/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom_dsp/aom_simd.h" #define SIMD_FUNC(name) name##_avx2 #include "av1/common/cdef_block_simd.h" // Mask used to shuffle the elements present in 256bit register. const int shuffle_reg_256bit[8] = { 0x0b0a0d0c, 0x07060908, 0x03020504, 0x0f0e0100, 0x0b0a0d0c, 0x07060908, 0x03020504, 0x0f0e0100 }; /* partial A is a 16-bit vector of the form: [x8 - - x1 | x16 - - x9] and partial B has the form: [0 y1 - y7 | 0 y9 - y15]. This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 on each 128-bit lane. Here the C1..C8 constants are in const1 and const2. */ static INLINE __m256i fold_mul_and_sum_avx2(__m256i *partiala, __m256i *partialb, const __m256i *const1, const __m256i *const2) { __m256i tmp; /* Reverse partial B. */ *partialb = _mm256_shuffle_epi8( *partialb, _mm256_loadu_si256((const __m256i *)shuffle_reg_256bit)); /* Interleave the x and y values of identical indices and pair x8 with 0. */ tmp = *partiala; *partiala = _mm256_unpacklo_epi16(*partiala, *partialb); *partialb = _mm256_unpackhi_epi16(tmp, *partialb); /* Square and add the corresponding x and y values. */ *partiala = _mm256_madd_epi16(*partiala, *partiala); *partialb = _mm256_madd_epi16(*partialb, *partialb); /* Multiply by constant. */ *partiala = _mm256_mullo_epi32(*partiala, *const1); *partialb = _mm256_mullo_epi32(*partialb, *const2); /* Sum all results. */ *partiala = _mm256_add_epi32(*partiala, *partialb); return *partiala; } static INLINE __m256i hsum4_avx2(__m256i *x0, __m256i *x1, __m256i *x2, __m256i *x3) { const __m256i t0 = _mm256_unpacklo_epi32(*x0, *x1); const __m256i t1 = _mm256_unpacklo_epi32(*x2, *x3); const __m256i t2 = _mm256_unpackhi_epi32(*x0, *x1); const __m256i t3 = _mm256_unpackhi_epi32(*x2, *x3); *x0 = _mm256_unpacklo_epi64(t0, t1); *x1 = _mm256_unpackhi_epi64(t0, t1); *x2 = _mm256_unpacklo_epi64(t2, t3); *x3 = _mm256_unpackhi_epi64(t2, t3); return _mm256_add_epi32(_mm256_add_epi32(*x0, *x1), _mm256_add_epi32(*x2, *x3)); } /* Computes cost for directions 0, 5, 6 and 7. We can call this function again to compute the remaining directions. */ static INLINE __m256i compute_directions_avx2(__m256i *lines, int32_t cost_frist_8x8[4], int32_t cost_second_8x8[4]) { __m256i partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; __m256i partial6; __m256i tmp; /* Partial sums for lines 0 and 1. */ partial4a = _mm256_slli_si256(lines[0], 14); partial4b = _mm256_srli_si256(lines[0], 2); partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[1], 12)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[1], 4)); tmp = _mm256_add_epi16(lines[0], lines[1]); partial5a = _mm256_slli_si256(tmp, 10); partial5b = _mm256_srli_si256(tmp, 6); partial7a = _mm256_slli_si256(tmp, 4); partial7b = _mm256_srli_si256(tmp, 12); partial6 = tmp; /* Partial sums for lines 2 and 3. */ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[2], 10)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[2], 6)); partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[3], 8)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[3], 8)); tmp = _mm256_add_epi16(lines[2], lines[3]); partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 8)); partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 8)); partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 6)); partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 10)); partial6 = _mm256_add_epi16(partial6, tmp); /* Partial sums for lines 4 and 5. */ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[4], 6)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[4], 10)); partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[5], 4)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[5], 12)); tmp = _mm256_add_epi16(lines[4], lines[5]); partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 6)); partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 10)); partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 8)); partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 8)); partial6 = _mm256_add_epi16(partial6, tmp); /* Partial sums for lines 6 and 7. */ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[6], 2)); partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[6], 14)); partial4a = _mm256_add_epi16(partial4a, lines[7]); tmp = _mm256_add_epi16(lines[6], lines[7]); partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 4)); partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 12)); partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 10)); partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 6)); partial6 = _mm256_add_epi16(partial6, tmp); const __m256i const_reg_1 = _mm256_set_epi32(210, 280, 420, 840, 210, 280, 420, 840); const __m256i const_reg_2 = _mm256_set_epi32(105, 120, 140, 168, 105, 120, 140, 168); const __m256i const_reg_3 = _mm256_set_epi32(210, 420, 0, 0, 210, 420, 0, 0); const __m256i const_reg_4 = _mm256_set_epi32(105, 105, 105, 140, 105, 105, 105, 140); /* Compute costs in terms of partial sums. */ partial4a = fold_mul_and_sum_avx2(&partial4a, &partial4b, &const_reg_1, &const_reg_2); partial7a = fold_mul_and_sum_avx2(&partial7a, &partial7b, &const_reg_3, &const_reg_4); partial5a = fold_mul_and_sum_avx2(&partial5a, &partial5b, &const_reg_3, &const_reg_4); partial6 = _mm256_madd_epi16(partial6, partial6); partial6 = _mm256_mullo_epi32(partial6, _mm256_set1_epi32(105)); partial4a = hsum4_avx2(&partial4a, &partial5a, &partial6, &partial7a); _mm_storeu_si128((__m128i *)cost_frist_8x8, _mm256_castsi256_si128(partial4a)); _mm_storeu_si128((__m128i *)cost_second_8x8, _mm256_extractf128_si256(partial4a, 1)); return partial4a; } /* transpose and reverse the order of the lines -- equivalent to a 90-degree counter-clockwise rotation of the pixels. */ static INLINE void array_reverse_transpose_8x8_avx2(__m256i *in, __m256i *res) { const __m256i tr0_0 = _mm256_unpacklo_epi16(in[0], in[1]); const __m256i tr0_1 = _mm256_unpacklo_epi16(in[2], in[3]); const __m256i tr0_2 = _mm256_unpackhi_epi16(in[0], in[1]); const __m256i tr0_3 = _mm256_unpackhi_epi16(in[2], in[3]); const __m256i tr0_4 = _mm256_unpacklo_epi16(in[4], in[5]); const __m256i tr0_5 = _mm256_unpacklo_epi16(in[6], in[7]); const __m256i tr0_6 = _mm256_unpackhi_epi16(in[4], in[5]); const __m256i tr0_7 = _mm256_unpackhi_epi16(in[6], in[7]); const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1); const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_4, tr0_5); const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1); const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_4, tr0_5); const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_2, tr0_3); const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7); const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_2, tr0_3); const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7); res[7] = _mm256_unpacklo_epi64(tr1_0, tr1_1); res[6] = _mm256_unpackhi_epi64(tr1_0, tr1_1); res[5] = _mm256_unpacklo_epi64(tr1_2, tr1_3); res[4] = _mm256_unpackhi_epi64(tr1_2, tr1_3); res[3] = _mm256_unpacklo_epi64(tr1_4, tr1_5); res[2] = _mm256_unpackhi_epi64(tr1_4, tr1_5); res[1] = _mm256_unpacklo_epi64(tr1_6, tr1_7); res[0] = _mm256_unpackhi_epi64(tr1_6, tr1_7); } void cdef_find_dir_dual_avx2(const uint16_t *img1, const uint16_t *img2, int stride, int32_t *var_out_1st, int32_t *var_out_2nd, int coeff_shift, int *out_dir_1st_8x8, int *out_dir_2nd_8x8) { int32_t cost_first_8x8[8]; int32_t cost_second_8x8[8]; // Used to store the best cost for 2 8x8's. int32_t best_cost[2] = { 0 }; // Best direction for 2 8x8's. int best_dir[2] = { 0 }; const __m128i const_coeff_shift_reg = _mm_cvtsi32_si128(coeff_shift); const __m256i const_128_reg = _mm256_set1_epi16(128); __m256i lines[8]; for (int i = 0; i < 8; i++) { const __m128i src_1 = _mm_loadu_si128((const __m128i *)&img1[i * stride]); const __m128i src_2 = _mm_loadu_si128((const __m128i *)&img2[i * stride]); lines[i] = _mm256_insertf128_si256(_mm256_castsi128_si256(src_1), src_2, 1); lines[i] = _mm256_sub_epi16( _mm256_sra_epi16(lines[i], const_coeff_shift_reg), const_128_reg); } /* Compute "mostly vertical" directions. */ const __m256i dir47 = compute_directions_avx2(lines, cost_first_8x8 + 4, cost_second_8x8 + 4); /* Transpose and reverse the order of the lines. */ array_reverse_transpose_8x8_avx2(lines, lines); /* Compute "mostly horizontal" directions. */ const __m256i dir03 = compute_directions_avx2(lines, cost_first_8x8, cost_second_8x8); __m256i max = _mm256_max_epi32(dir03, dir47); max = _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 8), _mm256_slli_si256(max, 16 - (8)))); max = _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 4), _mm256_slli_si256(max, 16 - (4)))); const __m128i first_8x8_output = _mm256_castsi256_si128(max); const __m128i second_8x8_output = _mm256_extractf128_si256(max, 1); const __m128i cmpeg_res_00 = _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir47)); const __m128i cmpeg_res_01 = _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir03)); const __m128i cmpeg_res_10 = _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir47, 1)); const __m128i cmpeg_res_11 = _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir03, 1)); const __m128i t_first_8x8 = _mm_packs_epi32(cmpeg_res_01, cmpeg_res_00); const __m128i t_second_8x8 = _mm_packs_epi32(cmpeg_res_11, cmpeg_res_10); best_cost[0] = _mm_cvtsi128_si32(_mm256_castsi256_si128(max)); best_cost[1] = _mm_cvtsi128_si32(second_8x8_output); best_dir[0] = _mm_movemask_epi8(_mm_packs_epi16(t_first_8x8, t_first_8x8)); best_dir[0] = get_msb(best_dir[0] ^ (best_dir[0] - 1)); // Count trailing zeros best_dir[1] = _mm_movemask_epi8(_mm_packs_epi16(t_second_8x8, t_second_8x8)); best_dir[1] = get_msb(best_dir[1] ^ (best_dir[1] - 1)); // Count trailing zeros /* Difference between the optimal variance and the variance along the orthogonal direction. Again, the sum(x^2) terms cancel out. */ *var_out_1st = best_cost[0] - cost_first_8x8[(best_dir[0] + 4) & 7]; *var_out_2nd = best_cost[1] - cost_second_8x8[(best_dir[1] + 4) & 7]; /* We'd normally divide by 840, but dividing by 1024 is close enough for what we're going to do with this. */ *var_out_1st >>= 10; *var_out_2nd >>= 10; *out_dir_1st_8x8 = best_dir[0]; *out_dir_2nd_8x8 = best_dir[1]; } void cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t *dst, int dstride, const uint8_t *src, int sstride, int width, int height) { int j = 0; int remaining_width = width; assert(height % 2 == 0); assert(height > 0); assert(width > 0); // Process multiple 32 pixels at a time. if (remaining_width > 31) { int i = 0; do { j = 0; do { __m128i row00 = _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + (j + 0)]); __m128i row01 = _mm_loadu_si128( (const __m128i *)&src[(i + 0) * sstride + (j + 16)]); __m128i row10 = _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + (j + 0)]); __m128i row11 = _mm_loadu_si128( (const __m128i *)&src[(i + 1) * sstride + (j + 16)]); _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 0)], _mm256_cvtepu8_epi16(row00)); _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 16)], _mm256_cvtepu8_epi16(row01)); _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 0)], _mm256_cvtepu8_epi16(row10)); _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 16)], _mm256_cvtepu8_epi16(row11)); j += 32; } while (j <= width - 32); i += 2; } while (i < height); remaining_width = width & 31; } // Process 16 pixels at a time. if (remaining_width > 15) { int i = 0; do { __m128i row0 = _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + j]); __m128i row1 = _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + j]); _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + j], _mm256_cvtepu8_epi16(row0)); _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + j], _mm256_cvtepu8_epi16(row1)); i += 2; } while (i < height); remaining_width = width & 15; j += 16; } // Process 8 pixels at a time. if (remaining_width > 7) { int i = 0; do { __m128i row0 = _mm_loadl_epi64((const __m128i *)&src[(i + 0) * sstride + j]); __m128i row1 = _mm_loadl_epi64((const __m128i *)&src[(i + 1) * sstride + j]); _mm_storeu_si128((__m128i *)&dst[(i + 0) * dstride + j], _mm_unpacklo_epi8(row0, _mm_setzero_si128())); _mm_storeu_si128((__m128i *)&dst[(i + 1) * dstride + j], _mm_unpacklo_epi8(row1, _mm_setzero_si128())); i += 2; } while (i < height); remaining_width = width & 7; j += 8; } // Process 4 pixels at a time. if (remaining_width > 3) { int i = 0; do { __m128i row0 = _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 0) * sstride + j])); __m128i row1 = _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 1) * sstride + j])); _mm_storel_epi64((__m128i *)&dst[(i + 0) * dstride + j], _mm_unpacklo_epi8(row0, _mm_setzero_si128())); _mm_storel_epi64((__m128i *)&dst[(i + 1) * dstride + j], _mm_unpacklo_epi8(row1, _mm_setzero_si128())); i += 2; } while (i < height); remaining_width = width & 3; j += 4; } // Process the remaining pixels. if (remaining_width) { for (int i = 0; i < height; i++) { for (int k = j; k < width; k++) { dst[i * dstride + k] = src[i * sstride + k]; } } } }