/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/aom_once.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/cfl.h" #include "av1/common/reconintra.h" enum { NEED_LEFT = 1 << 1, NEED_ABOVE = 1 << 2, NEED_ABOVERIGHT = 1 << 3, NEED_ABOVELEFT = 1 << 4, NEED_BOTTOMLEFT = 1 << 5, }; #define INTRA_EDGE_FILT 3 #define INTRA_EDGE_TAPS 5 #define MAX_UPSAMPLE_SZ 16 #define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32) static const uint8_t extend_modes[INTRA_MODES] = { NEED_ABOVE | NEED_LEFT, // DC NEED_ABOVE, // V NEED_LEFT, // H NEED_ABOVE | NEED_ABOVERIGHT, // D45 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157 NEED_LEFT | NEED_BOTTOMLEFT, // D203 NEED_ABOVE | NEED_ABOVERIGHT, // D67 NEED_LEFT | NEED_ABOVE, // SMOOTH NEED_LEFT | NEED_ABOVE, // SMOOTH_V NEED_LEFT | NEED_ABOVE, // SMOOTH_H NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH }; // Tables to store if the top-right reference pixels are available. The flags // are represented with bits, packed into 8-bit integers. E.g., for the 32x32 // blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster // order), so its flag is stored at the 3rd bit of the 2nd entry in the table, // i.e. (table[10 / 8] >> (10 % 8)) & 1. // . . . . // . . . . // . . o . // . . . . static uint8_t has_tr_4x4[128] = { 255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, }; static uint8_t has_tr_4x8[64] = { 255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, }; static uint8_t has_tr_8x4[64] = { 255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, 255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, }; static uint8_t has_tr_8x8[32] = { 255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, 255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, }; static uint8_t has_tr_8x16[16] = { 255, 255, 119, 119, 127, 127, 119, 119, 255, 127, 119, 119, 127, 127, 119, 119, }; static uint8_t has_tr_16x8[16] = { 255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0, }; static uint8_t has_tr_16x16[8] = { 255, 85, 119, 85, 127, 85, 119, 85, }; static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 }; static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 }; static uint8_t has_tr_32x32[2] = { 95, 87 }; static uint8_t has_tr_32x64[1] = { 127 }; static uint8_t has_tr_64x32[1] = { 19 }; static uint8_t has_tr_64x64[1] = { 7 }; static uint8_t has_tr_64x128[1] = { 3 }; static uint8_t has_tr_128x64[1] = { 1 }; static uint8_t has_tr_128x128[1] = { 1 }; static uint8_t has_tr_4x16[32] = { 255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255, 127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127, 127, 127, 255, 127, 255, 127, 127, 127, 127, 127, }; static uint8_t has_tr_16x4[32] = { 255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, 127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, }; static uint8_t has_tr_8x32[8] = { 255, 255, 127, 127, 255, 127, 127, 127, }; static uint8_t has_tr_32x8[8] = { 15, 0, 5, 0, 7, 0, 5, 0, }; static uint8_t has_tr_16x64[2] = { 255, 127 }; static uint8_t has_tr_64x16[2] = { 3, 1 }; static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = { // 4X4 has_tr_4x4, // 4X8, 8X4, 8X8 has_tr_4x8, has_tr_8x4, has_tr_8x8, // 8X16, 16X8, 16X16 has_tr_8x16, has_tr_16x8, has_tr_16x16, // 16X32, 32X16, 32X32 has_tr_16x32, has_tr_32x16, has_tr_32x32, // 32X64, 64X32, 64X64 has_tr_32x64, has_tr_64x32, has_tr_64x64, // 64x128, 128x64, 128x128 has_tr_64x128, has_tr_128x64, has_tr_128x128, // 4x16, 16x4, 8x32 has_tr_4x16, has_tr_16x4, has_tr_8x32, // 32x8, 16x64, 64x16 has_tr_32x8, has_tr_16x64, has_tr_64x16 }; static uint8_t has_tr_vert_8x8[32] = { 255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, 255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, }; static uint8_t has_tr_vert_16x16[8] = { 255, 0, 119, 0, 127, 0, 119, 0, }; static uint8_t has_tr_vert_32x32[2] = { 15, 7 }; static uint8_t has_tr_vert_64x64[1] = { 3 }; // The _vert_* tables are like the ordinary tables above, but describe the // order we visit square blocks when doing a PARTITION_VERT_A or // PARTITION_VERT_B. This is the same order as normal except for on the last // split where we go vertically (TL, BL, TR, BR). We treat the rectangular block // as a pair of squares, which means that these tables work correctly for both // mixed vertical partition types. // // There are tables for each of the square sizes. Vertical rectangles (like // BLOCK_16X32) use their respective "non-vert" table static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = { // 4X4 NULL, // 4X8, 8X4, 8X8 has_tr_4x8, NULL, has_tr_vert_8x8, // 8X16, 16X8, 16X16 has_tr_8x16, NULL, has_tr_vert_16x16, // 16X32, 32X16, 32X32 has_tr_16x32, NULL, has_tr_vert_32x32, // 32X64, 64X32, 64X64 has_tr_32x64, NULL, has_tr_vert_64x64, // 64x128, 128x64, 128x128 has_tr_64x128, NULL, has_tr_128x128 }; static const uint8_t *get_has_tr_table(PARTITION_TYPE partition, BLOCK_SIZE bsize) { const uint8_t *ret = NULL; // If this is a mixed vertical partition, look up bsize in orders_vert. if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { assert(bsize < BLOCK_SIZES); ret = has_tr_vert_tables[bsize]; } else { ret = has_tr_tables[bsize]; } assert(ret); return ret; } static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row, int mi_col, int top_available, int right_available, PARTITION_TYPE partition, TX_SIZE txsz, int row_off, int col_off, int ss_x, int ss_y) { if (!top_available || !right_available) return 0; const int bw_unit = mi_size_wide[bsize]; const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1); const int top_right_count_unit = tx_size_wide_unit[txsz]; if (row_off > 0) { // Just need to check if enough pixels on the right. if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) { // Special case: For 128x128 blocks, the transform unit whose // top-right corner is at the center of the block does in fact have // pixels available at its top-right corner. if (row_off == mi_size_high[BLOCK_64X64] >> ss_y && col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) { return 1; } const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; const int col_off_64 = col_off % plane_bw_unit_64; return col_off_64 + top_right_count_unit < plane_bw_unit_64; } return col_off + top_right_count_unit < plane_bw_unit; } else { // All top-right pixels are in the block above, which is already available. if (col_off + top_right_count_unit < plane_bw_unit) return 1; const int bw_in_mi_log2 = mi_size_wide_log2[bsize]; const int bh_in_mi_log2 = mi_size_high_log2[bsize]; const int sb_mi_size = mi_size_high[sb_size]; const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2; const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2; // Top row of superblock: so top-right pixels are in the top and/or // top-right superblocks, both of which are already available. if (blk_row_in_sb == 0) return 1; // Rightmost column of superblock (and not the top row): so top-right pixels // fall in the right superblock, which is not available yet. if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) { return 0; } // General case (neither top row nor rightmost column): check if the // top-right block is coded before the current block. const int this_blk_index = ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) + blk_col_in_sb + 0; const int idx1 = this_blk_index / 8; const int idx2 = this_blk_index % 8; const uint8_t *has_tr_table = get_has_tr_table(partition, bsize); return (has_tr_table[idx1] >> idx2) & 1; } } // Similar to the has_tr_* tables, but store if the bottom-left reference // pixels are available. static uint8_t has_bl_4x4[128] = { 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1, 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 0, 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1, 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 0, 0, }; static uint8_t has_bl_4x8[64] = { 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0, 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0, 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0, 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0, }; static uint8_t has_bl_8x4[64] = { 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1, 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0, 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1, 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0, }; static uint8_t has_bl_8x8[32] = { 84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0, 84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0, }; static uint8_t has_bl_8x16[16] = { 16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0, }; static uint8_t has_bl_16x8[16] = { 254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0, }; static uint8_t has_bl_16x16[8] = { 84, 16, 84, 0, 84, 16, 84, 0, }; static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 }; static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 }; static uint8_t has_bl_32x32[2] = { 4, 4 }; static uint8_t has_bl_32x64[1] = { 0 }; static uint8_t has_bl_64x32[1] = { 34 }; static uint8_t has_bl_64x64[1] = { 0 }; static uint8_t has_bl_64x128[1] = { 0 }; static uint8_t has_bl_128x64[1] = { 0 }; static uint8_t has_bl_128x128[1] = { 0 }; static uint8_t has_bl_4x16[32] = { 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, }; static uint8_t has_bl_16x4[32] = { 254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0, 254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0, }; static uint8_t has_bl_8x32[8] = { 0, 1, 0, 0, 0, 1, 0, 0, }; static uint8_t has_bl_32x8[8] = { 238, 78, 238, 14, 238, 78, 238, 14, }; static uint8_t has_bl_16x64[2] = { 0, 0 }; static uint8_t has_bl_64x16[2] = { 42, 42 }; static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = { // 4X4 has_bl_4x4, // 4X8, 8X4, 8X8 has_bl_4x8, has_bl_8x4, has_bl_8x8, // 8X16, 16X8, 16X16 has_bl_8x16, has_bl_16x8, has_bl_16x16, // 16X32, 32X16, 32X32 has_bl_16x32, has_bl_32x16, has_bl_32x32, // 32X64, 64X32, 64X64 has_bl_32x64, has_bl_64x32, has_bl_64x64, // 64x128, 128x64, 128x128 has_bl_64x128, has_bl_128x64, has_bl_128x128, // 4x16, 16x4, 8x32 has_bl_4x16, has_bl_16x4, has_bl_8x32, // 32x8, 16x64, 64x16 has_bl_32x8, has_bl_16x64, has_bl_64x16 }; static uint8_t has_bl_vert_8x8[32] = { 254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0, 254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0, }; static uint8_t has_bl_vert_16x16[8] = { 254, 16, 254, 0, 254, 16, 254, 0, }; static uint8_t has_bl_vert_32x32[2] = { 14, 14 }; static uint8_t has_bl_vert_64x64[1] = { 2 }; // The _vert_* tables are like the ordinary tables above, but describe the // order we visit square blocks when doing a PARTITION_VERT_A or // PARTITION_VERT_B. This is the same order as normal except for on the last // split where we go vertically (TL, BL, TR, BR). We treat the rectangular block // as a pair of squares, which means that these tables work correctly for both // mixed vertical partition types. // // There are tables for each of the square sizes. Vertical rectangles (like // BLOCK_16X32) use their respective "non-vert" table static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = { // 4X4 NULL, // 4X8, 8X4, 8X8 has_bl_4x8, NULL, has_bl_vert_8x8, // 8X16, 16X8, 16X16 has_bl_8x16, NULL, has_bl_vert_16x16, // 16X32, 32X16, 32X32 has_bl_16x32, NULL, has_bl_vert_32x32, // 32X64, 64X32, 64X64 has_bl_32x64, NULL, has_bl_vert_64x64, // 64x128, 128x64, 128x128 has_bl_64x128, NULL, has_bl_128x128 }; static const uint8_t *get_has_bl_table(PARTITION_TYPE partition, BLOCK_SIZE bsize) { const uint8_t *ret = NULL; // If this is a mixed vertical partition, look up bsize in orders_vert. if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { assert(bsize < BLOCK_SIZES); ret = has_bl_vert_tables[bsize]; } else { ret = has_bl_tables[bsize]; } assert(ret); return ret; } static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row, int mi_col, int bottom_available, int left_available, PARTITION_TYPE partition, TX_SIZE txsz, int row_off, int col_off, int ss_x, int ss_y) { if (!bottom_available || !left_available) return 0; // Special case for 128x* blocks, when col_off is half the block width. // This is needed because 128x* superblocks are divided into 64x* blocks in // raster order if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) { const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; const int col_off_64 = col_off % plane_bw_unit_64; if (col_off_64 == 0) { // We are at the left edge of top-right or bottom-right 64x* block. const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y; const int row_off_64 = row_off % plane_bh_unit_64; const int plane_bh_unit = AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64); // Check if all bottom-left pixels are in the left 64x* block (which is // already coded). return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit; } } if (col_off > 0) { // Bottom-left pixels are in the bottom-left block, which is not available. return 0; } else { const int bh_unit = mi_size_high[bsize]; const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1); const int bottom_left_count_unit = tx_size_high_unit[txsz]; // All bottom-left pixels are in the left block, which is already available. if (row_off + bottom_left_count_unit < plane_bh_unit) return 1; const int bw_in_mi_log2 = mi_size_wide_log2[bsize]; const int bh_in_mi_log2 = mi_size_high_log2[bsize]; const int sb_mi_size = mi_size_high[sb_size]; const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2; const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2; // Leftmost column of superblock: so bottom-left pixels maybe in the left // and/or bottom-left superblocks. But only the left superblock is // available, so check if all required pixels fall in that superblock. if (blk_col_in_sb == 0) { const int blk_start_row_off = blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >> ss_y; const int row_off_in_sb = blk_start_row_off + row_off; const int sb_height_unit = sb_mi_size >> ss_y; return row_off_in_sb + bottom_left_count_unit < sb_height_unit; } // Bottom row of superblock (and not the leftmost column): so bottom-left // pixels fall in the bottom superblock, which is not available yet. if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0; // General case (neither leftmost column nor bottom row): check if the // bottom-left block is coded before the current block. const int this_blk_index = ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) + blk_col_in_sb + 0; const int idx1 = this_blk_index / 8; const int idx2 = this_blk_index % 8; const uint8_t *has_bl_table = get_has_bl_table(partition, bsize); return (has_bl_table[idx1] >> idx2) & 1; } } typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left); static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL]; static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL]; #if CONFIG_AV1_HIGHBITDEPTH typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd); static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL]; static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL]; #endif static void init_intra_predictors_internal(void) { assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES); #define INIT_RECTANGULAR(p, type) \ p[TX_4X8] = aom_##type##_predictor_4x8; \ p[TX_8X4] = aom_##type##_predictor_8x4; \ p[TX_8X16] = aom_##type##_predictor_8x16; \ p[TX_16X8] = aom_##type##_predictor_16x8; \ p[TX_16X32] = aom_##type##_predictor_16x32; \ p[TX_32X16] = aom_##type##_predictor_32x16; \ p[TX_32X64] = aom_##type##_predictor_32x64; \ p[TX_64X32] = aom_##type##_predictor_64x32; \ p[TX_4X16] = aom_##type##_predictor_4x16; \ p[TX_16X4] = aom_##type##_predictor_16x4; \ p[TX_8X32] = aom_##type##_predictor_8x32; \ p[TX_32X8] = aom_##type##_predictor_32x8; \ p[TX_16X64] = aom_##type##_predictor_16x64; \ p[TX_64X16] = aom_##type##_predictor_64x16; #define INIT_NO_4X4(p, type) \ p[TX_8X8] = aom_##type##_predictor_8x8; \ p[TX_16X16] = aom_##type##_predictor_16x16; \ p[TX_32X32] = aom_##type##_predictor_32x32; \ p[TX_64X64] = aom_##type##_predictor_64x64; \ INIT_RECTANGULAR(p, type) #define INIT_ALL_SIZES(p, type) \ p[TX_4X4] = aom_##type##_predictor_4x4; \ INIT_NO_4X4(p, type) INIT_ALL_SIZES(pred[V_PRED], v) INIT_ALL_SIZES(pred[H_PRED], h) INIT_ALL_SIZES(pred[PAETH_PRED], paeth) INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth) INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v) INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h) INIT_ALL_SIZES(dc_pred[0][0], dc_128) INIT_ALL_SIZES(dc_pred[0][1], dc_top) INIT_ALL_SIZES(dc_pred[1][0], dc_left) INIT_ALL_SIZES(dc_pred[1][1], dc) #if CONFIG_AV1_HIGHBITDEPTH INIT_ALL_SIZES(pred_high[V_PRED], highbd_v) INIT_ALL_SIZES(pred_high[H_PRED], highbd_h) INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth) INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth) INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v) INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h) INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128) INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top) INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left) INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc) #endif #undef intra_pred_allsizes } // Directional prediction, zone 1: 0 < angle < 90 void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int dx, int dy) { int r, c, x, base, shift, val; (void)left; (void)dy; assert(dy == 1); assert(dx > 0); const int max_base_x = ((bw + bh) - 1) << upsample_above; const int frac_bits = 6 - upsample_above; const int base_inc = 1 << upsample_above; x = dx; for (r = 0; r < bh; ++r, dst += stride, x += dx) { base = x >> frac_bits; shift = ((x << upsample_above) & 0x3F) >> 1; if (base >= max_base_x) { for (int i = r; i < bh; ++i) { memset(dst, above[max_base_x], bw * sizeof(dst[0])); dst += stride; } return; } for (c = 0; c < bw; ++c, base += base_inc) { if (base < max_base_x) { val = above[base] * (32 - shift) + above[base + 1] * shift; dst[c] = ROUND_POWER_OF_TWO(val, 5); } else { dst[c] = above[max_base_x]; } } } } // Directional prediction, zone 2: 90 < angle < 180 void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { assert(dx > 0); assert(dy > 0); const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); (void)min_base_y; const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; for (int r = 0; r < bh; ++r) { for (int c = 0; c < bw; ++c) { int val; int y = r + 1; int x = (c << 6) - y * dx; const int base_x = x >> frac_bits_x; if (base_x >= min_base_x) { const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; val = above[base_x] * (32 - shift) + above[base_x + 1] * shift; val = ROUND_POWER_OF_TWO(val, 5); } else { x = c + 1; y = (r << 6) - x * dy; const int base_y = y >> frac_bits_y; assert(base_y >= min_base_y); const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; val = left[base_y] * (32 - shift) + left[base_y + 1] * shift; val = ROUND_POWER_OF_TWO(val, 5); } dst[c] = val; } dst += stride; } } // Directional prediction, zone 3: 180 < angle < 270 void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_left, int dx, int dy) { int r, c, y, base, shift, val; (void)above; (void)dx; assert(dx == 1); assert(dy > 0); const int max_base_y = (bw + bh - 1) << upsample_left; const int frac_bits = 6 - upsample_left; const int base_inc = 1 << upsample_left; y = dy; for (c = 0; c < bw; ++c, y += dy) { base = y >> frac_bits; shift = ((y << upsample_left) & 0x3F) >> 1; for (r = 0; r < bh; ++r, base += base_inc) { if (base < max_base_y) { val = left[base] * (32 - shift) + left[base + 1] * shift; dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5); } else { for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; break; } } } } static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int angle) { const int dx = av1_get_dx(angle); const int dy = av1_get_dy(angle); const int bw = tx_size_wide[tx_size]; const int bh = tx_size_high[tx_size]; assert(angle > 0 && angle < 270); if (angle > 0 && angle < 90) { av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx, dy); } else if (angle > 90 && angle < 180) { av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above, upsample_left, dx, dy); } else if (angle > 180 && angle < 270) { av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx, dy); } else if (angle == 90) { pred[V_PRED][tx_size](dst, stride, above, left); } else if (angle == 180) { pred[H_PRED][tx_size](dst, stride, above, left); } } #if CONFIG_AV1_HIGHBITDEPTH // Directional prediction, zone 1: 0 < angle < 90 void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int dx, int dy, int bd) { int r, c, x, base, shift, val; (void)left; (void)dy; (void)bd; assert(dy == 1); assert(dx > 0); const int max_base_x = ((bw + bh) - 1) << upsample_above; const int frac_bits = 6 - upsample_above; const int base_inc = 1 << upsample_above; x = dx; for (r = 0; r < bh; ++r, dst += stride, x += dx) { base = x >> frac_bits; shift = ((x << upsample_above) & 0x3F) >> 1; if (base >= max_base_x) { for (int i = r; i < bh; ++i) { aom_memset16(dst, above[max_base_x], bw); dst += stride; } return; } for (c = 0; c < bw; ++c, base += base_inc) { if (base < max_base_x) { val = above[base] * (32 - shift) + above[base + 1] * shift; dst[c] = ROUND_POWER_OF_TWO(val, 5); } else { dst[c] = above[max_base_x]; } } } } // Directional prediction, zone 2: 90 < angle < 180 void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); (void)min_base_y; const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; for (int r = 0; r < bh; ++r) { for (int c = 0; c < bw; ++c) { int val; int y = r + 1; int x = (c << 6) - y * dx; const int base_x = x >> frac_bits_x; if (base_x >= min_base_x) { const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; val = above[base_x] * (32 - shift) + above[base_x + 1] * shift; val = ROUND_POWER_OF_TWO(val, 5); } else { x = c + 1; y = (r << 6) - x * dy; const int base_y = y >> frac_bits_y; assert(base_y >= min_base_y); const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; val = left[base_y] * (32 - shift) + left[base_y + 1] * shift; val = ROUND_POWER_OF_TWO(val, 5); } dst[c] = val; } dst += stride; } } // Directional prediction, zone 3: 180 < angle < 270 void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_left, int dx, int dy, int bd) { int r, c, y, base, shift, val; (void)above; (void)dx; (void)bd; assert(dx == 1); assert(dy > 0); const int max_base_y = (bw + bh - 1) << upsample_left; const int frac_bits = 6 - upsample_left; const int base_inc = 1 << upsample_left; y = dy; for (c = 0; c < bw; ++c, y += dy) { base = y >> frac_bits; shift = ((y << upsample_left) & 0x3F) >> 1; for (r = 0; r < bh; ++r, base += base_inc) { if (base < max_base_y) { val = left[base] * (32 - shift) + left[base + 1] * shift; dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5); } else { for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; break; } } } } static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int angle, int bd) { const int dx = av1_get_dx(angle); const int dy = av1_get_dy(angle); const int bw = tx_size_wide[tx_size]; const int bh = tx_size_high[tx_size]; assert(angle > 0 && angle < 270); if (angle > 0 && angle < 90) { av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx, dy, bd); } else if (angle > 90 && angle < 180) { av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above, upsample_left, dx, dy, bd); } else if (angle > 180 && angle < 270) { av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx, dy, bd); } else if (angle == 90) { pred_high[V_PRED][tx_size](dst, stride, above, left, bd); } else if (angle == 180) { pred_high[H_PRED][tx_size](dst, stride, above, left, bd); } } #endif // CONFIG_AV1_HIGHBITDEPTH DECLARE_ALIGNED(16, const int8_t, av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = { { { -6, 10, 0, 0, 0, 12, 0, 0 }, { -5, 2, 10, 0, 0, 9, 0, 0 }, { -3, 1, 1, 10, 0, 7, 0, 0 }, { -3, 1, 1, 2, 10, 5, 0, 0 }, { -4, 6, 0, 0, 0, 2, 12, 0 }, { -3, 2, 6, 0, 0, 2, 9, 0 }, { -3, 2, 2, 6, 0, 2, 7, 0 }, { -3, 1, 2, 2, 6, 3, 5, 0 }, }, { { -10, 16, 0, 0, 0, 10, 0, 0 }, { -6, 0, 16, 0, 0, 6, 0, 0 }, { -4, 0, 0, 16, 0, 4, 0, 0 }, { -2, 0, 0, 0, 16, 2, 0, 0 }, { -10, 16, 0, 0, 0, 0, 10, 0 }, { -6, 0, 16, 0, 0, 0, 6, 0 }, { -4, 0, 0, 16, 0, 0, 4, 0 }, { -2, 0, 0, 0, 16, 0, 2, 0 }, }, { { -8, 8, 0, 0, 0, 16, 0, 0 }, { -8, 0, 8, 0, 0, 16, 0, 0 }, { -8, 0, 0, 8, 0, 16, 0, 0 }, { -8, 0, 0, 0, 8, 16, 0, 0 }, { -4, 4, 0, 0, 0, 0, 16, 0 }, { -4, 0, 4, 0, 0, 0, 16, 0 }, { -4, 0, 0, 4, 0, 0, 16, 0 }, { -4, 0, 0, 0, 4, 0, 16, 0 }, }, { { -2, 8, 0, 0, 0, 10, 0, 0 }, { -1, 3, 8, 0, 0, 6, 0, 0 }, { -1, 2, 3, 8, 0, 4, 0, 0 }, { 0, 1, 2, 3, 8, 2, 0, 0 }, { -1, 4, 0, 0, 0, 3, 10, 0 }, { -1, 3, 4, 0, 0, 4, 6, 0 }, { -1, 2, 3, 4, 0, 4, 4, 0 }, { -1, 2, 2, 3, 4, 3, 3, 0 }, }, { { -12, 14, 0, 0, 0, 14, 0, 0 }, { -10, 0, 14, 0, 0, 12, 0, 0 }, { -9, 0, 0, 14, 0, 11, 0, 0 }, { -8, 0, 0, 0, 14, 10, 0, 0 }, { -10, 12, 0, 0, 0, 0, 14, 0 }, { -9, 1, 12, 0, 0, 0, 12, 0 }, { -8, 0, 0, 12, 0, 1, 11, 0 }, { -7, 0, 0, 1, 12, 1, 9, 0 }, }, }; void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint8_t *above, const uint8_t *left, int mode) { int r, c; uint8_t buffer[33][33]; const int bw = tx_size_wide[tx_size]; const int bh = tx_size_high[tx_size]; assert(bw <= 32 && bh <= 32); for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t)); for (r = 1; r < bh + 1; r += 2) for (c = 1; c < bw + 1; c += 4) { const uint8_t p0 = buffer[r - 1][c - 1]; const uint8_t p1 = buffer[r - 1][c]; const uint8_t p2 = buffer[r - 1][c + 1]; const uint8_t p3 = buffer[r - 1][c + 2]; const uint8_t p4 = buffer[r - 1][c + 3]; const uint8_t p5 = buffer[r][c - 1]; const uint8_t p6 = buffer[r + 1][c - 1]; for (int k = 0; k < 8; ++k) { int r_offset = k >> 2; int c_offset = k & 0x03; int pr = av1_filter_intra_taps[mode][k][0] * p0 + av1_filter_intra_taps[mode][k][1] * p1 + av1_filter_intra_taps[mode][k][2] * p2 + av1_filter_intra_taps[mode][k][3] * p3 + av1_filter_intra_taps[mode][k][4] * p4 + av1_filter_intra_taps[mode][k][5] * p5 + av1_filter_intra_taps[mode][k][6] * p6; // Section 7.11.2.3 specifies the right-hand side of the assignment as // Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ). // Since Clip1() clips a negative value to 0, it is safe to replace // Round2Signed() with Round2(). buffer[r + r_offset][c + c_offset] = clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS)); } } for (r = 0; r < bh; ++r) { memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t)); dst += stride; } } #if CONFIG_AV1_HIGHBITDEPTH static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint16_t *above, const uint16_t *left, int mode, int bd) { int r, c; uint16_t buffer[33][33]; const int bw = tx_size_wide[tx_size]; const int bh = tx_size_high[tx_size]; assert(bw <= 32 && bh <= 32); for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0])); for (r = 1; r < bh + 1; r += 2) for (c = 1; c < bw + 1; c += 4) { const uint16_t p0 = buffer[r - 1][c - 1]; const uint16_t p1 = buffer[r - 1][c]; const uint16_t p2 = buffer[r - 1][c + 1]; const uint16_t p3 = buffer[r - 1][c + 2]; const uint16_t p4 = buffer[r - 1][c + 3]; const uint16_t p5 = buffer[r][c - 1]; const uint16_t p6 = buffer[r + 1][c - 1]; for (int k = 0; k < 8; ++k) { int r_offset = k >> 2; int c_offset = k & 0x03; int pr = av1_filter_intra_taps[mode][k][0] * p0 + av1_filter_intra_taps[mode][k][1] * p1 + av1_filter_intra_taps[mode][k][2] * p2 + av1_filter_intra_taps[mode][k][3] * p3 + av1_filter_intra_taps[mode][k][4] * p4 + av1_filter_intra_taps[mode][k][5] * p5 + av1_filter_intra_taps[mode][k][6] * p6; // Section 7.11.2.3 specifies the right-hand side of the assignment as // Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ). // Since Clip1() clips a negative value to 0, it is safe to replace // Round2Signed() with Round2(). buffer[r + r_offset][c + c_offset] = clip_pixel_highbd( ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd); } } for (r = 0; r < bh; ++r) { memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0])); dst += stride; } } #endif // CONFIG_AV1_HIGHBITDEPTH static int is_smooth(const MB_MODE_INFO *mbmi, int plane) { if (plane == 0) { const PREDICTION_MODE mode = mbmi->mode; return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || mode == SMOOTH_H_PRED); } else { // uv_mode is not set for inter blocks, so need to explicitly // detect that case. if (is_inter_block(mbmi)) return 0; const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED || uv_mode == UV_SMOOTH_H_PRED); } } static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) { const MB_MODE_INFO *above; const MB_MODE_INFO *left; if (plane == 0) { above = xd->above_mbmi; left = xd->left_mbmi; } else { above = xd->chroma_above_mbmi; left = xd->chroma_left_mbmi; } return (above && is_smooth(above, plane)) || (left && is_smooth(left, plane)); } static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) { const int d = abs(delta); int strength = 0; const int blk_wh = bs0 + bs1; if (type == 0) { if (blk_wh <= 8) { if (d >= 56) strength = 1; } else if (blk_wh <= 12) { if (d >= 40) strength = 1; } else if (blk_wh <= 16) { if (d >= 40) strength = 1; } else if (blk_wh <= 24) { if (d >= 8) strength = 1; if (d >= 16) strength = 2; if (d >= 32) strength = 3; } else if (blk_wh <= 32) { if (d >= 1) strength = 1; if (d >= 4) strength = 2; if (d >= 32) strength = 3; } else { if (d >= 1) strength = 3; } } else { if (blk_wh <= 8) { if (d >= 40) strength = 1; if (d >= 64) strength = 2; } else if (blk_wh <= 16) { if (d >= 20) strength = 1; if (d >= 48) strength = 2; } else if (blk_wh <= 24) { if (d >= 4) strength = 3; } else { if (d >= 1) strength = 3; } } return strength; } void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) { if (!strength) return; const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 } }; const int filt = strength - 1; uint8_t edge[129]; memcpy(edge, p, sz * sizeof(*p)); for (int i = 1; i < sz; i++) { int s = 0; for (int j = 0; j < INTRA_EDGE_TAPS; j++) { int k = i - 2 + j; k = (k < 0) ? 0 : k; k = (k > sz - 1) ? sz - 1 : k; s += edge[k] * kernel[filt][j]; } s = (s + 8) >> 4; p[i] = s; } } static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) { const int kernel[3] = { 5, 6, 5 }; int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + (p_above[0] * kernel[2]); s = (s + 8) >> 4; p_above[-1] = s; p_left[-1] = s; } void av1_upsample_intra_edge_c(uint8_t *p, int sz) { // interpolate half-sample positions assert(sz <= MAX_UPSAMPLE_SZ); uint8_t in[MAX_UPSAMPLE_SZ + 3]; // copy p[-1..(sz-1)] and extend first and last samples in[0] = p[-1]; in[1] = p[-1]; for (int i = 0; i < sz; i++) { in[i + 2] = p[i]; } in[sz + 2] = p[sz - 1]; // interpolate half-sample edge positions p[-2] = in[0]; for (int i = 0; i < sz; i++) { int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; s = clip_pixel((s + 8) >> 4); p[2 * i - 1] = s; p[2 * i] = in[i + 2]; } } static void build_directional_and_filter_intra_predictors( const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) { int i; const uint8_t *above_ref = ref - ref_stride; const uint8_t *left_ref = ref - 1; DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]); DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]); uint8_t *const above_row = above_data + 16; uint8_t *const left_col = left_data + 16; const int txwpx = tx_size_wide[tx_size]; const int txhpx = tx_size_high[tx_size]; int need_left = extend_modes[mode] & NEED_LEFT; int need_above = extend_modes[mode] & NEED_ABOVE; int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; const int is_dr_mode = av1_is_directional_mode(mode); const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; assert(use_filter_intra || is_dr_mode); // The left_data, above_data buffers must be zeroed to fix some intermittent // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4 // path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to // be the potential reason for this issue. memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS); memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS); // The default values if ref pixels are not available: // 128 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. if (is_dr_mode) { if (p_angle <= 90) need_above = 1, need_left = 0, need_above_left = 1; else if (p_angle < 180) need_above = 1, need_left = 1, need_above_left = 1; else need_above = 0, need_left = 1, need_above_left = 1; } if (use_filter_intra) need_left = need_above = need_above_left = 1; assert(n_top_px >= 0); assert(n_topright_px >= -1); assert(n_left_px >= 0); assert(n_bottomleft_px >= -1); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { int val; if (need_left) { val = (n_top_px > 0) ? above_ref[0] : 129; } else { val = (n_left_px > 0) ? left_ref[0] : 127; } for (i = 0; i < txhpx; ++i) { memset(dst, val, txwpx); dst += dst_stride; } return; } // NEED_LEFT if (need_left) { const int num_left_pixels_needed = txhpx + (n_bottomleft_px >= 0 ? txwpx : 0); i = 0; if (n_left_px > 0) { for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; if (n_bottomleft_px > 0) { assert(i == txhpx); for (; i < txhpx + n_bottomleft_px; i++) left_col[i] = left_ref[i * ref_stride]; } if (i < num_left_pixels_needed) memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); } else if (n_top_px > 0) { memset(left_col, above_ref[0], num_left_pixels_needed); } } // NEED_ABOVE if (need_above) { const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0); if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px); i = n_top_px; if (n_topright_px > 0) { assert(n_top_px == txwpx); memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px); i += n_topright_px; } if (i < num_top_pixels_needed) memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i); } else if (n_left_px > 0) { memset(above_row, left_ref[0], num_top_pixels_needed); } } if (need_above_left) { if (n_top_px > 0 && n_left_px > 0) { above_row[-1] = above_ref[-1]; } else if (n_top_px > 0) { above_row[-1] = above_ref[0]; } else if (n_left_px > 0) { above_row[-1] = left_ref[0]; } else { above_row[-1] = 128; } left_col[-1] = above_row[-1]; } if (use_filter_intra) { av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, filter_intra_mode); return; } assert(is_dr_mode); int upsample_above = 0; int upsample_left = 0; if (!disable_edge_filter) { const int need_right = p_angle < 90; const int need_bottom = p_angle > 180; if (p_angle != 90 && p_angle != 180) { const int ab_le = need_above_left ? 1 : 0; if (need_above && need_left && (txwpx + txhpx >= 24)) { filter_intra_edge_corner(above_row, left_col); } if (need_above && n_top_px > 0) { const int strength = intra_edge_filter_strength( txwpx, txhpx, p_angle - 90, intra_edge_filter_type); const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); av1_filter_intra_edge(above_row - ab_le, n_px, strength); } if (need_left && n_left_px > 0) { const int strength = intra_edge_filter_strength( txhpx, txwpx, p_angle - 180, intra_edge_filter_type); const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); av1_filter_intra_edge(left_col - ab_le, n_px, strength); } } upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, intra_edge_filter_type); if (need_above && upsample_above) { const int n_px = txwpx + (need_right ? txhpx : 0); av1_upsample_intra_edge(above_row, n_px); } upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, intra_edge_filter_type); if (need_left && upsample_left) { const int n_px = txhpx + (need_bottom ? txwpx : 0); av1_upsample_intra_edge(left_col, n_px); } } dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above, upsample_left, p_angle); } // This function generates the pred data of a given block for non-directional // intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H, SMOOTH_V and PAETH). static void build_non_directional_intra_predictors( const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px) { const uint8_t *above_ref = ref - ref_stride; const uint8_t *left_ref = ref - 1; const int txwpx = tx_size_wide[tx_size]; const int txhpx = tx_size_high[tx_size]; const int need_left = extend_modes[mode] & NEED_LEFT; const int need_above = extend_modes[mode] & NEED_ABOVE; const int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; int i = 0; assert(n_top_px >= 0); assert(n_left_px >= 0); assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || mode == SMOOTH_H_PRED || mode == PAETH_PRED); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { int val = 0; if (need_left) { val = (n_top_px > 0) ? above_ref[0] : 129; } else { val = (n_left_px > 0) ? left_ref[0] : 127; } for (i = 0; i < txhpx; ++i) { memset(dst, val, txwpx); dst += dst_stride; } return; } DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]); DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]); uint8_t *const above_row = above_data + 16; uint8_t *const left_col = left_data + 16; if (need_left) { memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS); if (n_left_px > 0) { for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; if (i < txhpx) memset(&left_col[i], left_col[i - 1], txhpx - i); } else if (n_top_px > 0) { memset(left_col, above_ref[0], txhpx); } } if (need_above) { memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS); if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px); i = n_top_px; if (i < txwpx) memset(&above_row[i], above_row[i - 1], txwpx - i); } else if (n_left_px > 0) { memset(above_row, left_ref[0], txwpx); } } if (need_above_left) { if (n_top_px > 0 && n_left_px > 0) { above_row[-1] = above_ref[-1]; } else if (n_top_px > 0) { above_row[-1] = above_ref[0]; } else if (n_left_px > 0) { above_row[-1] = left_ref[0]; } else { above_row[-1] = 128; } left_col[-1] = above_row[-1]; } if (mode == DC_PRED) { dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, above_row, left_col); } } #if CONFIG_AV1_HIGHBITDEPTH void av1_highbd_filter_intra_edge_c(uint16_t *p, int sz, int strength) { if (!strength) return; const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 } }; const int filt = strength - 1; uint16_t edge[129]; memcpy(edge, p, sz * sizeof(*p)); for (int i = 1; i < sz; i++) { int s = 0; for (int j = 0; j < INTRA_EDGE_TAPS; j++) { int k = i - 2 + j; k = (k < 0) ? 0 : k; k = (k > sz - 1) ? sz - 1 : k; s += edge[k] * kernel[filt][j]; } s = (s + 8) >> 4; p[i] = s; } } static void highbd_filter_intra_edge_corner(uint16_t *p_above, uint16_t *p_left) { const int kernel[3] = { 5, 6, 5 }; int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + (p_above[0] * kernel[2]); s = (s + 8) >> 4; p_above[-1] = s; p_left[-1] = s; } void av1_highbd_upsample_intra_edge_c(uint16_t *p, int sz, int bd) { // interpolate half-sample positions assert(sz <= MAX_UPSAMPLE_SZ); uint16_t in[MAX_UPSAMPLE_SZ + 3]; // copy p[-1..(sz-1)] and extend first and last samples in[0] = p[-1]; in[1] = p[-1]; for (int i = 0; i < sz; i++) { in[i + 2] = p[i]; } in[sz + 2] = p[sz - 1]; // interpolate half-sample edge positions p[-2] = in[0]; for (int i = 0; i < sz; i++) { int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; s = (s + 8) >> 4; s = clip_pixel_highbd(s, bd); p[2 * i - 1] = s; p[2 * i] = in[i + 2]; } } static void highbd_build_directional_and_filter_intra_predictors( const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, int n_bottomleft_px, int intra_edge_filter_type, int bit_depth) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]); DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]); uint16_t *const above_row = above_data + 16; uint16_t *const left_col = left_data + 16; const int txwpx = tx_size_wide[tx_size]; const int txhpx = tx_size_high[tx_size]; int need_left = extend_modes[mode] & NEED_LEFT; int need_above = extend_modes[mode] & NEED_ABOVE; int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; const uint16_t *above_ref = ref - ref_stride; const uint16_t *left_ref = ref - 1; const int is_dr_mode = av1_is_directional_mode(mode); const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; assert(use_filter_intra || is_dr_mode); const int base = 128 << (bit_depth - 8); // The left_data, above_data buffers must be zeroed to fix some intermittent // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4 // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are // seen to be the potential reason for this issue. aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS); aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS); // The default values if ref pixels are not available: // base base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 // base+1 A B .. Y Z // base+1 C D .. W X // base+1 E F .. U V // base+1 G H .. S T T T T T if (is_dr_mode) { if (p_angle <= 90) need_above = 1, need_left = 0, need_above_left = 1; else if (p_angle < 180) need_above = 1, need_left = 1, need_above_left = 1; else need_above = 0, need_left = 1, need_above_left = 1; } if (use_filter_intra) need_left = need_above = need_above_left = 1; assert(n_top_px >= 0); assert(n_topright_px >= -1); assert(n_left_px >= 0); assert(n_bottomleft_px >= -1); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { int val; if (need_left) { val = (n_top_px > 0) ? above_ref[0] : base + 1; } else { val = (n_left_px > 0) ? left_ref[0] : base - 1; } for (i = 0; i < txhpx; ++i) { aom_memset16(dst, val, txwpx); dst += dst_stride; } return; } // NEED_LEFT if (need_left) { const int num_left_pixels_needed = txhpx + (n_bottomleft_px >= 0 ? txwpx : 0); i = 0; if (n_left_px > 0) { for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; if (n_bottomleft_px > 0) { assert(i == txhpx); for (; i < txhpx + n_bottomleft_px; i++) left_col[i] = left_ref[i * ref_stride]; } if (i < num_left_pixels_needed) aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); } else if (n_top_px > 0) { aom_memset16(left_col, above_ref[0], num_left_pixels_needed); } } // NEED_ABOVE if (need_above) { const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0); if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); i = n_top_px; if (n_topright_px > 0) { assert(n_top_px == txwpx); memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px * sizeof(above_ref[0])); i += n_topright_px; } if (i < num_top_pixels_needed) aom_memset16(&above_row[i], above_row[i - 1], num_top_pixels_needed - i); } else if (n_left_px > 0) { aom_memset16(above_row, left_ref[0], num_top_pixels_needed); } } if (need_above_left) { if (n_top_px > 0 && n_left_px > 0) { above_row[-1] = above_ref[-1]; } else if (n_top_px > 0) { above_row[-1] = above_ref[0]; } else if (n_left_px > 0) { above_row[-1] = left_ref[0]; } else { above_row[-1] = base; } left_col[-1] = above_row[-1]; } if (use_filter_intra) { highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, filter_intra_mode, bit_depth); return; } assert(is_dr_mode); int upsample_above = 0; int upsample_left = 0; if (!disable_edge_filter) { const int need_right = p_angle < 90; const int need_bottom = p_angle > 180; if (p_angle != 90 && p_angle != 180) { const int ab_le = need_above_left ? 1 : 0; if (need_above && need_left && (txwpx + txhpx >= 24)) { highbd_filter_intra_edge_corner(above_row, left_col); } if (need_above && n_top_px > 0) { const int strength = intra_edge_filter_strength( txwpx, txhpx, p_angle - 90, intra_edge_filter_type); const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); av1_highbd_filter_intra_edge(above_row - ab_le, n_px, strength); } if (need_left && n_left_px > 0) { const int strength = intra_edge_filter_strength( txhpx, txwpx, p_angle - 180, intra_edge_filter_type); const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); av1_highbd_filter_intra_edge(left_col - ab_le, n_px, strength); } } upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, intra_edge_filter_type); if (need_above && upsample_above) { const int n_px = txwpx + (need_right ? txhpx : 0); av1_highbd_upsample_intra_edge(above_row, n_px, bit_depth); } upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, intra_edge_filter_type); if (need_left && upsample_left) { const int n_px = txhpx + (need_bottom ? txwpx : 0); av1_highbd_upsample_intra_edge(left_col, n_px, bit_depth); } } highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above, upsample_left, p_angle, bit_depth); } // For HBD encode/decode, this function generates the pred data of a given // block for non-directional intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H, // SMOOTH_V and PAETH). static void highbd_build_non_directional_intra_predictors( const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px, int bit_depth) { int i = 0; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8); const int txwpx = tx_size_wide[tx_size]; const int txhpx = tx_size_high[tx_size]; int need_left = extend_modes[mode] & NEED_LEFT; int need_above = extend_modes[mode] & NEED_ABOVE; int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; const uint16_t *above_ref = ref - ref_stride; const uint16_t *left_ref = ref - 1; const int base = 128 << (bit_depth - 8); assert(n_top_px >= 0); assert(n_left_px >= 0); assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || mode == SMOOTH_H_PRED || mode == PAETH_PRED); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { int val = 0; if (need_left) { val = (n_top_px > 0) ? above_ref[0] : base + 1; } else { val = (n_left_px > 0) ? left_ref[0] : base - 1; } for (i = 0; i < txhpx; ++i) { aom_memset16(dst, val, txwpx); dst += dst_stride; } return; } DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]); DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]); uint16_t *const above_row = above_data + 16; uint16_t *const left_col = left_data + 16; if (need_left) { aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS); if (n_left_px > 0) { for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; if (i < txhpx) aom_memset16(&left_col[i], left_col[i - 1], txhpx - i); } else if (n_top_px > 0) { aom_memset16(left_col, above_ref[0], txhpx); } } if (need_above) { aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS); if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); i = n_top_px; if (i < txwpx) aom_memset16(&above_row[i], above_row[i - 1], (txwpx - i)); } else if (n_left_px > 0) { aom_memset16(above_row, left_ref[0], txwpx); } } if (need_above_left) { if (n_top_px > 0 && n_left_px > 0) { above_row[-1] = above_ref[-1]; } else if (n_top_px > 0) { above_row[-1] = above_ref[0]; } else if (n_left_px > 0) { above_row[-1] = left_ref[0]; } else { above_row[-1] = base; } left_col[-1] = above_row[-1]; } if (mode == DC_PRED) { dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( dst, dst_stride, above_row, left_col, bit_depth); } else { pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth); } } #endif // CONFIG_AV1_HIGHBITDEPTH static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { assert(subsampling_x >= 0 && subsampling_x < 2); assert(subsampling_y >= 0 && subsampling_y < 2); BLOCK_SIZE bs = bsize; switch (bsize) { case BLOCK_4X4: if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_8X8; else if (subsampling_x == 1) bs = BLOCK_8X4; else if (subsampling_y == 1) bs = BLOCK_4X8; break; case BLOCK_4X8: if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_8X8; else if (subsampling_x == 1) bs = BLOCK_8X8; else if (subsampling_y == 1) bs = BLOCK_4X8; break; case BLOCK_8X4: if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_8X8; else if (subsampling_x == 1) bs = BLOCK_8X4; else if (subsampling_y == 1) bs = BLOCK_8X8; break; case BLOCK_4X16: if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_8X16; else if (subsampling_x == 1) bs = BLOCK_8X16; else if (subsampling_y == 1) bs = BLOCK_4X16; break; case BLOCK_16X4: if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_16X8; else if (subsampling_x == 1) bs = BLOCK_16X4; else if (subsampling_y == 1) bs = BLOCK_16X8; break; default: break; } return bs; } void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size, int enable_intra_edge_filter, int wpx, int hpx, TX_SIZE tx_size, PREDICTION_MODE mode, int angle_delta, int use_palette, FILTER_INTRA_MODE filter_intra_mode, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, int col_off, int row_off, int plane) { const MB_MODE_INFO *const mbmi = xd->mi[0]; const int txwpx = tx_size_wide[tx_size]; const int txhpx = tx_size_high[tx_size]; const int x = col_off << MI_SIZE_LOG2; const int y = row_off << MI_SIZE_LOG2; const int is_hbd = is_cur_buf_hbd(xd); assert(mode < INTRA_MODES); if (use_palette) { int r, c; const uint8_t *const map = xd->plane[plane != 0].color_index_map + xd->color_index_map_offset[plane != 0]; const uint16_t *const palette = mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; if (is_hbd) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); for (r = 0; r < txhpx; ++r) { for (c = 0; c < txwpx; ++c) { dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]]; } } } else { for (r = 0; r < txhpx; ++r) { for (c = 0; c < txwpx; ++c) { dst[r * dst_stride + c] = (uint8_t)palette[map[(r + y) * wpx + c + x]]; } } } return; } const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; const int have_top = row_off || (ss_y ? xd->chroma_up_available : xd->up_available); const int have_left = col_off || (ss_x ? xd->chroma_left_available : xd->left_available); // Distance between the right edge of this prediction block to // the frame right edge const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx; // Distance between the bottom edge of this prediction block to // the frame bottom edge const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx; const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; const int is_dr_mode = av1_is_directional_mode(mode); // The computations in this function, as well as in build_intra_predictors(), // are generalized for all intra modes. Some of these operations are not // required since non-directional intra modes (i.e., DC, SMOOTH, SMOOTH_H, // SMOOTH_V, and PAETH) specifically require left and top neighbors. Hence, a // separate function build_non_directional_intra_predictors() is introduced // for these modes to avoid redundant computations while generating pred data. const int n_top_px = have_top ? AOMMIN(txwpx, xr + txwpx) : 0; const int n_left_px = have_left ? AOMMIN(txhpx, yd + txhpx) : 0; if (!use_filter_intra && !is_dr_mode) { #if CONFIG_AV1_HIGHBITDEPTH if (is_hbd) { highbd_build_non_directional_intra_predictors( ref, ref_stride, dst, dst_stride, mode, tx_size, n_top_px, n_left_px, xd->bd); return; } #endif // CONFIG_AV1_HIGHBITDEPTH build_non_directional_intra_predictors(ref, ref_stride, dst, dst_stride, mode, tx_size, n_top_px, n_left_px); return; } const int txw = tx_size_wide_unit[tx_size]; const int txh = tx_size_high_unit[tx_size]; const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); const int right_available = mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end; const int bottom_available = (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end); const PARTITION_TYPE partition = mbmi->partition; BLOCK_SIZE bsize = mbmi->bsize; // force 4x4 chroma component block size. if (ss_x || ss_y) { bsize = scale_chroma_bsize(bsize, ss_x, ss_y); } int p_angle = 0; int need_top_right = extend_modes[mode] & NEED_ABOVERIGHT; int need_bottom_left = extend_modes[mode] & NEED_BOTTOMLEFT; if (use_filter_intra) { need_top_right = 0; need_bottom_left = 0; } if (is_dr_mode) { p_angle = mode_to_angle_map[mode] + angle_delta; need_top_right = p_angle < 90; need_bottom_left = p_angle > 180; } // Possible states for have_top_right(TR) and have_bottom_left(BL) // -1 : TR and BL are not needed // 0 : TR and BL are needed but not available // > 0 : TR and BL are needed and pixels are available const int have_top_right = need_top_right ? has_top_right(sb_size, bsize, mi_row, mi_col, have_top, right_available, partition, tx_size, row_off, col_off, ss_x, ss_y) : -1; const int have_bottom_left = need_bottom_left ? has_bottom_left(sb_size, bsize, mi_row, mi_col, bottom_available, have_left, partition, tx_size, row_off, col_off, ss_x, ss_y) : -1; const int disable_edge_filter = !enable_intra_edge_filter; const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane); const int n_topright_px = have_top_right > 0 ? AOMMIN(txwpx, xr) : have_top_right; const int n_bottomleft_px = have_bottom_left > 0 ? AOMMIN(txhpx, yd) : have_bottom_left; #if CONFIG_AV1_HIGHBITDEPTH if (is_hbd) { highbd_build_directional_and_filter_intra_predictors( ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode, tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px, n_bottomleft_px, intra_edge_filter_type, xd->bd); return; } #endif build_directional_and_filter_intra_predictors( ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode, tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px, n_bottomleft_px, intra_edge_filter_type); } void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int blk_col, int blk_row, TX_SIZE tx_size) { const MB_MODE_INFO *const mbmi = xd->mi[0]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; const PREDICTION_MODE mode = (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0; const FILTER_INTRA_MODE filter_intra_mode = (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra) ? mbmi->filter_intra_mode_info.filter_intra_mode : FILTER_INTRA_MODES; const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP; const SequenceHeader *seq_params = cm->seq_params; if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) { #if CONFIG_DEBUG assert(is_cfl_allowed(xd)); const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); (void)plane_bsize; assert(plane_bsize < BLOCK_SIZES_ALL); if (!xd->lossless[mbmi->segment_id]) { assert(blk_col == 0); assert(blk_row == 0); assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); } #endif CFL_CTX *const cfl = &xd->cfl; CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane); if (!cfl->dc_pred_is_cached[pred_plane]) { av1_predict_intra_block(xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width, pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode, dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); if (cfl->use_dc_pred_cache) { cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]); cfl->dc_pred_is_cached[pred_plane] = true; } } else { cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane); } av1_cfl_predict_block(xd, dst, dst_stride, tx_size, plane); return; } av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width, pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode, dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); } void av1_init_intra_predictors(void) { aom_once(init_intra_predictors_internal); }