/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_THREAD_COMMON_H_ #define AOM_AV1_COMMON_THREAD_COMMON_H_ #include "config/aom_config.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/cdef.h" #include "aom_util/aom_thread.h" #ifdef __cplusplus extern "C" { #endif struct AV1Common; typedef struct AV1LfMTInfo { int mi_row; int plane; int dir; int lpf_opt_level; } AV1LfMTInfo; // Loopfilter row synchronization typedef struct AV1LfSyncData { #if CONFIG_MULTITHREAD pthread_mutex_t *mutex_[MAX_MB_PLANE]; pthread_cond_t *cond_[MAX_MB_PLANE]; #endif // Allocate memory to store the loop-filtered superblock index in each row. int *cur_sb_col[MAX_MB_PLANE]; // The optimal sync_range for different resolution and platform should be // determined by testing. Currently, it is chosen to be a power-of-2 number. int sync_range; int rows; // Row-based parallel loopfilter data LFWorkerData *lfdata; int num_workers; #if CONFIG_MULTITHREAD pthread_mutex_t *job_mutex; #endif AV1LfMTInfo *job_queue; int jobs_enqueued; int jobs_dequeued; // Initialized to false, set to true by the worker thread that encounters an // error in order to abort the processing of other worker threads. bool lf_mt_exit; } AV1LfSync; typedef struct AV1LrMTInfo { int v_start; int v_end; int lr_unit_row; int plane; int sync_mode; int v_copy_start; int v_copy_end; } AV1LrMTInfo; typedef struct LoopRestorationWorkerData { int32_t *rst_tmpbuf; void *rlbs; void *lr_ctxt; int do_extend_border; struct aom_internal_error_info error_info; } LRWorkerData; // Looprestoration row synchronization typedef struct AV1LrSyncData { #if CONFIG_MULTITHREAD pthread_mutex_t *mutex_[MAX_MB_PLANE]; pthread_cond_t *cond_[MAX_MB_PLANE]; #endif // Allocate memory to store the loop-restoration block index in each row. int *cur_sb_col[MAX_MB_PLANE]; // The optimal sync_range for different resolution and platform should be // determined by testing. Currently, it is chosen to be a power-of-2 number. int sync_range; int rows; int num_planes; int num_workers; #if CONFIG_MULTITHREAD pthread_mutex_t *job_mutex; #endif // Row-based parallel loopfilter data LRWorkerData *lrworkerdata; AV1LrMTInfo *job_queue; int jobs_enqueued; int jobs_dequeued; // Initialized to false, set to true by the worker thread that encounters // an error in order to abort the processing of other worker threads. bool lr_mt_exit; } AV1LrSync; typedef struct AV1CdefWorker { AV1_COMMON *cm; MACROBLOCKD *xd; uint16_t *colbuf[MAX_MB_PLANE]; uint16_t *srcbuf; uint16_t *linebuf[MAX_MB_PLANE]; cdef_init_fb_row_t cdef_init_fb_row_fn; int do_extend_border; struct aom_internal_error_info error_info; } AV1CdefWorkerData; typedef struct AV1CdefRowSync { #if CONFIG_MULTITHREAD pthread_mutex_t *row_mutex_; pthread_cond_t *row_cond_; #endif // CONFIG_MULTITHREAD int is_row_done; } AV1CdefRowSync; // Data related to CDEF search multi-thread synchronization. typedef struct AV1CdefSyncData { #if CONFIG_MULTITHREAD // Mutex lock used while dispatching jobs. pthread_mutex_t *mutex_; #endif // CONFIG_MULTITHREAD // Data related to CDEF row mt sync information AV1CdefRowSync *cdef_row_mt; // Flag to indicate all blocks are processed and end of frame is reached int end_of_frame; // Row index in units of 64x64 block int fbr; // Column index in units of 64x64 block int fbc; // Initialized to false, set to true by the worker thread that encounters // an error in order to abort the processing of other worker threads. bool cdef_mt_exit; } AV1CdefSync; void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, AV1CdefWorkerData *const cdef_worker, AVxWorker *const workers, AV1CdefSync *const cdef_sync, int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, int do_extend_border); void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, CdefBlockInfo *const fb_info, uint16_t **const linebuf, uint16_t *const src, struct AV1CdefSyncData *const cdef_sync, int fbr); void av1_cdef_copy_sb8_16(const AV1_COMMON *const cm, uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize); void av1_cdef_copy_sb8_16_lowbd(uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize); void av1_cdef_copy_sb8_16_highbd(uint16_t *const dst, int dstride, const uint8_t *src, int src_voffset, int src_hoffset, int sstride, int vsize, int hsize); void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync, int num_workers); void av1_free_cdef_sync(AV1CdefSync *cdef_sync); // Deallocate loopfilter synchronization related mutex and data. void av1_loop_filter_dealloc(AV1LfSync *lf_sync); void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, int width, int num_workers); void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync, int num_mis_in_lpf_unit_height_log2); void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, struct AV1Common *cm, struct macroblockd *xd, int plane_start, int plane_end, int partial_frame, AVxWorker *workers, int num_workers, AV1LfSync *lf_sync, int lpf_opt_level); void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, struct AV1Common *cm, int optimized_lr, AVxWorker *workers, int num_workers, AV1LrSync *lr_sync, void *lr_ctxt, int do_extend_border); void av1_loop_restoration_dealloc(AV1LrSync *lr_sync); void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, int num_workers, int num_rows_lr, int num_planes, int width); int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm); void av1_thread_loop_filter_rows( const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane, int dir, int lpf_opt_level, AV1LfSync *const lf_sync, struct aom_internal_error_info *error_info, AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, int mib_size_log2); static AOM_FORCE_INLINE bool skip_loop_filter_plane( const int planes_to_lf[MAX_MB_PLANE], int plane, int lpf_opt_level) { // If LPF_PICK_METHOD is LPF_PICK_FROM_Q, we have the option to filter both // chroma planes together if (lpf_opt_level == 2) { if (plane == AOM_PLANE_Y) { return !planes_to_lf[plane]; } if (plane == AOM_PLANE_U) { // U and V are handled together return !planes_to_lf[1] && !planes_to_lf[2]; } assert(plane == AOM_PLANE_V); if (plane == AOM_PLANE_V) { // V is handled when u is filtered return true; } } // Normal operation mode return !planes_to_lf[plane]; } static AOM_INLINE void enqueue_lf_jobs(AV1LfSync *lf_sync, int start, int stop, const int planes_to_lf[MAX_MB_PLANE], int lpf_opt_level, int num_mis_in_lpf_unit_height) { int mi_row, plane, dir; AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; lf_sync->jobs_enqueued = 0; lf_sync->jobs_dequeued = 0; // Launch all vertical jobs first, as they are blocking the horizontal ones. // Launch top row jobs for all planes first, in case the output can be // partially reconstructed row by row. for (dir = 0; dir < 2; ++dir) { for (mi_row = start; mi_row < stop; mi_row += num_mis_in_lpf_unit_height) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) { continue; } if (!planes_to_lf[plane]) continue; lf_job_queue->mi_row = mi_row; lf_job_queue->plane = plane; lf_job_queue->dir = dir; lf_job_queue->lpf_opt_level = lpf_opt_level; lf_job_queue++; lf_sync->jobs_enqueued++; } } } } static AOM_INLINE void loop_filter_frame_mt_init( AV1_COMMON *cm, int start_mi_row, int end_mi_row, const int planes_to_lf[MAX_MB_PLANE], int num_workers, AV1LfSync *lf_sync, int lpf_opt_level, int num_mis_in_lpf_unit_height_log2) { // Number of superblock rows const int sb_rows = CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2); if (!lf_sync->sync_range || sb_rows != lf_sync->rows || num_workers > lf_sync->num_workers) { av1_loop_filter_dealloc(lf_sync); av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); } lf_sync->lf_mt_exit = false; // Initialize cur_sb_col to -1 for all SB rows. for (int i = 0; i < MAX_MB_PLANE; i++) { memset(lf_sync->cur_sb_col[i], -1, sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); } enqueue_lf_jobs(lf_sync, start_mi_row, end_mi_row, planes_to_lf, lpf_opt_level, (1 << num_mis_in_lpf_unit_height_log2)); } static AOM_INLINE AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { AV1LfMTInfo *cur_job_info = NULL; #if CONFIG_MULTITHREAD pthread_mutex_lock(lf_sync->job_mutex); if (!lf_sync->lf_mt_exit && lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; lf_sync->jobs_dequeued++; } pthread_mutex_unlock(lf_sync->job_mutex); #else (void)lf_sync; #endif return cur_job_info; } static AOM_INLINE void loop_filter_data_reset(LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, struct AV1Common *cm, MACROBLOCKD *xd) { struct macroblockd_plane *pd = xd->plane; lf_data->frame_buffer = frame_buffer; lf_data->cm = cm; lf_data->xd = xd; for (int i = 0; i < MAX_MB_PLANE; i++) { memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); lf_data->planes[i].subsampling_x = pd[i].subsampling_x; lf_data->planes[i].subsampling_y = pd[i].subsampling_y; } } static AOM_INLINE void set_planes_to_loop_filter(const struct loopfilter *lf, int planes_to_lf[MAX_MB_PLANE], int plane_start, int plane_end) { // For each luma and chroma plane, whether to filter it or not. planes_to_lf[0] = (lf->filter_level[0] || lf->filter_level[1]) && plane_start <= 0 && 0 < plane_end; planes_to_lf[1] = lf->filter_level_u && plane_start <= 1 && 1 < plane_end; planes_to_lf[2] = lf->filter_level_v && plane_start <= 2 && 2 < plane_end; } static AOM_INLINE int check_planes_to_loop_filter( const struct loopfilter *lf, int planes_to_lf[MAX_MB_PLANE], int plane_start, int plane_end) { set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end); // If the luma plane is purposely not filtered, neither are the chroma // planes. if (!planes_to_lf[0] && plane_start <= 0 && 0 < plane_end) return 0; // Early exit. if (!planes_to_lf[0] && !planes_to_lf[1] && !planes_to_lf[2]) return 0; return 1; } #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_COMMON_THREAD_COMMON_H_