/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/av1_rtcd.h" #include "av1/common/convolve.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/x86/convolve_avx2.h" #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/synonyms_avx2.h" // 128-bit xmmwords are written as [ ... ] with the MSB on the left. // 256-bit ymmwords are written as two xmmwords, [ ... ][ ... ] with the MSB // on the left. // A row of, say, 8-bit pixels with values p0, p1, p2, ..., p30, p31 will be // loaded and stored as [ p31 ... p17 p16 ][ p15 ... p1 p0 ]. // Exploiting the range of wiener filter coefficients, // horizontal filtering can be done in 16 bit intermediate precision. // The details are as follows : // Consider the horizontal wiener filter coefficients of the following form : // [C0, C1, C2, 2^(FILTER_BITS) -2 * (C0 + C1 + C2), C2, C1, C0] // Subtracting 2^(FILTER_BITS) from the centre tap we get the following : // [C0, C1, C2, -2 * (C0 + C1 + C2), C2, C1, C0] // The sum of the product "C0 * p0 + C1 * p1 + C2 * p2 -2 * (C0 + C1 + C2) * p3 // + C2 * p4 + C1 * p5 + C0 * p6" would be in the range of signed 16 bit // precision. Finally, after rounding the above result by round_0, we multiply // the centre pixel by 2^(FILTER_BITS - round_0) and add it to get the // horizontal filter output. void av1_wiener_convolve_add_src_avx2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, const WienerConvolveParams *conv_params) { const int bd = 8; assert(x_step_q4 == 16 && y_step_q4 == 16); assert(!(w & 7)); (void)x_step_q4; (void)y_step_q4; DECLARE_ALIGNED(32, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS) * 8]); int im_h = h + SUBPEL_TAPS - 2; int im_stride = 8; memset(im_block + (im_h * im_stride), 0, MAX_SB_SIZE); int i, j; const int center_tap = (SUBPEL_TAPS - 1) / 2; const uint8_t *const src_ptr = src - center_tap * src_stride - center_tap; __m256i filt[4], coeffs_h[4], coeffs_v[4], filt_center; assert(conv_params->round_0 > 0); filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); filt_center = _mm256_load_si256((__m256i const *)filt_center_global_avx2); const __m128i coeffs_x = _mm_loadu_si128((__m128i *)filter_x); const __m256i filter_coeffs_x = _mm256_broadcastsi128_si256(coeffs_x); // coeffs 0 1 0 1 0 1 0 1 coeffs_h[0] = _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0200u)); // coeffs 2 3 2 3 2 3 2 3 coeffs_h[1] = _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0604u)); // coeffs 4 5 4 5 4 5 4 5 coeffs_h[2] = _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0a08u)); // coeffs 6 7 6 7 6 7 6 7 coeffs_h[3] = _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0e0cu)); const __m256i round_const_h = _mm256_set1_epi16((1 << (conv_params->round_0 - 1))); const __m256i round_const_horz = _mm256_set1_epi16((1 << (bd + FILTER_BITS - conv_params->round_0 - 1))); const __m256i clamp_low = _mm256_setzero_si256(); const __m256i clamp_high = _mm256_set1_epi16(WIENER_CLAMP_LIMIT(conv_params->round_0, bd) - 1); const __m128i round_shift_h = _mm_cvtsi32_si128(conv_params->round_0); // Add an offset to account for the "add_src" part of the convolve function. const __m128i zero_128 = _mm_setzero_si128(); const __m128i offset_0 = _mm_insert_epi16(zero_128, 1 << FILTER_BITS, 3); const __m128i coeffs_y = _mm_add_epi16(xx_loadu_128(filter_y), offset_0); const __m256i filter_coeffs_y = _mm256_broadcastsi128_si256(coeffs_y); // coeffs 0 1 0 1 0 1 0 1 coeffs_v[0] = _mm256_shuffle_epi32(filter_coeffs_y, 0x00); // coeffs 2 3 2 3 2 3 2 3 coeffs_v[1] = _mm256_shuffle_epi32(filter_coeffs_y, 0x55); // coeffs 4 5 4 5 4 5 4 5 coeffs_v[2] = _mm256_shuffle_epi32(filter_coeffs_y, 0xaa); // coeffs 6 7 6 7 6 7 6 7 coeffs_v[3] = _mm256_shuffle_epi32(filter_coeffs_y, 0xff); const __m256i round_const_v = _mm256_set1_epi32((1 << (conv_params->round_1 - 1)) - (1 << (bd + conv_params->round_1 - 1))); const __m128i round_shift_v = _mm_cvtsi32_si128(conv_params->round_1); for (j = 0; j < w; j += 8) { for (i = 0; i < im_h; i += 2) { __m256i data = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j])); // Load the next line if (i + 1 < im_h) data = _mm256_inserti128_si256( data, _mm_loadu_si128( (__m128i *)&src_ptr[(i * src_stride) + j + src_stride]), 1); __m256i res = convolve_lowbd_x(data, coeffs_h, filt); res = _mm256_sra_epi16(_mm256_add_epi16(res, round_const_h), round_shift_h); __m256i data_0 = _mm256_shuffle_epi8(data, filt_center); // multiply the center pixel by 2^(FILTER_BITS - round_0) and add it to // the result data_0 = _mm256_slli_epi16(data_0, FILTER_BITS - conv_params->round_0); res = _mm256_add_epi16(res, data_0); res = _mm256_add_epi16(res, round_const_horz); const __m256i res_clamped = _mm256_min_epi16(_mm256_max_epi16(res, clamp_low), clamp_high); _mm256_store_si256((__m256i *)&im_block[i * im_stride], res_clamped); } /* Vertical filter */ { __m256i src_0 = _mm256_loadu_si256((__m256i *)(im_block + 0 * im_stride)); __m256i src_1 = _mm256_loadu_si256((__m256i *)(im_block + 1 * im_stride)); __m256i src_2 = _mm256_loadu_si256((__m256i *)(im_block + 2 * im_stride)); __m256i src_3 = _mm256_loadu_si256((__m256i *)(im_block + 3 * im_stride)); __m256i src_4 = _mm256_loadu_si256((__m256i *)(im_block + 4 * im_stride)); __m256i src_5 = _mm256_loadu_si256((__m256i *)(im_block + 5 * im_stride)); __m256i s[8]; s[0] = _mm256_unpacklo_epi16(src_0, src_1); s[1] = _mm256_unpacklo_epi16(src_2, src_3); s[2] = _mm256_unpacklo_epi16(src_4, src_5); s[4] = _mm256_unpackhi_epi16(src_0, src_1); s[5] = _mm256_unpackhi_epi16(src_2, src_3); s[6] = _mm256_unpackhi_epi16(src_4, src_5); for (i = 0; i < h - 1; i += 2) { const int16_t *data = &im_block[i * im_stride]; const __m256i s6 = _mm256_loadu_si256((__m256i *)(data + 6 * im_stride)); const __m256i s7 = _mm256_loadu_si256((__m256i *)(data + 7 * im_stride)); s[3] = _mm256_unpacklo_epi16(s6, s7); s[7] = _mm256_unpackhi_epi16(s6, s7); __m256i res_a = convolve(s, coeffs_v); __m256i res_b = convolve(s + 4, coeffs_v); const __m256i res_a_round = _mm256_sra_epi32( _mm256_add_epi32(res_a, round_const_v), round_shift_v); const __m256i res_b_round = _mm256_sra_epi32( _mm256_add_epi32(res_b, round_const_v), round_shift_v); /* rounding code */ // 16 bit conversion const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round); // 8 bit conversion and saturation to uint8 const __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit); const __m128i res_0 = _mm256_castsi256_si128(res_8b); const __m128i res_1 = _mm256_extracti128_si256(res_8b, 1); // Store values into the destination buffer __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j]; __m128i *const p_1 = (__m128i *)&dst[i * dst_stride + j + dst_stride]; _mm_storel_epi64(p_0, res_0); _mm_storel_epi64(p_1, res_1); s[0] = s[1]; s[1] = s[2]; s[2] = s[3]; s[4] = s[5]; s[5] = s[6]; s[6] = s[7]; } if (h - i) { s[0] = _mm256_permute2x128_si256(s[0], s[4], 0x20); s[1] = _mm256_permute2x128_si256(s[1], s[5], 0x20); s[2] = _mm256_permute2x128_si256(s[2], s[6], 0x20); const int16_t *data = &im_block[i * im_stride]; const __m128i s6_ = _mm_loadu_si128((__m128i *)(data + 6 * im_stride)); const __m128i s7_ = _mm_loadu_si128((__m128i *)(data + 7 * im_stride)); __m128i s3 = _mm_unpacklo_epi16(s6_, s7_); __m128i s7 = _mm_unpackhi_epi16(s6_, s7_); s[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s3), s7, 1); __m256i convolveres = convolve(s, coeffs_v); const __m256i res_round = _mm256_sra_epi32( _mm256_add_epi32(convolveres, round_const_v), round_shift_v); /* rounding code */ // 16 bit conversion __m128i reslo = _mm256_castsi256_si128(res_round); __m128i reshi = _mm256_extracti128_si256(res_round, 1); const __m128i res_16bit = _mm_packus_epi32(reslo, reshi); // 8 bit conversion and saturation to uint8 const __m128i res_8b = _mm_packus_epi16(res_16bit, res_16bit); __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j]; _mm_storel_epi64(p_0, res_8b); } } } }