv.as_int = comp_refmv.as_int; ref_mv_weight[idx] = 2 * weight_unit; ++(*refmv_count); } } return 1; } static AOM_INLINE void process_compound_ref_mv_candidate( const MB_MODE_INFO *const candidate, const AV1_COMMON *const cm, const MV_REFERENCE_FRAME *const rf, int_mv ref_id[2][2], int ref_id_count[2], int_mv ref_diff[2][2], int ref_diff_count[2]) { for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { MV_REFERENCE_FRAME can_rf = candidate->ref_frame[rf_idx]; for (int cmp_idx = 0; cmp_idx < 2; ++cmp_idx) { if (can_rf == rf[cmp_idx] && ref_id_count[cmp_idx] < 2) { ref_id[cmp_idx][ref_id_count[cmp_idx]] = candidate->mv[rf_idx]; ++ref_id_count[cmp_idx]; } else if (can_rf > INTRA_FRAME && ref_diff_count[cmp_idx] < 2) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[can_rf] != cm->ref_frame_sign_bias[rf[cmp_idx]]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } ref_diff[cmp_idx][ref_diff_count[cmp_idx]] = this_mv; ++ref_diff_count[cmp_idx]; } } } } static AOM_INLINE void process_single_ref_mv_candidate( const MB_MODE_INFO *const candidate, const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame, uint8_t *const refmv_count, CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE], uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE]) { for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { if (candidate->ref_frame[rf_idx] > INTRA_FRAME) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[candidate->ref_frame[rf_idx]] != cm->ref_frame_sign_bias[ref_frame]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } int stack_idx; for (stack_idx = 0; stack_idx < *refmv_count; ++stack_idx) { const int_mv stack_mv = ref_mv_stack[stack_idx].this_mv; if (this_mv.as_int == stack_mv.as_int) break; } if (stack_idx == *refmv_count) { ref_mv_stack[stack_idx].this_mv = this_mv; // TODO(jingning): Set an arbitrary small number here. The weight // doesn't matter as long as it is properly initialized. ref_mv_weight[stack_idx] = 2; ++(*refmv_count); } } } } static AOM_INLINE void setup_ref_mv_list( const AV1_COMMON *cm, const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref_frame, uint8_t *const refmv_count, CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE], uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[MAX_MV_REF_CANDIDATES], int_mv *gm_mv_candidates, int mi_row, int mi_col, int16_t *mode_context) { const int bs = AOMMAX(xd->width, xd->height); const int has_tr = has_top_right(cm, xd, mi_row, mi_col, bs); MV_REFERENCE_FRAME rf[2]; const TileInfo *const tile = &xd->tile; int max_row_offset = 0, max_col_offset = 0; const int row_adj = (xd->height < mi_size_high[BLOCK_8X8]) && (mi_row & 0x01); const int col_adj = (xd->width < mi_size_wide[BLOCK_8X8]) && (mi_col & 0x01); int processed_rows = 0; int processed_cols = 0; av1_set_ref_frame(rf, ref_frame); mode_context[ref_frame] = 0; *refmv_count = 0; // Find valid maximum row/col offset. if (xd->up_available) { max_row_offset = -(MVREF_ROW_COLS << 1) + row_adj; if (xd->height < mi_size_high[BLOCK_8X8]) max_row_offset = -(2 << 1) + row_adj; max_row_offset = find_valid_row_offset(tile, mi_row, max_row_offset); } if (xd->left_available) { max_col_offset = -(MVREF_ROW_COLS << 1) + col_adj; if (xd->width < mi_size_wide[BLOCK_8X8]) max_col_offset = -(2 << 1) + col_adj; max_col_offset = find_valid_col_offset(tile, mi_col, max_col_offset); } uint8_t col_match_count = 0; uint8_t row_match_count = 0; uint8_t newmv_count = 0; // Scan the first above row mode info. row_offset = -1; if (abs(max_row_offset) >= 1) scan_row_mbmi(cm, xd, mi_col, rf, -1, ref_mv_stack, ref_mv_weight, refmv_count, &row_match_count, &newmv_count, gm_mv_candidates, max_row_offset, &processed_rows); // Scan the first left column mode info. col_offset = -1; if (abs(max_col_offset) >= 1) scan_col_mbmi(cm, xd, mi_row, rf, -1, ref_mv_stack, ref_mv_weight, refmv_count, &col_match_count, &newmv_count, gm_mv_candidates, max_col_offset, &processed_cols); // Check top-right boundary if (has_tr) scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, xd->width, ref_mv_stack, ref_mv_weight, &row_match_count, &newmv_count, gm_mv_candidates, refmv_count); const uint8_t nearest_match = (row_match_count > 0) + (col_match_count > 0); const uint8_t nearest_refmv_count = *refmv_count; // TODO(yunqing): for comp_search, do it for all 3 cases. for (int idx = 0; idx < nearest_refmv_count; ++idx) ref_mv_weight[idx] += REF_CAT_LEVEL; if (cm->features.allow_ref_frame_mvs) { int is_available = 0; const int voffset = AOMMAX(mi_size_high[BLOCK_8X8], xd->height); const int hoffset = AOMMAX(mi_size_wide[BLOCK_8X8], xd->width); const int blk_row_end = AOMMIN(xd->height, mi_size_high[BLOCK_64X64]); const int blk_col_end = AOMMIN(xd->width, mi_size_wide[BLOCK_64X64]); const int tpl_sample_pos[3][2] = { { voffset, -2 }, { voffset, hoffset }, { voffset - 2, hoffset }, }; const int allow_extension = (xd->height >= mi_size_high[BLOCK_8X8]) && (xd->height < mi_size_high[BLOCK_64X64]) && (xd->width >= mi_size_wide[BLOCK_8X8]) && (xd->width < mi_size_wide[BLOCK_64X64]); const int step_h = (xd->height >= mi_size_high[BLOCK_64X64]) ? mi_size_high[BLOCK_16X16] : mi_size_high[BLOCK_8X8]; const int step_w = (xd->width >= mi_size_wide[BLOCK_64X64]) ? mi_size_wide[BLOCK_16X16] : mi_size_wide[BLOCK_8X8]; for (int blk_row = 0; blk_row < blk_row_end; blk_row += step_h) { for (int blk_col = 0; blk_col < blk_col_end; blk_col += step_w) { int ret = add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row, blk_col, gm_mv_candidates, refmv_count, ref_mv_stack, ref_mv_weight, mode_context); if (blk_row == 0 && blk_col == 0) is_available = ret; } } if (is_available == 0) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); for (int i = 0; i < 3 && allow_extension; ++i) { const int blk_row = tpl_sample_pos[i][0]; const int blk_col = tpl_sample_pos[i][1]; if (!check_sb_border(mi_row, mi_col, blk_row, blk_col)) continue; add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row, blk_col, gm_mv_candidates, refmv_count, ref_mv_stack, ref_mv_weight, mode_context); } } uint8_t dummy_newmv_count = 0; // Scan the second outer area. scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, -1, ref_mv_stack, ref_mv_weight, &row_match_count, &dummy_newmv_count, gm_mv_candidates, refmv_count); for (int idx = 2; idx <= MVREF_ROW_COLS; ++idx) { const int row_offset = -(idx << 1) + 1 + row_adj; const int col_offset = -(idx << 1) + 1 + col_adj; if (abs(row_offset) <= abs(max_row_offset) && abs(row_offset) > processed_rows) scan_row_mbmi(cm, xd, mi_col, rf, row_offset, ref_mv_stack, ref_mv_weight, refmv_count, &row_match_count, &dummy_newmv_count, gm_mv_candidates, max_row_offset, &processed_rows); if (abs(col_offset) <= abs(max_col_offset) && abs(col_offset) > processed_cols) scan_col_mbmi(cm, xd, mi_row, rf, col_offset, ref_mv_stack, ref_mv_weight, refmv_count, &col_match_count, &dummy_newmv_count, gm_mv_candidates, max_col_offset, &processed_cols); } const uint8_t ref_match_count = (row_match_count > 0) + (col_match_count > 0); switch (nearest_match) { case 0: if (ref_match_count >= 1) mode_context[ref_frame] |= 1; if (ref_match_count == 1) mode_context[ref_frame] |= (1 << REFMV_OFFSET); else if (ref_match_count >= 2) mode_context[ref_frame] |= (2 << REFMV_OFFSET); break; case 1: mode_context[ref_frame] |= (newmv_count > 0) ? 2 : 3; if (ref_match_count == 1) mode_context[ref_frame] |= (3 << REFMV_OFFSET); else if (ref_match_count >= 2) mode_context[ref_frame] |= (4 << REFMV_OFFSET); break; case 2: default: if (newmv_count >= 1) mode_context[ref_frame] |= 4; else mode_context[ref_frame] |= 5; mode_context[ref_frame] |= (5 << REFMV_OFFSET); break; } // Rank the likelihood and assign nearest and near mvs. int len = nearest_refmv_count; while (len > 0) { int nr_len = 0; for (int idx = 1; idx < len; ++idx) { if (ref_mv_weight[idx - 1] < ref_mv_weight[idx]) { const CANDIDATE_MV tmp_mv = ref_mv_stack[idx - 1]; const uint16_t tmp_ref_mv_weight = ref_mv_weight[idx - 1]; ref_mv_stack[idx - 1] = ref_mv_stack[idx]; ref_mv_stack[idx] = tmp_mv; ref_mv_weight[idx - 1] = ref_mv_weight[idx]; ref_mv_weight[idx] = tmp_ref_mv_weight; nr_len = idx; } } len = nr_len; } len = *refmv_count; while (len > nearest_refmv_count) { int nr_len = nearest_refmv_count; for (int idx = nearest_refmv_count + 1; idx < len; ++idx) { if (ref_mv_weight[idx - 1] < ref_mv_weight[idx]) { const CANDIDATE_MV tmp_mv = ref_mv_stack[idx - 1]; const uint16_t tmp_ref_mv_weight = ref_mv_weight[idx - 1]; ref_mv_stack[idx - 1] = ref_mv_stack[idx]; ref_mv_stack[idx] = tmp_mv; ref_mv_weight[idx - 1] = ref_mv_weight[idx]; ref_mv_weight[idx] = tmp_ref_mv_weight; nr_len = idx; } } len = nr_len; } int mi_width = AOMMIN(mi_size_wide[BLOCK_64X64], xd->width); mi_width = AOMMIN(mi_width, cm->mi_params.mi_cols - mi_col); int mi_height = AOMMIN(mi_size_high[BLOCK_64X64], xd->height); mi_height = AOMMIN(mi_height, cm->mi_params.mi_rows - mi_row); const int mi_size = AOMMIN(mi_width, mi_height); if (rf[1] > NONE_FRAME) { // TODO(jingning, yunqing): Refactor and consolidate the compound and // single reference frame modes. Reduce unnecessary redundancy. if (*refmv_count < MAX_MV_REF_CANDIDATES) { int_mv ref_id[2][2], ref_diff[2][2]; int ref_id_count[2] = { 0 }, ref_diff_count[2] = { 0 }; for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size;) { const MB_MODE_INFO *const candidate = xd->mi[-xd->mi_stride + idx]; process_compound_ref_mv_candidate( candidate, cm, rf, ref_id, ref_id_count, ref_diff, ref_diff_count); idx += mi_size_wide[candidate->bsize]; } for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size;) { const MB_MODE_INFO *const candidate = xd->mi[idx * xd->mi_stride - 1]; process_compound_ref_mv_candidate( candidate, cm, rf, ref_id, ref_id_count, ref_diff, ref_diff_count); idx += mi_size_high[candidate->bsize]; } // Build up the compound mv predictor int_mv comp_list[MAX_MV_REF_CANDIDATES][2]; for (int idx = 0; idx < 2; ++idx) { int comp_idx = 0; for (int list_idx = 0; list_idx < ref_id_count[idx] && comp_idx < MAX_MV_REF_CANDIDATES; ++list_idx, ++comp_idx) comp_list[comp_idx][idx] = ref_id[idx][list_idx]; for (int list_idx = 0; list_idx < ref_diff_count[idx] && comp_idx < MAX_MV_REF_CANDIDATES; ++list_idx, ++comp_idx) comp_list[comp_idx][idx] = ref_diff[idx][list_idx]; for (; comp_idx < MAX_MV_REF_CANDIDATES; ++comp_idx) comp_list[comp_idx][idx] = gm_mv_candidates[idx]; } if (*refmv_count) { assert(*refmv_count == 1); if (comp_list[0][0].as_int == ref_mv_stack[0].this_mv.as_int && comp_list[0][1].as_int == ref_mv_stack[0].comp_mv.as_int) { ref_mv_stack[*refmv_count].this_mv = comp_list[1][0]; ref_mv_stack[*refmv_count].comp_mv = comp_list[1][1]; } else { ref_mv_stack[*refmv_count].this_mv = comp_list[0][0]; ref_mv_stack[*refmv_count].comp_mv = comp_list[0][1]; } ref_mv_weight[*refmv_count] = 2; ++*refmv_count; } else { for (int idx = 0; idx < MAX_MV_REF_CANDIDATES; ++idx) { ref_mv_stack[*refmv_count].this_mv = comp_list[idx][0]; ref_mv_stack[*refmv_count].comp_mv = comp_list[idx][1]; ref_mv_weight[*refmv_count] = 2; ++*refmv_count; } } } assert(*refmv_count >= 2); for (int idx = 0; idx < *refmv_count; ++idx) { clamp_mv_ref(&ref_mv_stack[idx].this_mv.as_mv, xd->width << MI_SIZE_LOG2, xd->height << MI_SIZE_LOG2, xd); clamp_mv_ref(&ref_mv_stack[idx].comp_mv.as_mv, xd->width << MI_SIZE_LOG2, xd->height << MI_SIZE_LOG2, xd); } } else { // Handle single reference frame extension for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size && *refmv_count < MAX_MV_REF_CANDIDATES;) { const MB_MODE_INFO *const candidate = xd->mi[-xd->mi_stride + idx]; process_single_ref_mv_candidate(candidate, cm, ref_frame, refmv_count, ref_mv_stack, ref_mv_weight); idx += mi_size_wide[candidate->bsize]; } for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size && *refmv_count < MAX_MV_REF_CANDIDATES;) { const MB_MODE_INFO *const candidate = xd->mi[idx * xd->mi_stride - 1]; process_single_ref_mv_candidate(candidate, cm, ref_frame, refmv_count, ref_mv_stack, ref_mv_weight); idx += mi_size_high[candidate->bsize]; } for (int idx = 0; idx < *refmv_count; ++idx) { clamp_mv_ref(&ref_mv_stack[idx].this_mv.as_mv, xd->width << MI_SIZE_LOG2, xd->height << MI_SIZE_LOG2, xd); } if (mv_ref_list != NULL) { for (int idx = *refmv_count; idx < MAX_MV_REF_CANDIDATES; ++idx) mv_ref_list[idx].as_int = gm_mv_candidates[0].as_int; for (int idx = 0; idx < AOMMIN(MAX_MV_REF_CANDIDATES, *refmv_count); ++idx) { mv_ref_list[idx].as_int = ref_mv_stack[idx].this_mv.as_int; } } } } void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd, MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, uint8_t ref_mv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE], uint16_t ref_mv_weight[][MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES], int_mv *global_mvs, int16_t *mode_context) { const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int_mv gm_mv[2]; if (ref_frame == INTRA_FRAME) { gm_mv[0].as_int = gm_mv[1].as_int = 0; if (global_mvs != NULL) { global_mvs[ref_frame].as_int = INVALID_MV; } } else { const BLOCK_SIZE bsize = mi->bsize; const int allow_high_precision_mv = cm->features.allow_high_precision_mv; const int force_integer_mv = cm->features.cur_frame_force_integer_mv; if (ref_frame < REF_FRAMES) { gm_mv[0] = gm_get_motion_vector(&cm->global_motion[ref_frame], allow_high_precision_mv, bsize, mi_col, mi_row, force_integer_mv); gm_mv[1].as_int = 0; if (global_mvs != NULL) global_mvs[ref_frame] = gm_mv[0]; } else { MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_frame); gm_mv[0] = gm_get_motion_vector(&cm->global_motion[rf[0]], allow_high_precision_mv, bsize, mi_col, mi_row, force_integer_mv); gm_mv[1] = gm_get_motion_vector(&cm->global_motion[rf[1]], allow_high_precision_mv, bsize, mi_col, mi_row, force_integer_mv); } } setup_ref_mv_list(cm, xd, ref_frame, &ref_mv_count[ref_frame], ref_mv_stack[ref_frame], ref_mv_weight[ref_frame], mv_ref_list ? mv_ref_list[ref_frame] : NULL, gm_mv, mi_row, mi_col, mode_context); } void av1_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *nearest_mv, int_mv *near_mv, int is_integer) { int i; // Make sure all the candidates are properly clamped etc for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { lower_mv_precision(&mvlist[i].as_mv, allow_hp, is_integer); } *nearest_mv = mvlist[0]; *near_mv = mvlist[1]; } void av1_setup_frame_buf_refs(AV1_COMMON *cm) { cm->cur_frame->order_hint = cm->current_frame.order_hint; cm->cur_frame->display_order_hint = cm->current_frame.display_order_hint; cm->cur_frame->pyramid_level = cm->current_frame.pyramid_level; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); if (buf != NULL) { cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME] = buf->order_hint; cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME] = buf->display_order_hint; } } } void av1_setup_frame_sign_bias(AV1_COMMON *cm) { MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); if (cm->seq_params->order_hint_info.enable_order_hint && buf != NULL) { const int ref_order_hint = buf->order_hint; cm->ref_frame_sign_bias[ref_frame] = (get_relative_dist(&cm->seq_params->order_hint_info, ref_order_hint, (int)cm->current_frame.order_hint) <= 0) ? 0 : 1; } else { cm->ref_frame_sign_bias[ref_frame] = 0; } } } #define MAX_OFFSET_WIDTH 64 #define MAX_OFFSET_HEIGHT 0 static int get_block_position(AV1_COMMON *cm, int *mi_r, int *mi_c, int blk_row, int blk_col, MV mv, int sign_bias) { const int base_blk_row = (blk_row >> 3) << 3; const int base_blk_col = (blk_col >> 3) << 3; const int row_offset = (mv.row >= 0) ? (mv.row >> (4 + MI_SIZE_LOG2)) : -((-mv.row) >> (4 + MI_SIZE_LOG2)); const int col_offset = (mv.col >= 0) ? (mv.col >> (4 + MI_SIZE_LOG2)) : -((-mv.col) >> (4 + MI_SIZE_LOG2)); const int row = (sign_bias == 1) ? blk_row - row_offset : blk_row + row_offset; const int col = (sign_bias == 1) ? blk_col - col_offset : blk_col + col_offset; if (row < 0 || row >= (cm->mi_params.mi_rows >> 1) || col < 0 || col >= (cm->mi_params.mi_cols >> 1)) return 0; if (row < base_blk_row - (MAX_OFFSET_HEIGHT >> 3) || row >= base_blk_row + 8 + (MAX_OFFSET_HEIGHT >> 3) || col < base_blk_col - (MAX_OFFSET_WIDTH >> 3) || col >= base_blk_col + 8 + (MAX_OFFSET_WIDTH >> 3)) return 0; *mi_r = row; *mi_c = col; return 1; } // Note: motion_filed_projection finds motion vectors of current frame's // reference frame, and projects them to current frame. To make it clear, // let's call current frame's reference frame as start frame. // Call Start frame's reference frames as reference frames. // Call ref_offset as frame distances between start frame and its reference // frames. static int motion_field_projection(AV1_COMMON *cm, MV_REFERENCE_FRAME start_frame, int dir) { TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs; int ref_offset[REF_FRAMES] = { 0 }; const RefCntBuffer *const start_frame_buf = get_ref_frame_buf(cm, start_frame); if (start_frame_buf == NULL) return 0; if (start_frame_buf->frame_type == KEY_FRAME || start_frame_buf->frame_type == INTRA_ONLY_FRAME) return 0; if (start_frame_buf->mi_rows != cm->mi_params.mi_rows || start_frame_buf->mi_cols != cm->mi_params.mi_cols) return 0; const int start_frame_order_hint = start_frame_buf->order_hint; const unsigned int *const ref_order_hints = &start_frame_buf->ref_order_hints[0]; const int cur_order_hint = cm->cur_frame->order_hint; int start_to_current_frame_offset = get_relative_dist( &cm->seq_params->order_hint_info, start_frame_order_hint, cur_order_hint); for (MV_REFERENCE_FRAME rf = LAST_FRAME; rf <= INTER_REFS_PER_FRAME; ++rf) { ref_offset[rf] = get_relative_dist(&cm->seq_params->order_hint_info, start_frame_order_hint, ref_order_hints[rf - LAST_FRAME]); } if (dir == 2) start_to_current_frame_offset = -start_to_current_frame_offset; MV_REF *mv_ref_base = start_frame_buf->mvs; const int mvs_rows = (cm->mi_params.mi_rows + 1) >> 1; const int mvs_cols = (cm->mi_params.mi_cols + 1) >> 1; for (int blk_row = 0; blk_row < mvs_rows; ++blk_row) { for (int blk_col = 0; blk_col < mvs_cols; ++blk_col) { MV_REF *mv_ref = &mv_ref_base[blk_row * mvs_cols + blk_col]; MV fwd_mv = mv_ref->mv.as_mv; if (mv_ref->ref_frame > INTRA_FRAME) { int_mv this_mv; int mi_r, mi_c; const int ref_frame_offset = ref_offset[mv_ref->ref_frame]; int pos_valid = abs(ref_frame_offset) <= MAX_FRAME_DISTANCE && ref_frame_offset > 0 && abs(start_to_current_frame_offset) <= MAX_FRAME_DISTANCE; if (pos_valid) { get_mv_projection(&this_mv.as_mv, fwd_mv, start_to_current_frame_offset, ref_frame_offset); pos_valid = get_block_position(cm, &mi_r, &mi_c, blk_row, blk_col, this_mv.as_mv, dir >> 1); } if (pos_valid) { const int mi_offset = mi_r * (cm->mi_params.mi_stride >> 1) + mi_c; tpl_mvs_base[mi_offset].mfmv0.as_mv.row = fwd_mv.row; tpl_mvs_base[mi_offset].mfmv0.as_mv.col = fwd_mv.col; tpl_mvs_base[mi_offset].ref_frame_offset = ref_frame_offset; } } } } return 1; } // cm->ref_frame_side is calculated here, and will be used in // av1_copy_frame_mvs() to affect how mvs are copied. void av1_calculate_ref_frame_side(AV1_COMMON *cm) { const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info; memset(cm->ref_frame_side, 0, sizeof(cm->ref_frame_side)); if (!order_hint_info->enable_order_hint) return; const int cur_order_hint = cm->cur_frame->order_hint; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); int order_hint = 0; if (buf != NULL) order_hint = buf->order_hint; if (get_relative_dist(order_hint_info, order_hint, cur_order_hint) > 0) cm->ref_frame_side[ref_frame] = 1; else if (order_hint == cur_order_hint) cm->ref_frame_side[ref_frame] = -1; } } void av1_setup_motion_field(AV1_COMMON *cm) { const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info; if (!order_hint_info->enable_order_hint) return; TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs; int size = ((cm->mi_params.mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_params.mi_stride >> 1); for (int idx = 0; idx < size; ++idx) { tpl_mvs_base[idx].mfmv0.as_int = INVALID_MV; tpl_mvs_base[idx].ref_frame_offset = 0; } const int cur_order_hint = cm->cur_frame->order_hint; const RefCntBuffer *ref_buf[INTER_REFS_PER_FRAME]; int ref_order_hint[INTER_REFS_PER_FRAME]; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { const int ref_idx = ref_frame - LAST_FRAME; const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); int order_hint = 0; if (buf != NULL) order_hint = buf->order_hint; ref_buf[ref_idx] = buf; ref_order_hint[ref_idx] = order_hint; } int ref_stamp = MFMV_STACK_SIZE - 1; if (ref_buf[LAST_FRAME - LAST_FRAME] != NULL) { const int alt_of_lst_order_hint = ref_buf[LAST_FRAME - LAST_FRAME] ->ref_order_hints[ALTREF_FRAME - LAST_FRAME]; const int is_lst_overlay = (alt_of_lst_order_hint == ref_order_hint[GOLDEN_FRAME - LAST_FRAME]); if (!is_lst_overlay) motion_field_projection(cm, LAST_FRAME, 2); --ref_stamp; } if (get_relative_dist(order_hint_info, ref_order_hint[BWDREF_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, BWDREF_FRAME, 0)) --ref_stamp; } if (get_relative_dist(order_hint_info, ref_order_hint[ALTREF2_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, ALTREF2_FRAME, 0)) --ref_stamp; } if (get_relative_dist(order_hint_info, ref_order_hint[ALTREF_FRAME - LAST_FRAME], cur_order_hint) > 0 && ref_stamp >= 0) if (motion_field_projection(cm, ALTREF_FRAME, 0)) --ref_stamp; if (ref_stamp >= 0) motion_field_projection(cm, LAST2_FRAME, 2); } static INLINE void record_samples(const MB_MODE_INFO *mbmi, int *pts, int *pts_inref, int row_offset, int sign_r, int col_offset, int sign_c) { const int bw = block_size_wide[mbmi->bsize]; const int bh = block_size_high[mbmi->bsize]; const int x = col_offset * MI_SIZE + sign_c * bw / 2 - 1; const int y = row_offset * MI_SIZE + sign_r * bh / 2 - 1; pts[0] = GET_MV_SUBPEL(x); pts[1] = GET_MV_SUBPEL(y); pts_inref[0] = pts[0] + mbmi->mv[0].as_mv.col; pts_inref[1] = pts[1] + mbmi->mv[0].as_mv.row; } // Select samples according to the motion vector difference. uint8_t av1_selectSamples(MV *mv, int *pts, int *pts_inref, int len, BLOCK_SIZE bsize) { const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const int thresh = clamp(AOMMAX(bw, bh), 16, 112); uint8_t ret = 0; assert(len <= LEAST_SQUARES_SAMPLES_MAX); // Only keep the samples with MV differences within threshold. for (int i = 0; i < len; ++i) { const int diff = abs(pts_inref[2 * i] - pts[2 * i] - mv->col) + abs(pts_inref[2 * i + 1] - pts[2 * i + 1] - mv->row); if (diff > thresh) continue; if (ret != i) { memcpy(pts + 2 * ret, pts + 2 * i, 2 * sizeof(pts[0])); memcpy(pts_inref + 2 * ret, pts_inref + 2 * i, 2 * sizeof(pts_inref[0])); } ++ret; } // Keep at least 1 sample. return AOMMAX(ret, 1); } // Note: Samples returned are at 1/8-pel precision // Sample are the neighbor block center point's coordinates relative to the // left-top pixel of current block. uint8_t av1_findSamples(const AV1_COMMON *cm, MACROBLOCKD *xd, int *pts, int *pts_inref) { const MB_MODE_INFO *const mbmi0 = xd->mi[0]; const int ref_frame = mbmi0->ref_frame[0]; const int up_available = xd->up_available; const int left_available = xd->left_available; uint8_t np = 0; int do_tl = 1; int do_tr = 1; const int mi_stride = xd->mi_stride; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // scan the nearest above rows if (up_available) { const int mi_row_offset = -1; const MB_MODE_INFO *mbmi = xd->mi[mi_row_offset * mi_stride]; uint8_t superblock_width = mi_size_wide[mbmi->bsize]; if (xd->width <= superblock_width) { // Handle "current block width <= above block width" case. const int col_offset = -mi_col % superblock_width; if (col_offset < 0) do_tl = 0; if (col_offset + superblock_width > xd->width) do_tr = 0; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, col_offset, 1); pts += 2; pts_inref += 2; if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } else { // Handle "current block width > above block width" case. for (int i = 0; i < AOMMIN(xd->width, cm->mi_params.mi_cols - mi_col); i += superblock_width) { mbmi = xd->mi[i + mi_row_offset * mi_stride]; superblock_width = mi_size_wide[mbmi->bsize]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, i, 1); pts += 2; pts_inref += 2; if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // scan the nearest left columns if (left_available) { const int mi_col_offset = -1; const MB_MODE_INFO *mbmi = xd->mi[mi_col_offset]; uint8_t superblock_height = mi_size_high[mbmi->bsize]; if (xd->height <= superblock_height) { // Handle "current block height <= above block height" case. const int row_offset = -mi_row % superblock_height; if (row_offset < 0) do_tl = 0; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, row_offset, 1, 0, -1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } else { // Handle "current block height > above block height" case. for (int i = 0; i < AOMMIN(xd->height, cm->mi_params.mi_rows - mi_row); i += superblock_height) { mbmi = xd->mi[mi_col_offset + i * mi_stride]; superblock_height = mi_size_high[mbmi->bsize]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, i, 1, 0, -1); pts += 2; pts_inref += 2; if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // Top-left block if (do_tl && left_available && up_available) { const int mi_row_offset = -1; const int mi_col_offset = -1; MB_MODE_INFO *mbmi = xd->mi[mi_col_offset + mi_row_offset * mi_stride]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, 0, -1); pts += 2; pts_inref += 2; if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // Top-right block if (do_tr && has_top_right(cm, xd, mi_row, mi_col, AOMMAX(xd->width, xd->height))) { const POSITION trb_pos = { -1, xd->width }; const TileInfo *const tile = &xd->tile; if (is_inside(tile, mi_col, mi_row, &trb_pos)) { const int mi_row_offset = -1; const int mi_col_offset = xd->width; const MB_MODE_INFO *mbmi = xd->mi[mi_col_offset + mi_row_offset * mi_stride]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, xd->width, 1); if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); return np; } void av1_setup_skip_mode_allowed(AV1_COMMON *cm) { const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info; SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; skip_mode_info->skip_mode_allowed = 0; skip_mode_info->ref_frame_idx_0 = INVALID_IDX; skip_mode_info->ref_frame_idx_1 = INVALID_IDX; if (!order_hint_info->enable_order_hint || frame_is_intra_only(cm) || cm->current_frame.reference_mode == SINGLE_REFERENCE) return; const int cur_order_hint = cm->current_frame.order_hint; int ref_order_hints[2] = { -1, INT_MAX }; int ref_idx[2] = { INVALID_IDX, INVALID_IDX }; // Identify the nearest forward and backward references. for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, LAST_FRAME + i); if (buf == NULL) continue; const int ref_order_hint = buf->order_hint; if (get_relative_dist(order_hint_info, ref_order_hint, cur_order_hint) < 0) { // Forward reference if (ref_order_hints[0] == -1 || get_relative_dist(order_hint_info, ref_order_hint, ref_order_hints[0]) > 0) { ref_order_hints[0] = ref_order_hint; ref_idx[0] = i; } } else if (get_relative_dist(order_hint_info, ref_order_hint, cur_order_hint) > 0) { // Backward reference if (ref_order_hints[1] == INT_MAX || get_relative_dist(order_hint_info, ref_order_hint, ref_order_hints[1]) < 0) { ref_order_hints[1] = ref_order_hint; ref_idx[1] = i; } } } if (ref_idx[0] != INVALID_IDX && ref_idx[1] != INVALID_IDX) { // == Bi-directional prediction == skip_mode_info->skip_mode_allowed = 1; skip_mode_info->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]); skip_mode_info->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]); } else if (ref_idx[0] != INVALID_IDX && ref_idx[1] == INVALID_IDX) { // == Forward prediction only == // Identify the second nearest forward reference. ref_order_hints[1] = -1; for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, LAST_FRAME + i); if (buf == NULL) continue; const int ref_order_hint = buf->order_hint; if ((ref_order_hints[0] != -1 && get_relative_dist(order_hint_info, ref_order_hint, ref_order_hints[0]) < 0) && (ref_order_hints[1] == -1 || get_relative_dist(order_hint_info, ref_order_hint, ref_order_hints[1]) > 0)) { // Second closest forward reference ref_order_hints[1] = ref_order_hint; ref_idx[1] = i; } } if (ref_order_hints[1] != -1) { skip_mode_info->skip_mode_allowed = 1; skip_mode_info->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]); skip_mode_info->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]); } } } typedef struct { int map_idx; // frame map index RefCntBuffer *buf; // frame buffer int sort_idx; // index based on the offset to be used for sorting } REF_FRAME_INFO; // Compares the sort_idx fields. If they are equal, then compares the map_idx // fields to break the tie. This ensures a stable sort. static int compare_ref_frame_info(const void *arg_a, const void *arg_b) { const REF_FRAME_INFO *info_a = (REF_FRAME_INFO *)arg_a; const REF_FRAME_INFO *info_b = (REF_FRAME_INFO *)arg_b; const int sort_idx_diff = info_a->sort_idx - info_b->sort_idx; if (sort_idx_diff != 0) return sort_idx_diff; return info_a->map_idx - info_b->map_idx; } static AOM_INLINE void set_ref_frame_info(int *remapped_ref_idx, int frame_idx, REF_FRAME_INFO *ref_info) { assert(frame_idx >= 0 && frame_idx < INTER_REFS_PER_FRAME); remapped_ref_idx[frame_idx] = ref_info->map_idx; } void av1_set_frame_refs(AV1_COMMON *const cm, int *remapped_ref_idx, int lst_map_idx, int gld_map_idx) { int lst_frame_sort_idx = -1; int gld_frame_sort_idx = -1; assert(cm->seq_params->order_hint_info.enable_order_hint); assert(cm->seq_params->order_hint_info.order_hint_bits_minus_1 >= 0); const int cur_order_hint = (int)cm->current_frame.order_hint; const int cur_frame_sort_idx = 1 << cm->seq_params->order_hint_info.order_hint_bits_minus_1; REF_FRAME_INFO ref_frame_info[REF_FRAMES]; int ref_flag_list[INTER_REFS_PER_FRAME] = { 0, 0, 0, 0, 0, 0, 0 }; for (int i = 0; i < REF_FRAMES; ++i) { const int map_idx = i; ref_frame_info[i].map_idx = map_idx; ref_frame_info[i].sort_idx = -1; RefCntBuffer *const buf = cm->ref_frame_map[map_idx]; ref_frame_info[i].buf = buf; if (buf == NULL) continue; // If this assertion fails, there is a reference leak. assert(buf->ref_count > 0); const int offset = (int)buf->order_hint; ref_frame_info[i].sort_idx = (offset == -1) ? -1 : cur_frame_sort_idx + get_relative_dist(&cm->seq_params->order_hint_info, offset, cur_order_hint); assert(ref_frame_info[i].sort_idx >= -1); if (map_idx == lst_map_idx) lst_frame_sort_idx = ref_frame_info[i].sort_idx; if (map_idx == gld_map_idx) gld_frame_sort_idx = ref_frame_info[i].sort_idx; } // Confirm both LAST_FRAME and GOLDEN_FRAME are valid forward reference // frames. if (lst_frame_sort_idx == -1 || lst_frame_sort_idx >= cur_frame_sort_idx) { aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Inter frame requests a look-ahead frame as LAST"); } if (gld_frame_sort_idx == -1 || gld_frame_sort_idx >= cur_frame_sort_idx) { aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Inter frame requests a look-ahead frame as GOLDEN"); } // Sort ref frames based on their frame_offset values. qsort(ref_frame_info, REF_FRAMES, sizeof(REF_FRAME_INFO), compare_ref_frame_info); // Identify forward and backward reference frames. // Forward reference: offset < order_hint // Backward reference: offset >= order_hint int fwd_start_idx = 0, fwd_end_idx = REF_FRAMES - 1; for (int i = 0; i < REF_FRAMES; i++) { if (ref_frame_info[i].sort_idx == -1) { fwd_start_idx++; continue; } if (ref_frame_info[i].sort_idx >= cur_frame_sort_idx) { fwd_end_idx = i - 1; break; } } int bwd_start_idx = fwd_end_idx + 1; int bwd_end_idx = REF_FRAMES - 1; // === Backward Reference Frames === // == ALTREF_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(remapped_ref_idx, ALTREF_FRAME - LAST_FRAME, &ref_frame_info[bwd_end_idx]); ref_flag_list[ALTREF_FRAME - LAST_FRAME] = 1; bwd_end_idx--; } // == BWDREF_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(remapped_ref_idx, BWDREF_FRAME - LAST_FRAME, &ref_frame_info[bwd_start_idx]); ref_flag_list[BWDREF_FRAME - LAST_FRAME] = 1; bwd_start_idx++; } // == ALTREF2_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(remapped_ref_idx, ALTREF2_FRAME - LAST_FRAME, &ref_frame_info[bwd_start_idx]); ref_flag_list[ALTREF2_FRAME - LAST_FRAME] = 1; } // === Forward Reference Frames === for (int i = fwd_start_idx; i <= fwd_end_idx; ++i) { // == LAST_FRAME == if (ref_frame_info[i].map_idx == lst_map_idx) { set_ref_frame_info(remapped_ref_idx, LAST_FRAME - LAST_FRAME, &ref_frame_info[i]); ref_flag_list[LAST_FRAME - LAST_FRAME] = 1; } // == GOLDEN_FRAME == if (ref_frame_info[i].map_idx == gld_map_idx) { set_ref_frame_info(remapped_ref_idx, GOLDEN_FRAME - LAST_FRAME, &ref_frame_info[i]); ref_flag_list[GOLDEN_FRAME - LAST_FRAME] = 1; } } assert(ref_flag_list[LAST_FRAME - LAST_FRAME] == 1 && ref_flag_list[GOLDEN_FRAME - LAST_FRAME] == 1); // == LAST2_FRAME == // == LAST3_FRAME == // == BWDREF_FRAME == // == ALTREF2_FRAME == // == ALTREF_FRAME == // Set up the reference frames in the anti-chronological order. static const MV_REFERENCE_FRAME ref_frame_list[INTER_REFS_PER_FRAME - 2] = { LAST2_FRAME, LAST3_FRAME, BWDREF_FRAME, ALTREF2_FRAME, ALTREF_FRAME }; int ref_idx; for (ref_idx = 0; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) { const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx]; if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue; while (fwd_start_idx <= fwd_end_idx && (ref_frame_info[fwd_end_idx].map_idx == lst_map_idx || ref_frame_info[fwd_end_idx].map_idx == gld_map_idx)) { fwd_end_idx--; } if (fwd_start_idx > fwd_end_idx) break; set_ref_frame_info(remapped_ref_idx, ref_frame - LAST_FRAME, &ref_frame_info[fwd_end_idx]); ref_flag_list[ref_frame - LAST_FRAME] = 1; fwd_end_idx--; } // Assign all the remaining frame(s), if any, to the earliest reference // frame. for (; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) { const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx]; if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue; set_ref_frame_info(remapped_ref_idx, ref_frame - LAST_FRAME, &ref_frame_info[fwd_start_idx]); ref_flag_list[ref_frame - LAST_FRAME] = 1; } for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { assert(ref_flag_list[i] == 1); } }