/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/av1_rtcd.h" #include "aom_dsp/x86/synonyms.h" #include "av1/common/enums.h" #include "av1/common/reconintra.h" //------------------------------------------------------------------------------ // filter_intra_predictor_sse4_1 // This shuffle mask selects 32-bit blocks in the order 0, 1, 0, 1, which // duplicates the first 8 bytes of a 128-bit vector into the second 8 bytes. #define DUPLICATE_FIRST_HALF 0x44 // Apply all filter taps to the given 7 packed 16-bit values, keeping the 8th // at zero to preserve the sum. static INLINE void filter_4x2_sse4_1(uint8_t *dst, const ptrdiff_t stride, const __m128i *pixels, const __m128i *taps_0_1, const __m128i *taps_2_3, const __m128i *taps_4_5, const __m128i *taps_6_7) { const __m128i mul_0_01 = _mm_maddubs_epi16(*pixels, *taps_0_1); const __m128i mul_0_23 = _mm_maddubs_epi16(*pixels, *taps_2_3); // |output_half| contains 8 partial sums. __m128i output_half = _mm_hadd_epi16(mul_0_01, mul_0_23); __m128i output = _mm_hadd_epi16(output_half, output_half); const __m128i output_row0 = _mm_packus_epi16(xx_roundn_epi16_unsigned(output, 4), /* arbitrary pack arg */ output); xx_storel_32(dst, output_row0); const __m128i mul_1_01 = _mm_maddubs_epi16(*pixels, *taps_4_5); const __m128i mul_1_23 = _mm_maddubs_epi16(*pixels, *taps_6_7); output_half = _mm_hadd_epi16(mul_1_01, mul_1_23); output = _mm_hadd_epi16(output_half, output_half); const __m128i output_row1 = _mm_packus_epi16(xx_roundn_epi16_unsigned(output, 4), /* arbitrary pack arg */ output); xx_storel_32(dst + stride, output_row1); } // 4xH transform sizes are given special treatment because xx_loadl_64 goes out // of bounds and every block involves the left column. This implementation // loads TL from the top row for the first block, so it is not static INLINE void filter_4xh(uint8_t *dest, ptrdiff_t stride, const uint8_t *const top_ptr, const uint8_t *const left_ptr, int mode, const int height) { const __m128i taps_0_1 = xx_load_128(av1_filter_intra_taps[mode][0]); const __m128i taps_2_3 = xx_load_128(av1_filter_intra_taps[mode][2]); const __m128i taps_4_5 = xx_load_128(av1_filter_intra_taps[mode][4]); const __m128i taps_6_7 = xx_load_128(av1_filter_intra_taps[mode][6]); __m128i top = xx_loadl_32(top_ptr - 1); __m128i pixels = _mm_insert_epi8(top, (int8_t)top_ptr[3], 4); __m128i left = (height == 4 ? xx_loadl_32(left_ptr) : xx_loadl_64(left_ptr)); left = _mm_slli_si128(left, 5); // Relative pixels: top[-1], top[0], top[1], top[2], top[3], left[0], left[1], // left[2], left[3], left[4], left[5], left[6], left[7] pixels = _mm_or_si128(left, pixels); // Duplicate first 8 bytes. pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF); filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dest += stride; // Move to y = 1. pixels = xx_loadl_32(dest); // Relative pixels: top[0], top[1], top[2], top[3], empty, left[-2], left[-1], // left[0], left[1], ... pixels = _mm_or_si128(left, pixels); // This mask rearranges bytes in the order: 6, 0, 1, 2, 3, 7, 8, 15. The last // byte is an unused value, which shall be multiplied by 0 when we apply the // filter. const int64_t kInsertTopLeftFirstMask = 0x0F08070302010006; // Insert left[-1] in front as TL and put left[0] and left[1] at the end. const __m128i pixel_order1 = _mm_set1_epi64x(kInsertTopLeftFirstMask); pixels = _mm_shuffle_epi8(pixels, pixel_order1); dest += stride; // Move to y = 2. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dest += stride; // Move to y = 3. // Compute the middle 8 rows before using common code for the final 4 rows. // Because the common code below this block assumes that if (height == 16) { // This shift allows us to use pixel_order2 twice after shifting by 2 later. left = _mm_slli_si128(left, 1); pixels = xx_loadl_32(dest); // Relative pixels: top[0], top[1], top[2], top[3], empty, empty, left[-4], // left[-3], left[-2], left[-1], left[0], left[1], left[2], left[3] pixels = _mm_or_si128(left, pixels); // This mask rearranges bytes in the order: 9, 0, 1, 2, 3, 7, 8, 15. The // last byte is an unused value, as above. The top-left was shifted to // position nine to keep two empty spaces after the top pixels. const int64_t kInsertTopLeftSecondMask = 0x0F0B0A0302010009; // Insert (relative) left[-1] in front as TL and put left[0] and left[1] at // the end. const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftSecondMask); pixels = _mm_shuffle_epi8(pixels, pixel_order2); dest += stride; // Move to y = 4. // First 4x2 in the if body. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); // Clear all but final pixel in the first 8 of left column. __m128i keep_top_left = _mm_srli_si128(left, 13); dest += stride; // Move to y = 5. pixels = xx_loadl_32(dest); left = _mm_srli_si128(left, 2); // Relative pixels: top[0], top[1], top[2], top[3], left[-6], // left[-5], left[-4], left[-3], left[-2], left[-1], left[0], left[1] pixels = _mm_or_si128(left, pixels); left = xx_loadl_64(left_ptr + 8); pixels = _mm_shuffle_epi8(pixels, pixel_order2); dest += stride; // Move to y = 6. // Second 4x2 in the if body. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); // Position TL value so we can use pixel_order1. keep_top_left = _mm_slli_si128(keep_top_left, 6); dest += stride; // Move to y = 7. pixels = xx_loadl_32(dest); left = _mm_slli_si128(left, 7); left = _mm_or_si128(left, keep_top_left); // Relative pixels: top[0], top[1], top[2], top[3], empty, empty, // left[-1], left[0], left[1], left[2], left[3], ... pixels = _mm_or_si128(left, pixels); pixels = _mm_shuffle_epi8(pixels, pixel_order1); dest += stride; // Move to y = 8. // Third 4x2 in the if body. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dest += stride; // Move to y = 9. // Prepare final inputs. pixels = xx_loadl_32(dest); left = _mm_srli_si128(left, 2); // Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2] // left[-1], left[0], left[1], left[2], left[3], ... pixels = _mm_or_si128(left, pixels); pixels = _mm_shuffle_epi8(pixels, pixel_order1); dest += stride; // Move to y = 10. // Fourth 4x2 in the if body. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dest += stride; // Move to y = 11. } // In both the 8 and 16 case, we assume that the left vector has the next TL // at position 8. if (height > 4) { // Erase prior left pixels by shifting TL to position 0. left = _mm_srli_si128(left, 8); left = _mm_slli_si128(left, 6); pixels = xx_loadl_32(dest); // Relative pixels: top[0], top[1], top[2], top[3], empty, empty, // left[-1], left[0], left[1], left[2], left[3], ... pixels = _mm_or_si128(left, pixels); pixels = _mm_shuffle_epi8(pixels, pixel_order1); dest += stride; // Move to y = 12 or 4. // First of final two 4x2 blocks. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dest += stride; // Move to y = 13 or 5. pixels = xx_loadl_32(dest); left = _mm_srli_si128(left, 2); // Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2] // left[-1], left[0], left[1], left[2], left[3], ... pixels = _mm_or_si128(left, pixels); pixels = _mm_shuffle_epi8(pixels, pixel_order1); dest += stride; // Move to y = 14 or 6. // Last of final two 4x2 blocks. filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); } } static INLINE void filter_intra_predictor_sse4_1(void *const dest, ptrdiff_t stride, const void *const top_row, const void *const left_column, int mode, const int width, const int height) { const uint8_t *const top_ptr = (const uint8_t *)top_row; const uint8_t *const left_ptr = (const uint8_t *)left_column; uint8_t *dst = (uint8_t *)dest; if (width == 4) { filter_4xh(dst, stride, top_ptr, left_ptr, mode, height); return; } // There is one set of 7 taps for each of the 4x2 output pixels. const __m128i taps_0_1 = xx_load_128(av1_filter_intra_taps[mode][0]); const __m128i taps_2_3 = xx_load_128(av1_filter_intra_taps[mode][2]); const __m128i taps_4_5 = xx_load_128(av1_filter_intra_taps[mode][4]); const __m128i taps_6_7 = xx_load_128(av1_filter_intra_taps[mode][6]); // This mask rearranges bytes in the order: 0, 1, 2, 3, 4, 8, 9, 15. The 15 at // the end is an unused value, which shall be multiplied by 0 when we apply // the filter. const int64_t kCondenseLeftMask = 0x0F09080403020100; // Takes the "left section" and puts it right after p0-p4. const __m128i pixel_order1 = _mm_set1_epi64x(kCondenseLeftMask); // This mask rearranges bytes in the order: 8, 0, 1, 2, 3, 9, 10, 15. The last // byte is unused as above. const int64_t kInsertTopLeftMask = 0x0F0A090302010008; // Shuffles the "top left" from the left section, to the front. Used when // grabbing data from left_column and not top_row. const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftMask); // This first pass takes care of the cases where the top left pixel comes from // top_row. __m128i pixels = xx_loadl_64(top_ptr - 1); __m128i left = _mm_slli_si128(xx_loadl_32(left_column), 8); pixels = _mm_or_si128(pixels, left); // Two sets of the same pixels to multiply with two sets of taps. pixels = _mm_shuffle_epi8(pixels, pixel_order1); filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); left = _mm_srli_si128(left, 1); // Load pixels = xx_loadl_32(dst + stride); // Because of the above shift, this OR 'invades' the final of the first 8 // bytes of |pixels|. This is acceptable because the 8th filter tap is always // a padded 0. pixels = _mm_or_si128(pixels, left); pixels = _mm_shuffle_epi8(pixels, pixel_order2); const ptrdiff_t stride2 = stride << 1; const ptrdiff_t stride4 = stride << 2; filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dst += 4; for (int x = 3; x < width - 4; x += 4) { pixels = xx_loadl_32(top_ptr + x); pixels = _mm_insert_epi8(pixels, (int8_t)top_ptr[x + 4], 4); pixels = _mm_insert_epi8(pixels, (int8_t)dst[-1], 5); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride - 1], 6); // Duplicate bottom half into upper half. pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF); filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); pixels = xx_loadl_32(dst + stride - 1); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + 3], 4); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 - 1], 5); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + stride2 - 1], 6); // Duplicate bottom half into upper half. pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF); filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dst += 4; } // Now we handle heights that reference previous blocks rather than top_row. for (int y = 4; y < height; y += 4) { // Leftmost 4x4 block for this height. dst -= width; dst += stride4; // Top Left is not available by offset in these leftmost blocks. pixels = xx_loadl_32(dst - stride); left = _mm_slli_si128(xx_loadl_32(left_ptr + y - 1), 8); left = _mm_insert_epi8(left, (int8_t)left_ptr[y + 3], 12); pixels = _mm_or_si128(pixels, left); pixels = _mm_shuffle_epi8(pixels, pixel_order2); filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); // The bytes shifted into positions 6 and 7 will be ignored by the shuffle. left = _mm_srli_si128(left, 2); pixels = xx_loadl_32(dst + stride); pixels = _mm_or_si128(pixels, left); pixels = _mm_shuffle_epi8(pixels, pixel_order2); filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dst += 4; // Remaining 4x4 blocks for this height. for (int x = 4; x < width; x += 4) { pixels = xx_loadl_32(dst - stride - 1); pixels = _mm_insert_epi8(pixels, (int8_t)dst[-stride + 3], 4); pixels = _mm_insert_epi8(pixels, (int8_t)dst[-1], 5); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride - 1], 6); // Duplicate bottom half into upper half. pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF); filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); pixels = xx_loadl_32(dst + stride - 1); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + 3], 4); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 - 1], 5); pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 + stride - 1], 6); // Duplicate bottom half into upper half. pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF); filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5, &taps_6_7); dst += 4; } } } void av1_filter_intra_predictor_sse4_1(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint8_t *above, const uint8_t *left, int mode) { const int bw = tx_size_wide[tx_size]; const int bh = tx_size_high[tx_size]; filter_intra_predictor_sse4_1(dst, stride, above, left, mode, bw, bh); }