/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_codec.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_ports/mem_ops.h" #include "av1/common/common.h" #include "av1/common/obu_util.h" #include "av1/common/timing.h" #include "av1/decoder/decoder.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/obu.h" aom_codec_err_t aom_get_num_layers_from_operating_point_idc( int operating_point_idc, unsigned int *number_spatial_layers, unsigned int *number_temporal_layers) { // derive number of spatial/temporal layers from operating_point_idc if (!number_spatial_layers || !number_temporal_layers) return AOM_CODEC_INVALID_PARAM; if (operating_point_idc == 0) { *number_temporal_layers = 1; *number_spatial_layers = 1; } else { *number_spatial_layers = 0; *number_temporal_layers = 0; for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) { *number_spatial_layers += (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1; } for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) { *number_temporal_layers += (operating_point_idc >> j) & 0x1; } } return AOM_CODEC_OK; } static int is_obu_in_current_operating_point(AV1Decoder *pbi, const ObuHeader *obu_header) { if (!pbi->current_operating_point || !obu_header->has_extension) { return 1; } if ((pbi->current_operating_point >> obu_header->temporal_layer_id) & 0x1 && (pbi->current_operating_point >> (obu_header->spatial_layer_id + 8)) & 0x1) { return 1; } return 0; } static int byte_alignment(AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { while (rb->bit_offset & 7) { if (aom_rb_read_bit(rb)) { cm->error->error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } return 0; } static uint32_t read_temporal_delimiter_obu(void) { return 0; } // Returns a boolean that indicates success. static int read_bitstream_level(AV1_LEVEL *seq_level_idx, struct aom_read_bit_buffer *rb) { *seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); if (!is_valid_seq_level_idx(*seq_level_idx)) return 0; return 1; } // Returns whether two sequence headers are consistent with each other. // Note that the 'op_params' field is not compared per Section 7.5 in the spec: // Within a particular coded video sequence, the contents of // sequence_header_obu must be bit-identical each time the sequence header // appears except for the contents of operating_parameters_info. static int are_seq_headers_consistent(const SequenceHeader *seq_params_old, const SequenceHeader *seq_params_new) { return !memcmp(seq_params_old, seq_params_new, offsetof(SequenceHeader, op_params)); } // On success, sets pbi->sequence_header_ready to 1 and returns the number of // bytes read from 'rb'. // On failure, sets pbi->common.error.error_code and returns 0. static uint32_t read_sequence_header_obu(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; const uint32_t saved_bit_offset = rb->bit_offset; // Verify rb has been configured to report errors. assert(rb->error_handler); // Use a local variable to store the information as we decode. At the end, // if no errors have occurred, cm->seq_params is updated. SequenceHeader sh = *cm->seq_params; SequenceHeader *const seq_params = &sh; seq_params->profile = av1_read_profile(rb); if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } // Still picture or not seq_params->still_picture = aom_rb_read_bit(rb); seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb); // Video must have reduced_still_picture_hdr = 0 if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } if (seq_params->reduced_still_picture_hdr) { seq_params->timing_info_present = 0; seq_params->decoder_model_info_present_flag = 0; seq_params->display_model_info_present_flag = 0; seq_params->operating_points_cnt_minus_1 = 0; seq_params->operating_point_idc[0] = 0; if (!read_bitstream_level(&seq_params->seq_level_idx[0], rb)) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } seq_params->tier[0] = 0; seq_params->op_params[0].decoder_model_param_present_flag = 0; seq_params->op_params[0].display_model_param_present_flag = 0; } else { seq_params->timing_info_present = aom_rb_read_bit(rb); if (seq_params->timing_info_present) { av1_read_timing_info_header(&seq_params->timing_info, &pbi->error, rb); seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb); if (seq_params->decoder_model_info_present_flag) av1_read_decoder_model_info(&seq_params->decoder_model_info, rb); } else { seq_params->decoder_model_info_present_flag = 0; } seq_params->display_model_info_present_flag = aom_rb_read_bit(rb); seq_params->operating_points_cnt_minus_1 = aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { seq_params->operating_point_idc[i] = aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); if (!read_bitstream_level(&seq_params->seq_level_idx[i], rb)) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7 // is equivalent to level 3.3. if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) seq_params->tier[i] = aom_rb_read_bit(rb); else seq_params->tier[i] = 0; if (seq_params->decoder_model_info_present_flag) { seq_params->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb); if (seq_params->op_params[i].decoder_model_param_present_flag) av1_read_op_parameters_info(&seq_params->op_params[i], seq_params->decoder_model_info .encoder_decoder_buffer_delay_length, rb); } else { seq_params->op_params[i].decoder_model_param_present_flag = 0; } if (seq_params->timing_info_present && (seq_params->timing_info.equal_picture_interval || seq_params->op_params[i].decoder_model_param_present_flag)) { seq_params->op_params[i].bitrate = av1_max_level_bitrate( seq_params->profile, seq_params->seq_level_idx[i], seq_params->tier[i]); // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass // the check if (seq_params->op_params[i].bitrate == 0) aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, "AV1 does not support this combination of " "profile, level, and tier."); // Buffer size in bits/s is bitrate in bits/s * 1 s seq_params->op_params[i].buffer_size = seq_params->op_params[i].bitrate; } if (seq_params->timing_info_present && seq_params->timing_info.equal_picture_interval && !seq_params->op_params[i].decoder_model_param_present_flag) { // When the decoder_model_parameters are not sent for this op, set // the default ones that can be used with the resource availability mode seq_params->op_params[i].decoder_buffer_delay = 70000; seq_params->op_params[i].encoder_buffer_delay = 20000; seq_params->op_params[i].low_delay_mode_flag = 0; } if (seq_params->display_model_info_present_flag) { seq_params->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb); if (seq_params->op_params[i].display_model_param_present_flag) { seq_params->op_params[i].initial_display_delay = aom_rb_read_literal(rb, 4) + 1; if (seq_params->op_params[i].initial_display_delay > 10) aom_internal_error( &pbi->error, AOM_CODEC_UNSUP_BITSTREAM, "AV1 does not support more than 10 decoded frames delay"); } else { seq_params->op_params[i].initial_display_delay = 10; } } else { seq_params->op_params[i].display_model_param_present_flag = 0; seq_params->op_params[i].initial_display_delay = 10; } } } // This decoder supports all levels. Choose operating point provided by // external means int operating_point = pbi->operating_point; if (operating_point < 0 || operating_point > seq_params->operating_points_cnt_minus_1) operating_point = 0; pbi->current_operating_point = seq_params->operating_point_idc[operating_point]; if (aom_get_num_layers_from_operating_point_idc( pbi->current_operating_point, &pbi->number_spatial_layers, &pbi->number_temporal_layers) != AOM_CODEC_OK) { pbi->error.error_code = AOM_CODEC_ERROR; return 0; } av1_read_sequence_header(cm, rb, seq_params); av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &pbi->error); if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) && !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) && !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) { aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, " "%d %d subsampling is not supported.\n", seq_params->subsampling_x, seq_params->subsampling_y); } seq_params->film_grain_params_present = aom_rb_read_bit(rb); if (av1_check_trailing_bits(pbi, rb) != 0) { // pbi->error.error_code is already set. return 0; } // If a sequence header has been decoded before, we check if the new // one is consistent with the old one. if (pbi->sequence_header_ready) { if (!are_seq_headers_consistent(cm->seq_params, seq_params)) pbi->sequence_header_changed = 1; } *cm->seq_params = *seq_params; pbi->sequence_header_ready = 1; return ((rb->bit_offset - saved_bit_offset + 7) >> 3); } // On success, returns the frame header size. On failure, calls // aom_internal_error and does not return. If show existing frame, // also marks the data processing to end after the frame header. static uint32_t read_frame_header_obu(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t **p_data_end, int trailing_bits_present) { const uint32_t hdr_size = av1_decode_frame_headers_and_setup(pbi, rb, trailing_bits_present); const AV1_COMMON *cm = &pbi->common; if (cm->show_existing_frame) { *p_data_end = data + hdr_size; } return hdr_size; } // On success, returns the tile group header size. On failure, calls // aom_internal_error() and returns -1. static int32_t read_tile_group_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int *start_tile, int *end_tile, int tile_start_implicit) { AV1_COMMON *const cm = &pbi->common; CommonTileParams *const tiles = &cm->tiles; uint32_t saved_bit_offset = rb->bit_offset; int tile_start_and_end_present_flag = 0; const int num_tiles = tiles->rows * tiles->cols; if (!tiles->large_scale && num_tiles > 1) { tile_start_and_end_present_flag = aom_rb_read_bit(rb); if (tile_start_implicit && tile_start_and_end_present_flag) { aom_internal_error( &pbi->error, AOM_CODEC_UNSUP_BITSTREAM, "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0"); return -1; } } if (tiles->large_scale || num_tiles == 1 || !tile_start_and_end_present_flag) { *start_tile = 0; *end_tile = num_tiles - 1; } else { int tile_bits = tiles->log2_rows + tiles->log2_cols; *start_tile = aom_rb_read_literal(rb, tile_bits); *end_tile = aom_rb_read_literal(rb, tile_bits); } if (*start_tile != pbi->next_start_tile) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "tg_start (%d) must be equal to %d", *start_tile, pbi->next_start_tile); return -1; } if (*start_tile > *end_tile) { aom_internal_error( &pbi->error, AOM_CODEC_CORRUPT_FRAME, "tg_end (%d) must be greater than or equal to tg_start (%d)", *end_tile, *start_tile); return -1; } if (*end_tile >= num_tiles) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "tg_end (%d) must be less than NumTiles (%d)", *end_tile, num_tiles); return -1; } pbi->next_start_tile = (*end_tile == num_tiles - 1) ? 0 : *end_tile + 1; return ((rb->bit_offset - saved_bit_offset + 7) >> 3); } // On success, returns the tile group OBU size. On failure, sets // pbi->common.error.error_code and returns 0. static uint32_t read_one_tile_group_obu( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, int *is_last_tg, int tile_start_implicit) { AV1_COMMON *const cm = &pbi->common; int start_tile, end_tile; int32_t header_size, tg_payload_size; assert((rb->bit_offset & 7) == 0); assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data); header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile, tile_start_implicit); if (header_size == -1 || byte_alignment(cm, rb)) return 0; data += header_size; av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile, end_tile, is_first_tg); tg_payload_size = (uint32_t)(*p_data_end - data); *is_last_tg = end_tile == cm->tiles.rows * cm->tiles.cols - 1; return header_size + tg_payload_size; } static void alloc_tile_list_buffer(AV1Decoder *pbi) { // The resolution of the output frame is read out from the bitstream. The data // are stored in the order of Y plane, U plane and V plane. As an example, for // image format 4:2:0, the output frame of U plane and V plane is 1/4 of the // output frame. AV1_COMMON *const cm = &pbi->common; int tile_width, tile_height; av1_get_uniform_tile_size(cm, &tile_width, &tile_height); const int tile_width_in_pixels = tile_width * MI_SIZE; const int tile_height_in_pixels = tile_height * MI_SIZE; const int output_frame_width = (pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels; const int output_frame_height = (pbi->output_frame_height_in_tiles_minus_1 + 1) * tile_height_in_pixels; // The output frame is used to store the decoded tile list. The decoded tile // list has to fit into 1 output frame. assert((pbi->tile_count_minus_1 + 1) <= (pbi->output_frame_width_in_tiles_minus_1 + 1) * (pbi->output_frame_height_in_tiles_minus_1 + 1)); // Allocate the tile list output buffer. // Note: if cm->seq_params->use_highbitdepth is 1 and // cm->seq_params->bit_depth is 8, we could allocate less memory, namely, 8 // bits/pixel. if (aom_alloc_frame_buffer(&pbi->tile_list_outbuf, output_frame_width, output_frame_height, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, (cm->seq_params->use_highbitdepth && (cm->seq_params->bit_depth > AOM_BITS_8)), 0, cm->features.byte_alignment, 0, 0)) aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, "Failed to allocate the tile list output buffer"); } static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1, int hend1, int vstart1, int vend1, YV12_BUFFER_CONFIG *dst, int hstart2, int vstart2, int plane) { const int src_stride = (plane > 0) ? src->strides[1] : src->strides[0]; const int dst_stride = (plane > 0) ? dst->strides[1] : dst->strides[0]; int row, col; assert(src->flags & YV12_FLAG_HIGHBITDEPTH); assert(!(dst->flags & YV12_FLAG_HIGHBITDEPTH)); const uint16_t *src16 = CONVERT_TO_SHORTPTR(src->buffers[plane] + vstart1 * src_stride + hstart1); uint8_t *dst8 = dst->buffers[plane] + vstart2 * dst_stride + hstart2; for (row = vstart1; row < vend1; ++row) { for (col = 0; col < (hend1 - hstart1); ++col) *dst8++ = (uint8_t)(*src16++); src16 += src_stride - (hend1 - hstart1); dst8 += dst_stride - (hend1 - hstart1); } return; } static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, int tile_idx) { AV1_COMMON *const cm = &pbi->common; int tile_width, tile_height; av1_get_uniform_tile_size(cm, &tile_width, &tile_height); const int tile_width_in_pixels = tile_width * MI_SIZE; const int tile_height_in_pixels = tile_height * MI_SIZE; const int ssy = cm->seq_params->subsampling_y; const int ssx = cm->seq_params->subsampling_x; const int num_planes = av1_num_planes(cm); YV12_BUFFER_CONFIG *cur_frame = &cm->cur_frame->buf; const int tr = tile_idx / (pbi->output_frame_width_in_tiles_minus_1 + 1); const int tc = tile_idx % (pbi->output_frame_width_in_tiles_minus_1 + 1); int plane; // Copy decoded tile to the tile list output buffer. for (plane = 0; plane < num_planes; ++plane) { const int shift_x = plane > 0 ? ssx : 0; const int shift_y = plane > 0 ? ssy : 0; const int h = tile_height_in_pixels >> shift_y; const int w = tile_width_in_pixels >> shift_x; // src offset int vstart1 = pbi->dec_tile_row * h; int vend1 = vstart1 + h; int hstart1 = pbi->dec_tile_col * w; int hend1 = hstart1 + w; // dst offset int vstart2 = tr * h; int hstart2 = tc * w; if (cm->seq_params->use_highbitdepth && cm->seq_params->bit_depth == AOM_BITS_8) { yv12_tile_copy(cur_frame, hstart1, hend1, vstart1, vend1, &pbi->tile_list_outbuf, hstart2, vstart2, plane); } else { switch (plane) { case 0: aom_yv12_partial_copy_y(cur_frame, hstart1, hend1, vstart1, vend1, &pbi->tile_list_outbuf, hstart2, vstart2); break; case 1: aom_yv12_partial_copy_u(cur_frame, hstart1, hend1, vstart1, vend1, &pbi->tile_list_outbuf, hstart2, vstart2); break; case 2: aom_yv12_partial_copy_v(cur_frame, hstart1, hend1, vstart1, vend1, &pbi->tile_list_outbuf, hstart2, vstart2); break; default: assert(0); } } } } // Only called while large_scale_tile = 1. // // On success, returns the tile list OBU size. On failure, sets // pbi->common.error.error_code and returns 0. static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, int *frame_decoding_finished) { AV1_COMMON *const cm = &pbi->common; uint32_t tile_list_payload_size = 0; const int num_tiles = cm->tiles.cols * cm->tiles.rows; const int start_tile = 0; const int end_tile = num_tiles - 1; int i = 0; // Process the tile list info. pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16); if (pbi->tile_count_minus_1 > MAX_TILES - 1) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } // Allocate output frame buffer for the tile list. alloc_tile_list_buffer(pbi); uint32_t tile_list_info_bytes = 4; tile_list_payload_size += tile_list_info_bytes; data += tile_list_info_bytes; int tile_idx = 0; for (i = 0; i <= pbi->tile_count_minus_1; i++) { // Process 1 tile. // Reset the bit reader. rb->bit_offset = 0; rb->bit_buffer = data; // Read out the tile info. uint32_t tile_info_bytes = 5; // Set reference for each tile. int ref_idx = aom_rb_read_literal(rb, 8); if (ref_idx >= MAX_EXTERNAL_REFERENCES) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } av1_set_reference_dec(cm, cm->remapped_ref_idx[0], 1, &pbi->ext_refs.refs[ref_idx]); pbi->dec_tile_row = aom_rb_read_literal(rb, 8); pbi->dec_tile_col = aom_rb_read_literal(rb, 8); if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 || pbi->dec_tile_row >= cm->tiles.rows || pbi->dec_tile_col >= cm->tiles.cols) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1; data += tile_info_bytes; if ((size_t)(data_end - data) < pbi->coded_tile_data_size) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size, p_data_end, start_tile, end_tile, 0); uint32_t tile_payload_size = (uint32_t)(*p_data_end - data); tile_list_payload_size += tile_info_bytes + tile_payload_size; // Update data ptr for next tile decoding. data = *p_data_end; assert(data <= data_end); // Copy the decoded tile to the tile list output buffer. copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx); tile_idx++; } *frame_decoding_finished = 1; return tile_list_payload_size; } // Returns the last nonzero byte index in 'data'. If there is no nonzero byte in // 'data', returns -1. static int get_last_nonzero_byte_index(const uint8_t *data, size_t sz) { // Scan backward and return on the first nonzero byte. int i = (int)sz - 1; while (i >= 0 && data[i] == 0) { --i; } return i; } // Allocates metadata that was read and adds it to the decoders metadata array. static void alloc_read_metadata(AV1Decoder *const pbi, OBU_METADATA_TYPE metadata_type, const uint8_t *data, size_t sz, aom_metadata_insert_flags_t insert_flag) { if (!pbi->metadata) { pbi->metadata = aom_img_metadata_array_alloc(0); if (!pbi->metadata) { aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, "Failed to allocate metadata array"); } } aom_metadata_t *metadata = aom_img_metadata_alloc(metadata_type, data, sz, insert_flag); if (!metadata) { aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, "Error allocating metadata"); } aom_metadata_t **metadata_array = (aom_metadata_t **)realloc(pbi->metadata->metadata_array, (pbi->metadata->sz + 1) * sizeof(metadata)); if (!metadata_array) { aom_img_metadata_free(metadata); aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, "Error growing metadata array"); } pbi->metadata->metadata_array = metadata_array; pbi->metadata->metadata_array[pbi->metadata->sz] = metadata; pbi->metadata->sz++; } // On failure, calls aom_internal_error() and does not return. static void read_metadata_itut_t35(AV1Decoder *const pbi, const uint8_t *data, size_t sz) { if (sz == 0) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "itu_t_t35_country_code is missing"); } int country_code_size = 1; if (*data == 0xFF) { if (sz == 1) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "itu_t_t35_country_code_extension_byte is missing"); } ++country_code_size; } int end_index = get_last_nonzero_byte_index(data, sz); if (end_index < country_code_size) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "No trailing bits found in ITU-T T.35 metadata OBU"); } // itu_t_t35_payload_bytes is byte aligned. Section 6.7.2 of the spec says: // itu_t_t35_payload_bytes shall be bytes containing data registered as // specified in Recommendation ITU-T T.35. // Therefore the first trailing byte should be 0x80. if (data[end_index] != 0x80) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "The last nonzero byte of the ITU-T T.35 metadata OBU " "is 0x%02x, should be 0x80.", data[end_index]); } alloc_read_metadata(pbi, OBU_METADATA_TYPE_ITUT_T35, data, end_index, AOM_MIF_ANY_FRAME); } // On success, returns the number of bytes read from 'data'. On failure, calls // aom_internal_error() and does not return. static size_t read_metadata_hdr_cll(AV1Decoder *const pbi, const uint8_t *data, size_t sz) { const size_t kHdrCllPayloadSize = 4; if (sz < kHdrCllPayloadSize) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "Incorrect HDR CLL metadata payload size"); } alloc_read_metadata(pbi, OBU_METADATA_TYPE_HDR_CLL, data, kHdrCllPayloadSize, AOM_MIF_ANY_FRAME); return kHdrCllPayloadSize; } // On success, returns the number of bytes read from 'data'. On failure, calls // aom_internal_error() and does not return. static size_t read_metadata_hdr_mdcv(AV1Decoder *const pbi, const uint8_t *data, size_t sz) { const size_t kMdcvPayloadSize = 24; if (sz < kMdcvPayloadSize) { aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, "Incorrect HDR MDCV metadata payload size"); } alloc_read_metadata(pbi, OBU_METADATA_TYPE_HDR_MDCV, data, kMdcvPayloadSize, AOM_MIF_ANY_FRAME); return kMdcvPayloadSize; } static void scalability_structure(struct aom_read_bit_buffer *rb) { const int spatial_layers_cnt_minus_1 = aom_rb_read_literal(rb, 2); const int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb); const int spatial_layer_description_present_flag = aom_rb_read_bit(rb); const int temporal_group_description_present_flag = aom_rb_read_bit(rb); // scalability_structure_reserved_3bits must be set to zero and be ignored by // decoders. aom_rb_read_literal(rb, 3); if (spatial_layer_dimensions_present_flag) { for (int i = 0; i <= spatial_layers_cnt_minus_1; i++) { aom_rb_read_literal(rb, 16); aom_rb_read_literal(rb, 16); } } if (spatial_layer_description_present_flag) { for (int i = 0; i <= spatial_layers_cnt_minus_1; i++) { aom_rb_read_literal(rb, 8); } } if (temporal_group_description_present_flag) { const int temporal_group_size = aom_rb_read_literal(rb, 8); for (int i = 0; i < temporal_group_size; i++) { aom_rb_read_literal(rb, 3); aom_rb_read_bit(rb); aom_rb_read_bit(rb); const int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3); for (int j = 0; j < temporal_group_ref_cnt; j++) { aom_rb_read_literal(rb, 8); } } } } static void read_metadata_scalability(struct aom_read_bit_buffer *rb) { const int scalability_mode_idc = aom_rb_read_literal(rb, 8); if (scalability_mode_idc == SCALABILITY_SS) { scalability_structure(rb); } } static void read_metadata_timecode(struct aom_read_bit_buffer *rb) { aom_rb_read_literal(rb, 5); // counting_type f(5) const int full_timestamp_flag = aom_rb_read_bit(rb); // full_timestamp_flag f(1) aom_rb_read_bit(rb); // discontinuity_flag (f1) aom_rb_read_bit(rb); // cnt_dropped_flag f(1) aom_rb_read_literal(rb, 9); // n_frames f(9) if (full_timestamp_flag) { aom_rb_read_literal(rb, 6); // seconds_value f(6) aom_rb_read_literal(rb, 6); // minutes_value f(6) aom_rb_read_literal(rb, 5); // hours_value f(5) } else { const int seconds_flag = aom_rb_read_bit(rb); // seconds_flag f(1) if (seconds_flag) { aom_rb_read_literal(rb, 6); // seconds_value f(6) const int minutes_flag = aom_rb_read_bit(rb); // minutes_flag f(1) if (minutes_flag) { aom_rb_read_literal(rb, 6); // minutes_value f(6) const int hours_flag = aom_rb_read_bit(rb); // hours_flag f(1) if (hours_flag) { aom_rb_read_literal(rb, 5); // hours_value f(5) } } } } // time_offset_length f(5) const int time_offset_length = aom_rb_read_literal(rb, 5); if (time_offset_length) { // time_offset_value f(time_offset_length) aom_rb_read_literal(rb, time_offset_length); } } // Returns the last nonzero byte in 'data'. If there is no nonzero byte in // 'data', returns 0. // // Call this function to check the following requirement in the spec: // This implies that when any payload data is present for this OBU type, at // least one byte of the payload data (including the trailing bit) shall not // be equal to 0. static uint8_t get_last_nonzero_byte(const uint8_t *data, size_t sz) { // Scan backward and return on the first nonzero byte. size_t i = sz; while (i != 0) { --i; if (data[i] != 0) return data[i]; } return 0; } // Checks the metadata for correct syntax but ignores the parsed metadata. // // On success, returns the number of bytes read from 'data'. On failure, sets // pbi->common.error.error_code and returns 0, or calls aom_internal_error() // and does not return. static size_t read_metadata(AV1Decoder *pbi, const uint8_t *data, size_t sz) { size_t type_length; uint64_t type_value; if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } const OBU_METADATA_TYPE metadata_type = (OBU_METADATA_TYPE)type_value; if (metadata_type == 0 || metadata_type >= 6) { // If metadata_type is reserved for future use or a user private value, // ignore the entire OBU and just check trailing bits. if (get_last_nonzero_byte(data + type_length, sz - type_length) == 0) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } return sz; } if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) { // read_metadata_itut_t35() checks trailing bits. read_metadata_itut_t35(pbi, data + type_length, sz - type_length); return sz; } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) { size_t bytes_read = type_length + read_metadata_hdr_cll(pbi, data + type_length, sz - type_length); if (get_last_nonzero_byte(data + bytes_read, sz - bytes_read) != 0x80) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } return sz; } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) { size_t bytes_read = type_length + read_metadata_hdr_mdcv(pbi, data + type_length, sz - type_length); if (get_last_nonzero_byte(data + bytes_read, sz - bytes_read) != 0x80) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } return sz; } struct aom_read_bit_buffer rb; av1_init_read_bit_buffer(pbi, &rb, data + type_length, data + sz); if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) { read_metadata_scalability(&rb); } else { assert(metadata_type == OBU_METADATA_TYPE_TIMECODE); read_metadata_timecode(&rb); } if (av1_check_trailing_bits(pbi, &rb) != 0) { // pbi->error.error_code is already set. return 0; } assert((rb.bit_offset & 7) == 0); return type_length + (rb.bit_offset >> 3); } // On success, returns 'sz'. On failure, sets pbi->common.error.error_code and // returns 0. static size_t read_padding(AV1_COMMON *const cm, const uint8_t *data, size_t sz) { // The spec allows a padding OBU to be header-only (i.e., obu_size = 0). So // check trailing bits only if sz > 0. if (sz > 0) { // The payload of a padding OBU is byte aligned. Therefore the first // trailing byte should be 0x80. See https://crbug.com/aomedia/2393. const uint8_t last_nonzero_byte = get_last_nonzero_byte(data, sz); if (last_nonzero_byte != 0x80) { cm->error->error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } } return sz; } // On success, returns a boolean that indicates whether the decoding of the // current frame is finished. On failure, sets pbi->error.error_code and // returns -1. int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { AV1_COMMON *const cm = &pbi->common; int frame_decoding_finished = 0; int is_first_tg_obu_received = 1; // Whenever pbi->seen_frame_header is set to 1, frame_header is set to the // beginning of the frame_header_obu and frame_header_size is set to its // size. This allows us to check if a redundant frame_header_obu is a copy // of the previous frame_header_obu. // // Initialize frame_header to a dummy nonnull pointer, otherwise the Clang // Static Analyzer in clang 7.0.1 will falsely warn that a null pointer is // passed as an argument to a 'nonnull' parameter of memcmp(). The initial // value will not be used. const uint8_t *frame_header = data; uint32_t frame_header_size = 0; ObuHeader obu_header; memset(&obu_header, 0, sizeof(obu_header)); pbi->seen_frame_header = 0; pbi->next_start_tile = 0; pbi->num_tile_groups = 0; if (data_end < data) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } // Reset pbi->camera_frame_header_ready to 0 if cm->tiles.large_scale = 0. if (!cm->tiles.large_scale) pbi->camera_frame_header_ready = 0; // decode frame as a series of OBUs while (!frame_decoding_finished && pbi->error.error_code == AOM_CODEC_OK) { struct aom_read_bit_buffer rb; size_t payload_size = 0; size_t decoded_payload_size = 0; size_t obu_payload_offset = 0; size_t bytes_read = 0; const size_t bytes_available = data_end - data; if (bytes_available == 0 && !pbi->seen_frame_header) { *p_data_end = data; pbi->error.error_code = AOM_CODEC_OK; break; } aom_codec_err_t status = aom_read_obu_header_and_size(data, bytes_available, pbi->is_annexb, &obu_header, &payload_size, &bytes_read); if (status != AOM_CODEC_OK) { pbi->error.error_code = status; return -1; } // Record obu size header information. pbi->obu_size_hdr.data = data + obu_header.size; pbi->obu_size_hdr.size = bytes_read - obu_header.size; // Note: aom_read_obu_header_and_size() takes care of checking that this // doesn't cause 'data' to advance past 'data_end'. data += bytes_read; if ((size_t)(data_end - data) < payload_size) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } cm->temporal_layer_id = obu_header.temporal_layer_id; cm->spatial_layer_id = obu_header.spatial_layer_id; if (obu_header.type != OBU_TEMPORAL_DELIMITER && obu_header.type != OBU_SEQUENCE_HEADER) { // don't decode obu if it's not in current operating mode if (!is_obu_in_current_operating_point(pbi, &obu_header)) { data += payload_size; continue; } } av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size); switch (obu_header.type) { case OBU_TEMPORAL_DELIMITER: decoded_payload_size = read_temporal_delimiter_obu(); if (pbi->seen_frame_header) { // A new temporal unit has started, but the frame in the previous // temporal unit is incomplete. pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } break; case OBU_SEQUENCE_HEADER: decoded_payload_size = read_sequence_header_obu(pbi, &rb); if (pbi->error.error_code != AOM_CODEC_OK) return -1; // The sequence header should not change in the middle of a frame. if (pbi->sequence_header_changed && pbi->seen_frame_header) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } break; case OBU_FRAME_HEADER: case OBU_REDUNDANT_FRAME_HEADER: case OBU_FRAME: if (obu_header.type == OBU_REDUNDANT_FRAME_HEADER) { if (!pbi->seen_frame_header) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } else { // OBU_FRAME_HEADER or OBU_FRAME. if (pbi->seen_frame_header) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } // Only decode first frame header received if (!pbi->seen_frame_header || (cm->tiles.large_scale && !pbi->camera_frame_header_ready)) { frame_header_size = read_frame_header_obu( pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME); frame_header = data; pbi->seen_frame_header = 1; if (!pbi->ext_tile_debug && cm->tiles.large_scale) pbi->camera_frame_header_ready = 1; } else { // Verify that the frame_header_obu is identical to the original // frame_header_obu. if (frame_header_size > payload_size || memcmp(data, frame_header, frame_header_size) != 0) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } assert(rb.bit_offset == 0); rb.bit_offset = 8 * frame_header_size; } decoded_payload_size = frame_header_size; pbi->frame_header_size = frame_header_size; cm->cur_frame->temporal_id = obu_header.temporal_layer_id; cm->cur_frame->spatial_id = obu_header.spatial_layer_id; if (cm->show_existing_frame) { if (obu_header.type == OBU_FRAME) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return -1; } frame_decoding_finished = 1; pbi->seen_frame_header = 0; if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) { ++cm->current_frame.frame_number; } break; } // In large scale tile coding, decode the common camera frame header // before any tile list OBU. if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) { frame_decoding_finished = 1; // Skip the rest of the frame data. decoded_payload_size = payload_size; // Update data_end. *p_data_end = data_end; break; } if (obu_header.type != OBU_FRAME) break; obu_payload_offset = frame_header_size; // Byte align the reader before reading the tile group. // byte_alignment() has set pbi->error.error_code if it returns -1. if (byte_alignment(cm, &rb)) return -1; AOM_FALLTHROUGH_INTENDED; // fall through to read tile group. case OBU_TILE_GROUP: if (!pbi->seen_frame_header) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } if (obu_payload_offset > payload_size) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } decoded_payload_size += read_one_tile_group_obu( pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset, data + payload_size, p_data_end, &frame_decoding_finished, obu_header.type == OBU_FRAME); if (pbi->error.error_code != AOM_CODEC_OK) return -1; is_first_tg_obu_received = 0; if (frame_decoding_finished) { pbi->seen_frame_header = 0; pbi->next_start_tile = 0; } pbi->num_tile_groups++; break; case OBU_METADATA: decoded_payload_size = read_metadata(pbi, data, payload_size); if (pbi->error.error_code != AOM_CODEC_OK) return -1; break; case OBU_TILE_LIST: if (CONFIG_NORMAL_TILE_MODE) { pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return -1; } // This OBU type is purely for the large scale tile coding mode. // The common camera frame header has to be already decoded. if (!pbi->camera_frame_header_ready) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } cm->tiles.large_scale = 1; av1_set_single_tile_decoding_mode(cm); decoded_payload_size = read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size, p_data_end, &frame_decoding_finished); if (pbi->error.error_code != AOM_CODEC_OK) return -1; break; case OBU_PADDING: decoded_payload_size = read_padding(cm, data, payload_size); if (pbi->error.error_code != AOM_CODEC_OK) return -1; break; default: // Skip unrecognized OBUs if (payload_size > 0 && get_last_nonzero_byte(data, payload_size) == 0) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } decoded_payload_size = payload_size; break; } // Check that the signalled OBU size matches the actual amount of data read if (decoded_payload_size > payload_size) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } // If there are extra padding bytes, they should all be zero while (decoded_payload_size < payload_size) { uint8_t padding_byte = data[decoded_payload_size++]; if (padding_byte != 0) { pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } data += payload_size; } if (pbi->error.error_code != AOM_CODEC_OK) return -1; return frame_decoding_finished; }