/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/av1_rtcd.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/x86/convolve_sse2.h" void av1_dist_wtd_convolve_x_sse2(const uint8_t *src, int src_stride, uint8_t *dst0, int dst_stride0, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { const int bd = 8; CONV_BUF_TYPE *dst = conv_params->dst; const int dst_stride = conv_params->dst_stride; const int fo_horiz = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - fo_horiz; const int bits = FILTER_BITS - conv_params->round_1; const __m128i left_shift = _mm_cvtsi32_si128(bits); const __m128i round_const = _mm_set1_epi32((1 << conv_params->round_0) >> 1); const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0); const int w0 = conv_params->fwd_offset; const int w1 = conv_params->bck_offset; const __m128i wt0 = _mm_set1_epi16(w0); const __m128i wt1 = _mm_set1_epi16(w1); const __m128i wt = _mm_unpacklo_epi16(wt0, wt1); const int do_average = conv_params->do_average; const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; const int offset_0 = bd + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const int offset = (1 << offset_0) + (1 << (offset_0 - 1)); const __m128i offset_const = _mm_set1_epi16(offset); const int rounding_shift = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const __m128i rounding_const = _mm_set1_epi16((1 << rounding_shift) >> 1); __m128i coeffs[4]; prepare_coeffs(filter_params_x, subpel_x_qn, coeffs); if (w == 4) { do { const __m128i data = _mm_loadu_si128((__m128i *)src_ptr); __m128i s[4]; s[0] = _mm_unpacklo_epi8(data, _mm_srli_si128(data, 1)); s[1] = _mm_unpacklo_epi8(_mm_srli_si128(data, 2), _mm_srli_si128(data, 3)); s[2] = _mm_unpacklo_epi8(_mm_srli_si128(data, 4), _mm_srli_si128(data, 5)); s[3] = _mm_unpacklo_epi8(_mm_srli_si128(data, 6), _mm_srli_si128(data, 7)); const __m128i res_lo = convolve_lo_x(s, coeffs); const __m128i res_lo_round = _mm_sra_epi32(_mm_add_epi32(res_lo, round_const), round_shift); const __m128i res_lo_shift = _mm_sll_epi32(res_lo_round, left_shift); const __m128i res_16b = _mm_packs_epi32(res_lo_shift, res_lo_shift); const __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)dst); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); *(int *)(&dst0[0]) = _mm_cvtsi128_si32(res_8); } else { _mm_store_si128((__m128i *)(&dst[0]), res_unsigned); } src_ptr += src_stride; dst += dst_stride; dst0 += dst_stride0; } while (--h); } else { assert(!(w % 8)); int i = 0; do { int j = 0; do { const __m128i data = _mm_loadu_si128((__m128i *)&src_ptr[i * src_stride + j]); __m128i s[4]; // Filter even-index pixels s[0] = data; s[1] = _mm_srli_si128(data, 2); s[2] = _mm_srli_si128(data, 4); s[3] = _mm_srli_si128(data, 6); const __m128i res_even = convolve_lo_x(s, coeffs); // Filter odd-index pixels s[0] = _mm_srli_si128(data, 1); s[1] = _mm_srli_si128(data, 3); s[2] = _mm_srli_si128(data, 5); s[3] = _mm_srli_si128(data, 7); const __m128i res_odd = convolve_lo_x(s, coeffs); // Rearrange pixels back into the order 0 ... 7 const __m128i res_lo = _mm_unpacklo_epi32(res_even, res_odd); const __m128i res_hi = _mm_unpackhi_epi32(res_even, res_odd); const __m128i res_lo_round = _mm_sra_epi32(_mm_add_epi32(res_lo, round_const), round_shift); const __m128i res_hi_round = _mm_sra_epi32(_mm_add_epi32(res_hi, round_const), round_shift); const __m128i res_lo_shift = _mm_sll_epi32(res_lo_round, left_shift); const __m128i res_hi_shift = _mm_sll_epi32(res_hi_round, left_shift); const __m128i res_16b = _mm_packs_epi32(res_lo_shift, res_hi_shift); const __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)(&dst[i * dst_stride + j])); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); _mm_storel_epi64((__m128i *)(&dst0[i * dst_stride0 + j]), res_8); } else { _mm_store_si128((__m128i *)(&dst[i * dst_stride + j]), res_unsigned); } j += 8; } while (j < w); } while (++i < h); } } void av1_dist_wtd_convolve_y_sse2(const uint8_t *src, int src_stride, uint8_t *dst0, int dst_stride0, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, ConvolveParams *conv_params) { const int bd = 8; CONV_BUF_TYPE *dst = conv_params->dst; const int dst_stride = conv_params->dst_stride; const int fo_vert = filter_params_y->taps / 2 - 1; const uint8_t *src_ptr = src - fo_vert * src_stride; const int bits = FILTER_BITS - conv_params->round_0; const __m128i left_shift = _mm_cvtsi32_si128(bits); const __m128i wt0 = _mm_set1_epi16(conv_params->fwd_offset); const __m128i wt1 = _mm_set1_epi16(conv_params->bck_offset); const __m128i wt = _mm_unpacklo_epi16(wt0, wt1); const int do_average = conv_params->do_average; const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; const int offset_0 = bd + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const int offset = (1 << offset_0) + (1 << (offset_0 - 1)); const __m128i offset_const = _mm_set1_epi16(offset); const int rounding_shift = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const __m128i rounding_const = _mm_set1_epi16((1 << rounding_shift) >> 1); const __m128i round_const = _mm_set1_epi32((1 << conv_params->round_1) >> 1); const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1); __m128i coeffs[4]; prepare_coeffs(filter_params_y, subpel_y_qn, coeffs); if (w == 4) { __m128i s[8], src6, res, res_shift; src6 = _mm_cvtsi32_si128(*(int *)(src_ptr + 6 * src_stride)); s[0] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 0 * src_stride)), _mm_cvtsi32_si128(*(int *)(src_ptr + 1 * src_stride))); s[1] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 1 * src_stride)), _mm_cvtsi32_si128(*(int *)(src_ptr + 2 * src_stride))); s[2] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 2 * src_stride)), _mm_cvtsi32_si128(*(int *)(src_ptr + 3 * src_stride))); s[3] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 3 * src_stride)), _mm_cvtsi32_si128(*(int *)(src_ptr + 4 * src_stride))); s[4] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 4 * src_stride)), _mm_cvtsi32_si128(*(int *)(src_ptr + 5 * src_stride))); s[5] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 5 * src_stride)), src6); do { s[6] = _mm_unpacklo_epi8( src6, _mm_cvtsi32_si128(*(int *)(src_ptr + 7 * src_stride))); src6 = _mm_cvtsi32_si128(*(int *)(src_ptr + 8 * src_stride)); s[7] = _mm_unpacklo_epi8( _mm_cvtsi32_si128(*(int *)(src_ptr + 7 * src_stride)), src6); res = convolve_lo_y(s + 0, coeffs); res_shift = _mm_sll_epi32(res, left_shift); res_shift = _mm_sra_epi32(_mm_add_epi32(res_shift, round_const), round_shift); __m128i res_16b = _mm_packs_epi32(res_shift, res_shift); __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)dst); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); *(int *)(&dst0[0]) = _mm_cvtsi128_si32(res_8); } else { _mm_store_si128((__m128i *)dst, res_unsigned); } src_ptr += src_stride; dst += dst_stride; dst0 += dst_stride0; res = convolve_lo_y(s + 1, coeffs); res_shift = _mm_sll_epi32(res, left_shift); res_shift = _mm_sra_epi32(_mm_add_epi32(res_shift, round_const), round_shift); res_16b = _mm_packs_epi32(res_shift, res_shift); res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)dst); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); *(int *)(&dst0[0]) = _mm_cvtsi128_si32(res_8); } else { _mm_store_si128((__m128i *)dst, res_unsigned); } src_ptr += src_stride; dst += dst_stride; dst0 += dst_stride0; s[0] = s[2]; s[1] = s[3]; s[2] = s[4]; s[3] = s[5]; s[4] = s[6]; s[5] = s[7]; h -= 2; } while (h); } else { assert(!(w % 8)); int j = 0; do { __m128i s[8], src6, res_lo, res_hi, res_lo_shift, res_hi_shift; const uint8_t *data = &src_ptr[j]; src6 = _mm_loadl_epi64((__m128i *)(data + 6 * src_stride)); s[0] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 0 * src_stride)), _mm_loadl_epi64((__m128i *)(data + 1 * src_stride))); s[1] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 1 * src_stride)), _mm_loadl_epi64((__m128i *)(data + 2 * src_stride))); s[2] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 2 * src_stride)), _mm_loadl_epi64((__m128i *)(data + 3 * src_stride))); s[3] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 3 * src_stride)), _mm_loadl_epi64((__m128i *)(data + 4 * src_stride))); s[4] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 4 * src_stride)), _mm_loadl_epi64((__m128i *)(data + 5 * src_stride))); s[5] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 5 * src_stride)), src6); int i = 0; do { data = &src_ptr[i * src_stride + j]; s[6] = _mm_unpacklo_epi8( src6, _mm_loadl_epi64((__m128i *)(data + 7 * src_stride))); src6 = _mm_loadl_epi64((__m128i *)(data + 8 * src_stride)); s[7] = _mm_unpacklo_epi8( _mm_loadl_epi64((__m128i *)(data + 7 * src_stride)), src6); res_lo = convolve_lo_y(s, coeffs); // Filter low index pixels res_hi = convolve_hi_y(s, coeffs); // Filter high index pixels res_lo_shift = _mm_sll_epi32(res_lo, left_shift); res_hi_shift = _mm_sll_epi32(res_hi, left_shift); res_lo_shift = _mm_sra_epi32(_mm_add_epi32(res_lo_shift, round_const), round_shift); res_hi_shift = _mm_sra_epi32(_mm_add_epi32(res_hi_shift, round_const), round_shift); __m128i res_16b = _mm_packs_epi32(res_lo_shift, res_hi_shift); __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)(&dst[i * dst_stride + j])); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); _mm_storel_epi64((__m128i *)(&dst0[i * dst_stride0 + j]), res_8); } else { _mm_store_si128((__m128i *)(&dst[i * dst_stride + j]), res_unsigned); } i++; res_lo = convolve_lo_y(s + 1, coeffs); // Filter low index pixels res_hi = convolve_hi_y(s + 1, coeffs); // Filter high index pixels res_lo_shift = _mm_sll_epi32(res_lo, left_shift); res_hi_shift = _mm_sll_epi32(res_hi, left_shift); res_lo_shift = _mm_sra_epi32(_mm_add_epi32(res_lo_shift, round_const), round_shift); res_hi_shift = _mm_sra_epi32(_mm_add_epi32(res_hi_shift, round_const), round_shift); res_16b = _mm_packs_epi32(res_lo_shift, res_hi_shift); res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { __m128i data_ref_0 = _mm_loadu_si128((__m128i *)(&dst[i * dst_stride + j])); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); _mm_storel_epi64((__m128i *)(&dst0[i * dst_stride0 + j]), res_8); } else { _mm_store_si128((__m128i *)(&dst[i * dst_stride + j]), res_unsigned); } i++; s[0] = s[2]; s[1] = s[3]; s[2] = s[4]; s[3] = s[5]; s[4] = s[6]; s[5] = s[7]; } while (i < h); j += 8; } while (j < w); } } void av1_dist_wtd_convolve_2d_sse2(const uint8_t *src, int src_stride, uint8_t *dst0, int dst_stride0, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { CONV_BUF_TYPE *dst = conv_params->dst; int dst_stride = conv_params->dst_stride; const int bd = 8; DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); int im_h = h + filter_params_y->taps - 1; int im_stride = MAX_SB_SIZE; int i, j; const int fo_vert = filter_params_y->taps / 2 - 1; const int fo_horiz = filter_params_x->taps / 2 - 1; const int do_average = conv_params->do_average; const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz; const __m128i zero = _mm_setzero_si128(); const int w0 = conv_params->fwd_offset; const int w1 = conv_params->bck_offset; const __m128i wt0 = _mm_set1_epi16(w0); const __m128i wt1 = _mm_set1_epi16(w1); const __m128i wt = _mm_unpacklo_epi16(wt0, wt1); const int offset_0 = bd + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const int offset = (1 << offset_0) + (1 << (offset_0 - 1)); const __m128i offset_const = _mm_set1_epi16(offset); const int rounding_shift = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; const __m128i rounding_const = _mm_set1_epi16((1 << rounding_shift) >> 1); /* Horizontal filter */ { const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const __m128i coeffs_x = _mm_loadu_si128((__m128i *)x_filter); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp_0 = _mm_unpacklo_epi32(coeffs_x, coeffs_x); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp_1 = _mm_unpackhi_epi32(coeffs_x, coeffs_x); // coeffs 0 1 0 1 0 1 0 1 const __m128i coeff_01 = _mm_unpacklo_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3 const __m128i coeff_23 = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 4 5 4 5 4 5 4 5 const __m128i coeff_45 = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 6 7 6 7 6 7 6 7 const __m128i coeff_67 = _mm_unpackhi_epi64(tmp_1, tmp_1); const __m128i round_const = _mm_set1_epi32( ((1 << conv_params->round_0) >> 1) + (1 << (bd + FILTER_BITS - 1))); const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0); for (i = 0; i < im_h; ++i) { for (j = 0; j < w; j += 8) { __m128i temp_lo, temp_hi; const __m128i data = _mm_loadu_si128((__m128i *)&src_ptr[i * src_stride + j]); const __m128i src_lo = _mm_unpacklo_epi8(data, zero); const __m128i src_hi = _mm_unpackhi_epi8(data, zero); // Filter even-index pixels const __m128i res_0 = _mm_madd_epi16(src_lo, coeff_01); temp_lo = _mm_srli_si128(src_lo, 4); temp_hi = _mm_slli_si128(src_hi, 12); const __m128i src_2 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_2 = _mm_madd_epi16(src_2, coeff_23); temp_lo = _mm_srli_si128(src_lo, 8); temp_hi = _mm_slli_si128(src_hi, 8); const __m128i src_4 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_4 = _mm_madd_epi16(src_4, coeff_45); temp_lo = _mm_srli_si128(src_lo, 12); temp_hi = _mm_slli_si128(src_hi, 4); const __m128i src_6 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_6 = _mm_madd_epi16(src_6, coeff_67); __m128i res_even = _mm_add_epi32(_mm_add_epi32(res_0, res_4), _mm_add_epi32(res_2, res_6)); res_even = _mm_sra_epi32(_mm_add_epi32(res_even, round_const), round_shift); // Filter odd-index pixels temp_lo = _mm_srli_si128(src_lo, 2); temp_hi = _mm_slli_si128(src_hi, 14); const __m128i src_1 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_1 = _mm_madd_epi16(src_1, coeff_01); temp_lo = _mm_srli_si128(src_lo, 6); temp_hi = _mm_slli_si128(src_hi, 10); const __m128i src_3 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_3 = _mm_madd_epi16(src_3, coeff_23); temp_lo = _mm_srli_si128(src_lo, 10); temp_hi = _mm_slli_si128(src_hi, 6); const __m128i src_5 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_5 = _mm_madd_epi16(src_5, coeff_45); temp_lo = _mm_srli_si128(src_lo, 14); temp_hi = _mm_slli_si128(src_hi, 2); const __m128i src_7 = _mm_or_si128(temp_hi, temp_lo); const __m128i res_7 = _mm_madd_epi16(src_7, coeff_67); __m128i res_odd = _mm_add_epi32(_mm_add_epi32(res_1, res_5), _mm_add_epi32(res_3, res_7)); res_odd = _mm_sra_epi32(_mm_add_epi32(res_odd, round_const), round_shift); // Pack in the column order 0, 2, 4, 6, 1, 3, 5, 7 __m128i res = _mm_packs_epi32(res_even, res_odd); _mm_store_si128((__m128i *)&im_block[i * im_stride + j], res); } } } /* Vertical filter */ { const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); const __m128i coeffs_y = _mm_loadu_si128((__m128i *)y_filter); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp_0 = _mm_unpacklo_epi32(coeffs_y, coeffs_y); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp_1 = _mm_unpackhi_epi32(coeffs_y, coeffs_y); // coeffs 0 1 0 1 0 1 0 1 const __m128i coeff_01 = _mm_unpacklo_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3 const __m128i coeff_23 = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 4 5 4 5 4 5 4 5 const __m128i coeff_45 = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 6 7 6 7 6 7 6 7 const __m128i coeff_67 = _mm_unpackhi_epi64(tmp_1, tmp_1); const __m128i round_const = _mm_set1_epi32( ((1 << conv_params->round_1) >> 1) - (1 << (bd + 2 * FILTER_BITS - conv_params->round_0 - 1))); const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1); for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 8) { // Filter even-index pixels const int16_t *data = &im_block[i * im_stride + j]; const __m128i src_0 = _mm_unpacklo_epi16(*(__m128i *)(data + 0 * im_stride), *(__m128i *)(data + 1 * im_stride)); const __m128i src_2 = _mm_unpacklo_epi16(*(__m128i *)(data + 2 * im_stride), *(__m128i *)(data + 3 * im_stride)); const __m128i src_4 = _mm_unpacklo_epi16(*(__m128i *)(data + 4 * im_stride), *(__m128i *)(data + 5 * im_stride)); const __m128i src_6 = _mm_unpacklo_epi16(*(__m128i *)(data + 6 * im_stride), *(__m128i *)(data + 7 * im_stride)); const __m128i res_0 = _mm_madd_epi16(src_0, coeff_01); const __m128i res_2 = _mm_madd_epi16(src_2, coeff_23); const __m128i res_4 = _mm_madd_epi16(src_4, coeff_45); const __m128i res_6 = _mm_madd_epi16(src_6, coeff_67); const __m128i res_even = _mm_add_epi32(_mm_add_epi32(res_0, res_2), _mm_add_epi32(res_4, res_6)); // Filter odd-index pixels const __m128i src_1 = _mm_unpackhi_epi16(*(__m128i *)(data + 0 * im_stride), *(__m128i *)(data + 1 * im_stride)); const __m128i src_3 = _mm_unpackhi_epi16(*(__m128i *)(data + 2 * im_stride), *(__m128i *)(data + 3 * im_stride)); const __m128i src_5 = _mm_unpackhi_epi16(*(__m128i *)(data + 4 * im_stride), *(__m128i *)(data + 5 * im_stride)); const __m128i src_7 = _mm_unpackhi_epi16(*(__m128i *)(data + 6 * im_stride), *(__m128i *)(data + 7 * im_stride)); const __m128i res_1 = _mm_madd_epi16(src_1, coeff_01); const __m128i res_3 = _mm_madd_epi16(src_3, coeff_23); const __m128i res_5 = _mm_madd_epi16(src_5, coeff_45); const __m128i res_7 = _mm_madd_epi16(src_7, coeff_67); const __m128i res_odd = _mm_add_epi32(_mm_add_epi32(res_1, res_3), _mm_add_epi32(res_5, res_7)); // Rearrange pixels back into the order 0 ... 7 const __m128i res_lo = _mm_unpacklo_epi32(res_even, res_odd); const __m128i res_hi = _mm_unpackhi_epi32(res_even, res_odd); const __m128i res_lo_round = _mm_sra_epi32(_mm_add_epi32(res_lo, round_const), round_shift); const __m128i res_hi_round = _mm_sra_epi32(_mm_add_epi32(res_hi, round_const), round_shift); const __m128i res_16b = _mm_packs_epi32(res_lo_round, res_hi_round); const __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const); // Accumulate values into the destination buffer if (do_average) { const __m128i data_ref_0 = _mm_loadu_si128((__m128i *)(&dst[i * dst_stride + j])); const __m128i comp_avg_res = comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg); const __m128i round_result = convolve_rounding( &comp_avg_res, &offset_const, &rounding_const, rounding_shift); const __m128i res_8 = _mm_packus_epi16(round_result, round_result); if (w > 4) _mm_storel_epi64((__m128i *)(&dst0[i * dst_stride0 + j]), res_8); else *(int *)(&dst0[i * dst_stride0 + j]) = _mm_cvtsi128_si32(res_8); } else { _mm_store_si128((__m128i *)(&dst[i * dst_stride + j]), res_unsigned); } } } } }