/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/av1_rtcd.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/aom_timer.h" #include "aom_scale/aom_scale.h" #include "aom_util/aom_pthread.h" #include "aom_util/aom_thread.h" #include "av1/common/alloccommon.h" #include "av1/common/av1_common_int.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/decoder.h" #include "av1/decoder/detokenize.h" #include "av1/decoder/obu.h" static void initialize_dec(void) { av1_rtcd(); aom_dsp_rtcd(); aom_scale_rtcd(); av1_init_intra_predictors(); av1_init_wedge_masks(); } static void dec_set_mb_mi(CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size) { (void)min_partition_size; // Ensure that the decoded width and height are both multiples of // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if // subsampling is used). // This simplifies the implementation of various experiments, // eg. cdef, which operates on units of 8x8 luma pixels. const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); mi_params->mi_cols = aligned_width >> MI_SIZE_LOG2; mi_params->mi_rows = aligned_height >> MI_SIZE_LOG2; mi_params->mi_stride = calc_mi_size(mi_params->mi_cols); mi_params->mb_cols = ROUND_POWER_OF_TWO(mi_params->mi_cols, 2); mi_params->mb_rows = ROUND_POWER_OF_TWO(mi_params->mi_rows, 2); mi_params->MBs = mi_params->mb_rows * mi_params->mb_cols; mi_params->mi_alloc_bsize = BLOCK_4X4; mi_params->mi_alloc_stride = mi_params->mi_stride; assert(mi_size_wide[mi_params->mi_alloc_bsize] == mi_size_high[mi_params->mi_alloc_bsize]); } static void dec_setup_mi(CommonModeInfoParams *mi_params) { const int mi_grid_size = mi_params->mi_stride * calc_mi_size(mi_params->mi_rows); memset(mi_params->mi_grid_base, 0, mi_grid_size * sizeof(*mi_params->mi_grid_base)); } static void dec_free_mi(CommonModeInfoParams *mi_params) { aom_free(mi_params->mi_alloc); mi_params->mi_alloc = NULL; mi_params->mi_alloc_size = 0; aom_free(mi_params->mi_grid_base); mi_params->mi_grid_base = NULL; mi_params->mi_grid_size = 0; aom_free(mi_params->tx_type_map); mi_params->tx_type_map = NULL; } AV1Decoder *av1_decoder_create(BufferPool *const pool) { AV1Decoder *volatile const pbi = aom_memalign(32, sizeof(*pbi)); if (!pbi) return NULL; av1_zero(*pbi); AV1_COMMON *volatile const cm = &pbi->common; cm->seq_params = &pbi->seq_params; cm->error = &pbi->error; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(pbi->error.jmp)) { pbi->error.setjmp = 0; av1_decoder_remove(pbi); return NULL; } pbi->error.setjmp = 1; CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); CHECK_MEM_ERROR( cm, cm->default_frame_context, (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context))); memset(cm->fc, 0, sizeof(*cm->fc)); memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context)); pbi->need_resync = 1; initialize_dec(); // Initialize the references to not point to any frame buffers. for (int i = 0; i < REF_FRAMES; i++) { cm->ref_frame_map[i] = NULL; } cm->current_frame.frame_number = 0; pbi->decoding_first_frame = 1; pbi->common.buffer_pool = pool; cm->seq_params->bit_depth = AOM_BITS_8; cm->mi_params.free_mi = dec_free_mi; cm->mi_params.setup_mi = dec_setup_mi; cm->mi_params.set_mb_mi = dec_set_mb_mi; av1_loop_filter_init(cm); av1_qm_init(&cm->quant_params, av1_num_planes(cm)); av1_loop_restoration_precal(); #if CONFIG_ACCOUNTING pbi->acct_enabled = 1; aom_accounting_init(&pbi->accounting); #endif pbi->error.setjmp = 0; aom_get_worker_interface()->init(&pbi->lf_worker); pbi->lf_worker.thread_name = "aom lf worker"; return pbi; } void av1_dealloc_dec_jobs(struct AV1DecTileMTData *tile_mt_info) { if (tile_mt_info != NULL) { #if CONFIG_MULTITHREAD if (tile_mt_info->job_mutex != NULL) { pthread_mutex_destroy(tile_mt_info->job_mutex); aom_free(tile_mt_info->job_mutex); } #endif aom_free(tile_mt_info->job_queue); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*tile_mt_info); } } void av1_dec_free_cb_buf(AV1Decoder *pbi) { aom_free(pbi->cb_buffer_base); pbi->cb_buffer_base = NULL; pbi->cb_buffer_alloc_size = 0; } void av1_decoder_remove(AV1Decoder *pbi) { int i; if (!pbi) return; // Free the tile list output buffer. aom_free_frame_buffer(&pbi->tile_list_outbuf); aom_get_worker_interface()->end(&pbi->lf_worker); aom_free(pbi->lf_worker.data1); if (pbi->thread_data) { for (int worker_idx = 1; worker_idx < pbi->num_workers; worker_idx++) { DecWorkerData *const thread_data = pbi->thread_data + worker_idx; if (thread_data->td != NULL) { av1_free_mc_tmp_buf(thread_data->td); aom_free(thread_data->td); } } aom_free(pbi->thread_data); } aom_free(pbi->dcb.xd.seg_mask); for (i = 0; i < pbi->num_workers; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; aom_get_worker_interface()->end(worker); } #if CONFIG_MULTITHREAD if (pbi->row_mt_mutex_ != NULL) { pthread_mutex_destroy(pbi->row_mt_mutex_); aom_free(pbi->row_mt_mutex_); } if (pbi->row_mt_cond_ != NULL) { pthread_cond_destroy(pbi->row_mt_cond_); aom_free(pbi->row_mt_cond_); } #endif for (i = 0; i < pbi->allocated_tiles; i++) { TileDataDec *const tile_data = pbi->tile_data + i; av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); } aom_free(pbi->tile_data); aom_free(pbi->tile_workers); if (pbi->num_workers > 0) { av1_loop_filter_dealloc(&pbi->lf_row_sync); av1_loop_restoration_dealloc(&pbi->lr_row_sync); av1_dealloc_dec_jobs(&pbi->tile_mt_info); } av1_dec_free_cb_buf(pbi); #if CONFIG_ACCOUNTING aom_accounting_clear(&pbi->accounting); #endif av1_free_mc_tmp_buf(&pbi->td); aom_img_metadata_array_free(pbi->metadata); av1_remove_common(&pbi->common); aom_free(pbi); } void av1_visit_palette(AV1Decoder *const pbi, MACROBLOCKD *const xd, aom_reader *r, palette_visitor_fn_t visit) { if (!is_inter_block(xd->mi[0])) { for (int plane = 0; plane < AOMMIN(2, av1_num_planes(&pbi->common)); ++plane) { if (plane == 0 || xd->is_chroma_ref) { if (xd->mi[0]->palette_mode_info.palette_size[plane]) visit(xd, plane, r); } else { assert(xd->mi[0]->palette_mode_info.palette_size[plane] == 0); } } } } static int equal_dimensions(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) { return a->y_height == b->y_height && a->y_width == b->y_width && a->uv_height == b->uv_height && a->uv_width == b->uv_width; } aom_codec_err_t av1_copy_reference_dec(AV1Decoder *pbi, int idx, YV12_BUFFER_CONFIG *sd) { AV1_COMMON *cm = &pbi->common; const int num_planes = av1_num_planes(cm); const YV12_BUFFER_CONFIG *const cfg = get_ref_frame(cm, idx); if (cfg == NULL) { aom_internal_error(&pbi->error, AOM_CODEC_ERROR, "No reference frame"); return AOM_CODEC_ERROR; } if (!equal_dimensions(cfg, sd)) aom_internal_error(&pbi->error, AOM_CODEC_ERROR, "Incorrect buffer dimensions"); else aom_yv12_copy_frame(cfg, sd, num_planes); return pbi->error.error_code; } static int equal_dimensions_and_border(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) { return a->y_height == b->y_height && a->y_width == b->y_width && a->uv_height == b->uv_height && a->uv_width == b->uv_width && a->y_stride == b->y_stride && a->uv_stride == b->uv_stride && a->border == b->border && (a->flags & YV12_FLAG_HIGHBITDEPTH) == (b->flags & YV12_FLAG_HIGHBITDEPTH); } aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx, int use_external_ref, YV12_BUFFER_CONFIG *sd) { const int num_planes = av1_num_planes(cm); YV12_BUFFER_CONFIG *ref_buf = NULL; // Get the destination reference buffer. ref_buf = get_ref_frame(cm, idx); if (ref_buf == NULL) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "No reference frame"); return AOM_CODEC_ERROR; } if (!use_external_ref) { if (!equal_dimensions(ref_buf, sd)) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Incorrect buffer dimensions"); } else { // Overwrite the reference frame buffer. aom_yv12_copy_frame(sd, ref_buf, num_planes); } } else { if (!equal_dimensions_and_border(ref_buf, sd)) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Incorrect buffer dimensions"); } else { // Overwrite the reference frame buffer pointers. // Once we no longer need the external reference buffer, these pointers // are restored. ref_buf->store_buf_adr[0] = ref_buf->y_buffer; ref_buf->store_buf_adr[1] = ref_buf->u_buffer; ref_buf->store_buf_adr[2] = ref_buf->v_buffer; ref_buf->y_buffer = sd->y_buffer; ref_buf->u_buffer = sd->u_buffer; ref_buf->v_buffer = sd->v_buffer; ref_buf->use_external_reference_buffers = 1; } } return cm->error->error_code; } aom_codec_err_t av1_copy_new_frame_dec(AV1_COMMON *cm, YV12_BUFFER_CONFIG *new_frame, YV12_BUFFER_CONFIG *sd) { const int num_planes = av1_num_planes(cm); if (!equal_dimensions_and_border(new_frame, sd)) aom_internal_error(cm->error, AOM_CODEC_ERROR, "Incorrect buffer dimensions"); else aom_yv12_copy_frame(new_frame, sd, num_planes); return cm->error->error_code; } static void release_current_frame(AV1Decoder *pbi) { AV1_COMMON *const cm = &pbi->common; BufferPool *const pool = cm->buffer_pool; cm->cur_frame->buf.corrupted = 1; lock_buffer_pool(pool); decrease_ref_count(cm->cur_frame, pool); unlock_buffer_pool(pool); cm->cur_frame = NULL; } // If any buffer updating is signaled it should be done here. // Consumes a reference to cm->cur_frame. // // This functions returns void. It reports failure by setting // pbi->error.error_code. static void update_frame_buffers(AV1Decoder *pbi, int frame_decoded) { int ref_index = 0, mask; AV1_COMMON *const cm = &pbi->common; BufferPool *const pool = cm->buffer_pool; if (frame_decoded) { lock_buffer_pool(pool); // In ext-tile decoding, the camera frame header is only decoded once. So, // we don't update the references here. if (!pbi->camera_frame_header_ready) { // The following for loop needs to release the reference stored in // cm->ref_frame_map[ref_index] before storing a reference to // cm->cur_frame in cm->ref_frame_map[ref_index]. for (mask = cm->current_frame.refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { decrease_ref_count(cm->ref_frame_map[ref_index], pool); cm->ref_frame_map[ref_index] = cm->cur_frame; ++cm->cur_frame->ref_count; } ++ref_index; } } if (cm->show_existing_frame || cm->show_frame) { if (pbi->output_all_layers) { // Append this frame to the output queue if (pbi->num_output_frames >= MAX_NUM_SPATIAL_LAYERS) { // We can't store the new frame anywhere, so drop it and return an // error cm->cur_frame->buf.corrupted = 1; decrease_ref_count(cm->cur_frame, pool); pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; } else { pbi->output_frames[pbi->num_output_frames] = cm->cur_frame; pbi->num_output_frames++; } } else { // Replace any existing output frame assert(pbi->num_output_frames == 0 || pbi->num_output_frames == 1); if (pbi->num_output_frames > 0) { decrease_ref_count(pbi->output_frames[0], pool); } pbi->output_frames[0] = cm->cur_frame; pbi->num_output_frames = 1; } } else { decrease_ref_count(cm->cur_frame, pool); } unlock_buffer_pool(pool); } else { // Nothing was decoded, so just drop this frame buffer lock_buffer_pool(pool); decrease_ref_count(cm->cur_frame, pool); unlock_buffer_pool(pool); } cm->cur_frame = NULL; if (!pbi->camera_frame_header_ready) { // Invalidate these references until the next frame starts. for (ref_index = 0; ref_index < INTER_REFS_PER_FRAME; ref_index++) { cm->remapped_ref_idx[ref_index] = INVALID_IDX; } } } int av1_receive_compressed_data(AV1Decoder *pbi, size_t size, const uint8_t **psource) { AV1_COMMON *volatile const cm = &pbi->common; const uint8_t *source = *psource; pbi->error.error_code = AOM_CODEC_OK; pbi->error.has_detail = 0; if (size == 0) { // This is used to signal that we are missing frames. // We do not know if the missing frame(s) was supposed to update // any of the reference buffers, but we act conservative and // mark only the last buffer as corrupted. // // TODO(jkoleszar): Error concealment is undefined and non-normative // at this point, but if it becomes so, [0] may not always be the correct // thing to do here. RefCntBuffer *ref_buf = get_ref_frame_buf(cm, LAST_FRAME); if (ref_buf != NULL) ref_buf->buf.corrupted = 1; } if (assign_cur_frame_new_fb(cm) == NULL) { pbi->error.error_code = AOM_CODEC_MEM_ERROR; return 1; } // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(pbi->error.jmp)) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); int i; pbi->error.setjmp = 0; // Synchronize all threads immediately as a subsequent decode call may // cause a resize invalidating some allocations. winterface->sync(&pbi->lf_worker); for (i = 0; i < pbi->num_workers; ++i) { winterface->sync(&pbi->tile_workers[i]); } release_current_frame(pbi); return -1; } pbi->error.setjmp = 1; int frame_decoded = aom_decode_frame_from_obus(pbi, source, source + size, psource); if (frame_decoded < 0) { assert(pbi->error.error_code != AOM_CODEC_OK); release_current_frame(pbi); pbi->error.setjmp = 0; return 1; } #if TXCOEFF_TIMER cm->cum_txcoeff_timer += cm->txcoeff_timer; fprintf(stderr, "txb coeff block number: %d, frame time: %ld, cum time %ld in us\n", cm->txb_count, cm->txcoeff_timer, cm->cum_txcoeff_timer); cm->txcoeff_timer = 0; cm->txb_count = 0; #endif // Note: At this point, this function holds a reference to cm->cur_frame // in the buffer pool. This reference is consumed by update_frame_buffers(). update_frame_buffers(pbi, frame_decoded); if (frame_decoded) { pbi->decoding_first_frame = 0; } if (pbi->error.error_code != AOM_CODEC_OK) { pbi->error.setjmp = 0; return 1; } if (!cm->show_existing_frame) { if (cm->seg.enabled) { if (cm->prev_frame && (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { cm->last_frame_seg_map = cm->prev_frame->seg_map; } else { cm->last_frame_seg_map = NULL; } } } // Update progress in frame parallel decode. pbi->error.setjmp = 0; return 0; } // Get the frame at a particular index in the output queue int av1_get_raw_frame(AV1Decoder *pbi, size_t index, YV12_BUFFER_CONFIG **sd, aom_film_grain_t **grain_params) { if (index >= pbi->num_output_frames) return -1; *sd = &pbi->output_frames[index]->buf; *grain_params = &pbi->output_frames[index]->film_grain_params; return 0; } // Get the highest-spatial-layer output // TODO(rachelbarker): What should this do? int av1_get_frame_to_show(AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame) { if (pbi->num_output_frames == 0) return -1; *frame = pbi->output_frames[pbi->num_output_frames - 1]->buf; return 0; }