/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_RECONINTER_H_ #define AOM_AV1_COMMON_RECONINTER_H_ #include "av1/common/av1_common_int.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" #include "av1/common/warped_motion.h" #include "aom/aom_integer.h" // Work out how many pixels off the edge of a reference frame we're allowed // to go when forming an inter prediction. // The outermost row/col of each referernce frame is extended by // (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep // at least AOM_INTERP_EXTEND pixels within that to account for filtering. // // We have to break this up into two macros to keep both clang-format and // tools/lint-hunks.py happy. #define AOM_LEFT_TOP_MARGIN_PX(subsampling) \ ((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND) #define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \ (AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS) #ifdef __cplusplus extern "C" { #endif #define MAX_WEDGE_TYPES 16 #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) #define WEDGE_WEIGHT_BITS 6 #define WEDGE_NONE -1 // Angles are with respect to horizontal anti-clockwise enum { WEDGE_HORIZONTAL = 0, WEDGE_VERTICAL = 1, WEDGE_OBLIQUE27 = 2, WEDGE_OBLIQUE63 = 3, WEDGE_OBLIQUE117 = 4, WEDGE_OBLIQUE153 = 5, WEDGE_DIRECTIONS } UENUM1BYTE(WedgeDirectionType); // 3-tuple: {direction, x_offset, y_offset} typedef struct { WedgeDirectionType direction; int x_offset; int y_offset; } wedge_code_type; typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; typedef struct { int wedge_types; const wedge_code_type *codebook; uint8_t *signflip; wedge_masks_type *masks; } wedge_params_type; extern const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL]; typedef struct SubpelParams { int xs; int ys; int subpel_x; int subpel_y; int pos_x; int pos_y; } SubpelParams; struct build_prediction_ctxt { const AV1_COMMON *cm; uint8_t **tmp_buf; int *tmp_width; int *tmp_height; int *tmp_stride; int mb_to_far_edge; void *dcb; // Decoder-only coding block. }; typedef enum InterPredMode { TRANSLATION_PRED, WARP_PRED, } InterPredMode; typedef enum InterCompMode { UNIFORM_SINGLE, UNIFORM_COMP, MASK_COMP, } InterCompMode; typedef struct InterPredParams { InterPredMode mode; InterCompMode comp_mode; WarpedMotionParams warp_params; ConvolveParams conv_params; const InterpFilterParams *interp_filter_params[2]; int block_width; int block_height; int pix_row; int pix_col; struct buf_2d ref_frame_buf; int subsampling_x; int subsampling_y; const struct scale_factors *scale_factors; int bit_depth; int use_hbd_buf; INTERINTER_COMPOUND_DATA mask_comp; BLOCK_SIZE sb_type; int is_intrabc; int top; int left; } InterPredParams; // Initialize sub-pel params required for inter prediction. static AOM_INLINE void init_subpel_params( const MV *const src_mv, InterPredParams *const inter_pred_params, SubpelParams *subpel_params, int width, int height) { const struct scale_factors *sf = inter_pred_params->scale_factors; int ssx = inter_pred_params->subsampling_x; int ssy = inter_pred_params->subsampling_y; int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; orig_pos_y += src_mv->row * (1 << (1 - ssy)); int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; orig_pos_x += src_mv->col * (1 << (1 - ssx)); const int is_scaled = av1_is_scaled(sf); int pos_x, pos_y; if (LIKELY(!is_scaled)) { pos_y = av1_unscaled_value(orig_pos_y, sf); pos_x = av1_unscaled_value(orig_pos_x, sf); } else { pos_y = av1_scaled_y(orig_pos_y, sf); pos_x = av1_scaled_x(orig_pos_x, sf); } pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int bottom = (height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, inter_pred_params->top, bottom); pos_x = clamp(pos_x, inter_pred_params->left, right); subpel_params->pos_x = pos_x; subpel_params->pos_y = pos_y; subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; subpel_params->xs = sf->x_step_q4; subpel_params->ys = sf->y_step_q4; } // Initialize interp filter required for inter prediction. static AOM_INLINE void init_interp_filter_params( const InterpFilterParams *interp_filter_params[2], const InterpFilters *filter, int block_width, int block_height, int is_intrabc) { if (UNLIKELY(is_intrabc)) { interp_filter_params[0] = &av1_intrabc_filter_params; interp_filter_params[1] = &av1_intrabc_filter_params; } else { interp_filter_params[0] = av1_get_interp_filter_params_with_block_size( (InterpFilter)filter->x_filter, block_width); interp_filter_params[1] = av1_get_interp_filter_params_with_block_size( (InterpFilter)filter->y_filter, block_height); } } // Initialize parameters required for inter prediction at mode level. static AOM_INLINE void init_inter_mode_params( const MV *const src_mv, InterPredParams *const inter_pred_params, SubpelParams *subpel_params, const struct scale_factors *sf, int width, int height) { inter_pred_params->scale_factors = sf; init_subpel_params(src_mv, inter_pred_params, subpel_params, width, height); } // Initialize parameters required for inter prediction at block level. static AOM_INLINE void init_inter_block_params( InterPredParams *inter_pred_params, int block_width, int block_height, int pix_row, int pix_col, int subsampling_x, int subsampling_y, int bit_depth, int use_hbd_buf, int is_intrabc) { inter_pred_params->block_width = block_width; inter_pred_params->block_height = block_height; inter_pred_params->pix_row = pix_row; inter_pred_params->pix_col = pix_col; inter_pred_params->subsampling_x = subsampling_x; inter_pred_params->subsampling_y = subsampling_y; inter_pred_params->bit_depth = bit_depth; inter_pred_params->use_hbd_buf = use_hbd_buf; inter_pred_params->is_intrabc = is_intrabc; inter_pred_params->mode = TRANSLATION_PRED; inter_pred_params->comp_mode = UNIFORM_SINGLE; inter_pred_params->top = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_y); inter_pred_params->left = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_x); } // Initialize params required for inter prediction. static AOM_INLINE void av1_init_inter_params( InterPredParams *inter_pred_params, int block_width, int block_height, int pix_row, int pix_col, int subsampling_x, int subsampling_y, int bit_depth, int use_hbd_buf, int is_intrabc, const struct scale_factors *sf, const struct buf_2d *ref_buf, int_interpfilters interp_filters) { init_inter_block_params(inter_pred_params, block_width, block_height, pix_row, pix_col, subsampling_x, subsampling_y, bit_depth, use_hbd_buf, is_intrabc); init_interp_filter_params(inter_pred_params->interp_filter_params, &interp_filters.as_filters, block_width, block_height, is_intrabc); inter_pred_params->scale_factors = sf; inter_pred_params->ref_frame_buf = *ref_buf; } static AOM_INLINE void av1_init_comp_mode(InterPredParams *inter_pred_params) { inter_pred_params->comp_mode = UNIFORM_COMP; } void av1_init_warp_params(InterPredParams *inter_pred_params, const WarpTypesAllowed *warp_types, int ref, const MACROBLOCKD *xd, const MB_MODE_INFO *mi); static INLINE int has_scale(int xs, int ys) { return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS; } static INLINE void revert_scale_extra_bits(SubpelParams *sp) { sp->subpel_x >>= SCALE_EXTRA_BITS; sp->subpel_y >>= SCALE_EXTRA_BITS; sp->xs >>= SCALE_EXTRA_BITS; sp->ys >>= SCALE_EXTRA_BITS; assert(sp->subpel_x < SUBPEL_SHIFTS); assert(sp->subpel_y < SUBPEL_SHIFTS); assert(sp->xs <= SUBPEL_SHIFTS); assert(sp->ys <= SUBPEL_SHIFTS); } static INLINE void inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, int w, int h, ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2]) { assert(conv_params->do_average == 0 || conv_params->do_average == 1); const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys); if (is_scaled) { av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_params->subpel_x, subpel_params->xs, subpel_params->subpel_y, subpel_params->ys, 1, conv_params); } else { SubpelParams sp = *subpel_params; revert_scale_extra_bits(&sp); av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, sp.subpel_x, sp.xs, sp.subpel_y, sp.ys, 0, conv_params); } } static INLINE void highbd_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, int w, int h, ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2], int bd) { assert(conv_params->do_average == 0 || conv_params->do_average == 1); const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys); if (is_scaled) { av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_params->subpel_x, subpel_params->xs, subpel_params->subpel_y, subpel_params->ys, 1, conv_params, bd); } else { SubpelParams sp = *subpel_params; revert_scale_extra_bits(&sp); av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, sp.subpel_x, sp.xs, sp.subpel_y, sp.ys, 0, conv_params, bd); } } void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi); int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, int dir); static INLINE int is_interinter_compound_used(COMPOUND_TYPE type, BLOCK_SIZE sb_type) { const int comp_allowed = is_comp_ref_allowed(sb_type); switch (type) { case COMPOUND_AVERAGE: case COMPOUND_DISTWTD: case COMPOUND_DIFFWTD: return comp_allowed; case COMPOUND_WEDGE: return comp_allowed && av1_wedge_params_lookup[sb_type].wedge_types > 0; default: assert(0); return 0; } } static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) { COMPOUND_TYPE comp_type; int i; if (!is_comp_ref_allowed(sb_type)) return 0; for (i = 0; i < COMPOUND_TYPES; i++) { comp_type = (COMPOUND_TYPE)i; if (is_masked_compound_type(comp_type) && is_interinter_compound_used(comp_type, sb_type)) return 1; } return 0; } static INLINE int get_wedge_types_lookup(BLOCK_SIZE sb_type) { return av1_wedge_params_lookup[sb_type].wedge_types; } static INLINE int av1_is_wedge_used(BLOCK_SIZE sb_type) { return av1_wedge_params_lookup[sb_type].wedge_types > 0; } void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, InterPredParams *inter_pred_params, const SubpelParams *subpel_params); void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, InterPredParams *inter_pred_params, const SubpelParams *subpel_params); // TODO(jkoleszar): yet another mv clamping function :-( static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))), (int16_t)(src_mv->col * (1 << (1 - ss_x))) }; assert(ss_x <= 1); assert(ss_y <= 1); const SubpelMvLimits mv_limits = { xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom }; clamp_mv(&clamped_mv, &mv_limits); return clamped_mv; } static INLINE int64_t scaled_buffer_offset(int x_offset, int y_offset, int stride, const struct scale_factors *sf) { int x, y; if (!sf) { x = x_offset; y = y_offset; } else if (av1_is_scaled(sf)) { x = av1_scaled_x(x_offset, sf) >> SCALE_EXTRA_BITS; y = av1_scaled_y(y_offset, sf) >> SCALE_EXTRA_BITS; } else { x = av1_unscaled_value(x_offset, sf) >> SCALE_EXTRA_BITS; y = av1_unscaled_value(y_offset, sf) >> SCALE_EXTRA_BITS; } return (int64_t)y * stride + x; } static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize, uint8_t *src, int width, int height, int stride, int mi_row, int mi_col, const struct scale_factors *scale, int subsampling_x, int subsampling_y) { // Offset the buffer pointer if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) mi_row -= 1; if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) mi_col -= 1; const int x = (MI_SIZE * mi_col) >> subsampling_x; const int y = (MI_SIZE * mi_row) >> subsampling_y; dst->buf = src + scaled_buffer_offset(x, y, stride, scale); dst->buf0 = src; dst->width = width; dst->height = height; dst->stride = stride; } void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const int plane_start, const int plane_end); void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf, const int num_planes); static INLINE void set_default_interp_filters( MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) { mbmi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter)); } static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { const MB_MODE_INFO *const mbmi = xd->mi[0]; if (mbmi->skip_mode) return 0; if (mbmi->motion_mode == WARPED_CAUSAL) return 0; if (is_nontrans_global_motion(xd, xd->mi[0])) return 0; return 1; } // Sets up buffers 'dst_buf1' and 'dst_buf2' from relevant buffers in 'xd' for // subsequent use in OBMC prediction. void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1, uint8_t **dst_buf2); void av1_setup_build_prediction_by_above_pred( MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes); void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes); void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]); const uint8_t *av1_get_obmc_mask(int length); void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd); #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1) #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE) void av1_init_wedge_masks(void); static INLINE const uint8_t *av1_get_contiguous_soft_mask(int8_t wedge_index, int8_t wedge_sign, BLOCK_SIZE sb_type) { return av1_wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; } void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi, int *fwd_offset, int *bck_offset, int *use_dist_wtd_comp_avg, int is_compound); const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); // build interintra_predictors for one plane void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *pred, int stride, const BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize); void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const BUFFER_SET *ctx, uint8_t *dst, int dst_stride); void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride); #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_COMMON_RECONINTER_H_