/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "av1/common/pred_common.h" #include "av1/common/seg_common.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/tokenize.h" #include "aom_dsp/aom_dsp_common.h" CYCLIC_REFRESH *av1_cyclic_refresh_alloc(int mi_rows, int mi_cols) { CYCLIC_REFRESH *const cr = aom_calloc(1, sizeof(*cr)); if (cr == NULL) return NULL; cr->map = aom_calloc(mi_rows * mi_cols, sizeof(*cr->map)); cr->counter_encode_maxq_scene_change = 0; cr->percent_refresh_adjustment = 5; cr->rate_ratio_qdelta_adjustment = 0.25; if (cr->map == NULL) { av1_cyclic_refresh_free(cr); return NULL; } return cr; } void av1_cyclic_refresh_free(CYCLIC_REFRESH *cr) { if (cr != NULL) { aom_free(cr->map); aom_free(cr); } } // Check if this coding block, of size bsize, should be considered for refresh // (lower-qp coding). Decision can be based on various factors, such as // size of the coding block (i.e., below min_block size rejected), coding // mode, and rate/distortion. static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MB_MODE_INFO *mbmi, int64_t rate, int64_t dist, BLOCK_SIZE bsize, int noise_level) { MV mv = mbmi->mv[0].as_mv; int is_compound = has_second_ref(mbmi); // Reject the block for lower-qp coding for non-compound mode if // projected distortion is above the threshold, and any of the following // is true: // 1) mode uses large mv // 2) mode is an intra-mode // Otherwise accept for refresh. if (!is_compound && dist > cr->thresh_dist_sb && (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh || mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh || !is_inter_block(mbmi))) return CR_SEGMENT_ID_BASE; else if ((is_compound && noise_level < kMedium) || (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb && is_inter_block(mbmi) && mbmi->mv[0].as_int == 0 && cr->rate_boost_fac > 10)) // More aggressive delta-q for bigger blocks with zero motion. return CR_SEGMENT_ID_BOOST2; else return CR_SEGMENT_ID_BOOST1; } // Compute delta-q for the segment. static int compute_deltaq(const AV1_COMP *cpi, int q, double rate_factor) { const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int deltaq = av1_compute_qdelta_by_rate( cpi, cpi->common.current_frame.frame_type, q, rate_factor); if ((-deltaq) > cr->max_qdelta_perc * q / 100) { deltaq = -cr->max_qdelta_perc * q / 100; } return deltaq; } int av1_cyclic_refresh_estimate_bits_at_q(const AV1_COMP *cpi, double correction_factor) { const AV1_COMMON *const cm = &cpi->common; const int base_qindex = cm->quant_params.base_qindex; const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int mbs = cm->mi_params.MBs; const int num4x4bl = mbs << 4; // Weight for non-base segments: use actual number of blocks refreshed in // previous/just encoded frame. Note number of blocks here is in 4x4 units. double weight_segment1 = (double)cr->actual_num_seg1_blocks / num4x4bl; double weight_segment2 = (double)cr->actual_num_seg2_blocks / num4x4bl; if (cpi->rc.rtc_external_ratectrl) { weight_segment1 = (double)(cr->percent_refresh * cm->mi_params.mi_rows * cm->mi_params.mi_cols / 100) / num4x4bl; weight_segment2 = 0; } // Take segment weighted average for estimated bits. const int estimated_bits = (int)((1.0 - weight_segment1 - weight_segment2) * av1_estimate_bits_at_q(cpi, base_qindex, correction_factor) + weight_segment1 * av1_estimate_bits_at_q(cpi, base_qindex + cr->qindex_delta[1], correction_factor) + weight_segment2 * av1_estimate_bits_at_q(cpi, base_qindex + cr->qindex_delta[2], correction_factor)); return estimated_bits; } int av1_cyclic_refresh_rc_bits_per_mb(const AV1_COMP *cpi, int i, double correction_factor) { const AV1_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int bits_per_mb; int num4x4bl = cm->mi_params.MBs << 4; // Weight for segment prior to encoding: take the average of the target // number for the frame to be encoded and the actual from the previous frame. double weight_segment = (double)((cr->target_num_seg_blocks + cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) >> 1) / num4x4bl; if (cpi->rc.rtc_external_ratectrl) { weight_segment = (double)((cr->target_num_seg_blocks + cr->percent_refresh * cm->mi_params.mi_rows * cm->mi_params.mi_cols / 100) >> 1) / num4x4bl; } // Compute delta-q corresponding to qindex i. int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta); const int accurate_estimate = cpi->sf.hl_sf.accurate_bit_estimate; // Take segment weighted average for bits per mb. bits_per_mb = (int)((1.0 - weight_segment) * av1_rc_bits_per_mb(cpi, cm->current_frame.frame_type, i, correction_factor, accurate_estimate) + weight_segment * av1_rc_bits_per_mb( cpi, cm->current_frame.frame_type, i + deltaq, correction_factor, accurate_estimate)); return bits_per_mb; } void av1_cyclic_reset_segment_skip(const AV1_COMP *cpi, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { int cdf_num; const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const int prev_segment_id = mbmi->segment_id; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int xmis = AOMMIN(cm->mi_params.mi_cols - mi_col, bw); const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); assert(cm->seg.enabled); if (!cr->skip_over4x4) { mbmi->segment_id = av1_get_spatial_seg_pred(cm, xd, &cdf_num, cr->skip_over4x4); if (prev_segment_id != mbmi->segment_id) { const int block_index = mi_row * cm->mi_params.mi_cols + mi_col; const int mi_stride = cm->mi_params.mi_cols; const uint8_t segment_id = mbmi->segment_id; for (int mi_y = 0; mi_y < ymis; mi_y++) { const int map_offset = block_index + mi_y * mi_stride; memset(&cr->map[map_offset], 0, xmis); memset(&cpi->enc_seg.map[map_offset], segment_id, xmis); memset(&cm->cur_frame->seg_map[map_offset], segment_id, xmis); } } } if (!dry_run) { if (cyclic_refresh_segment_id(prev_segment_id) == CR_SEGMENT_ID_BOOST1) x->actual_num_seg1_blocks -= xmis * ymis; else if (cyclic_refresh_segment_id(prev_segment_id) == CR_SEGMENT_ID_BOOST2) x->actual_num_seg2_blocks -= xmis * ymis; } } void av1_cyclic_refresh_update_segment(const AV1_COMP *cpi, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize, int64_t rate, int64_t dist, int skip, RUN_TYPE dry_run) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int xmis = AOMMIN(cm->mi_params.mi_cols - mi_col, bw); const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_params.mi_cols + mi_col; int noise_level = 0; if (cpi->noise_estimate.enabled) noise_level = cpi->noise_estimate.level; const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist, bsize, noise_level); int sh = cpi->cyclic_refresh->skip_over4x4 ? 2 : 1; // Default is to not update the refresh map. int new_map_value = cr->map[block_index]; // If this block is labeled for refresh, check if we should reset the // segment_id. if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) { mbmi->segment_id = refresh_this_block; // Reset segment_id if will be skipped. if (skip) mbmi->segment_id = CR_SEGMENT_ID_BASE; } const uint8_t segment_id = mbmi->segment_id; // Update the cyclic refresh map, to be used for setting segmentation map // for the next frame. If the block will be refreshed this frame, mark it // as clean. The magnitude of the -ve influences how long before we consider // it for refresh again. if (cyclic_refresh_segment_id_boosted(segment_id)) { new_map_value = -cr->time_for_refresh; } else if (refresh_this_block) { // Else if it is accepted as candidate for refresh, and has not already // been refreshed (marked as 1) then mark it as a candidate for cleanup // for future time (marked as 0), otherwise don't update it. if (cr->map[block_index] == 1) new_map_value = 0; } else { // Leave it marked as block that is not candidate for refresh. new_map_value = 1; } // Update entries in the cyclic refresh map with new_map_value, and // copy mbmi->segment_id into global segmentation map. const int mi_stride = cm->mi_params.mi_cols; for (int mi_y = 0; mi_y < ymis; mi_y += sh) { const int map_offset = block_index + mi_y * mi_stride; memset(&cr->map[map_offset], new_map_value, xmis); memset(&cpi->enc_seg.map[map_offset], segment_id, xmis); memset(&cm->cur_frame->seg_map[map_offset], segment_id, xmis); } // Accumulate cyclic refresh update counters. if (!dry_run) { if (cyclic_refresh_segment_id(segment_id) == CR_SEGMENT_ID_BOOST1) x->actual_num_seg1_blocks += xmis * ymis; else if (cyclic_refresh_segment_id(segment_id) == CR_SEGMENT_ID_BOOST2) x->actual_num_seg2_blocks += xmis * ymis; } } // Initializes counters used for cyclic refresh. void av1_init_cyclic_refresh_counters(MACROBLOCK *const x) { x->actual_num_seg1_blocks = 0; x->actual_num_seg2_blocks = 0; } // Accumulate cyclic refresh counters. void av1_accumulate_cyclic_refresh_counters( CYCLIC_REFRESH *const cyclic_refresh, const MACROBLOCK *const x) { cyclic_refresh->actual_num_seg1_blocks += x->actual_num_seg1_blocks; cyclic_refresh->actual_num_seg2_blocks += x->actual_num_seg2_blocks; } void av1_cyclic_refresh_set_golden_update(AV1_COMP *const cpi) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; // Set minimum gf_interval for GF update to a multiple of the refresh period, // with some max limit. Depending on past encoding stats, GF flag may be // reset and update may not occur until next baseline_gf_interval. const int gf_length_mult[2] = { 8, 4 }; if (cr->percent_refresh > 0) p_rc->baseline_gf_interval = AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] * (100 / cr->percent_refresh), MAX_GF_INTERVAL_RT); else p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT; if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40) p_rc->baseline_gf_interval = 16; } // Update the segmentation map, and related quantities: cyclic refresh map, // refresh sb_index, and target number of blocks to be refreshed. // The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to // 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock. // Blocks labeled as BOOST1 may later get set to BOOST2 (during the // encoding of the superblock). static void cyclic_refresh_update_map(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; unsigned char *const seg_map = cpi->enc_seg.map; int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; int xmis, ymis, x, y; uint64_t sb_sad = 0; uint64_t thresh_sad_low = 0; uint64_t thresh_sad = INT64_MAX; const int mi_rows = mi_params->mi_rows, mi_cols = mi_params->mi_cols; const int mi_stride = mi_cols; memset(seg_map, CR_SEGMENT_ID_BASE, mi_rows * mi_cols); sb_cols = (mi_cols + cm->seq_params->mib_size - 1) / cm->seq_params->mib_size; sb_rows = (mi_rows + cm->seq_params->mib_size - 1) / cm->seq_params->mib_size; sbs_in_frame = sb_cols * sb_rows; // Number of target blocks to get the q delta (segment 1). block_count = cr->percent_refresh * mi_rows * mi_cols / 100; // Set the segmentation map: cycle through the superblocks, starting at // cr->mb_index, and stopping when either block_count blocks have been found // to be refreshed, or we have passed through whole frame. if (cr->sb_index >= sbs_in_frame) cr->sb_index = 0; assert(cr->sb_index < sbs_in_frame); i = cr->sb_index; cr->last_sb_index = cr->sb_index; cr->target_num_seg_blocks = 0; do { int sum_map = 0; // Get the mi_row/mi_col corresponding to superblock index i. int sb_row_index = (i / sb_cols); int sb_col_index = i - sb_row_index * sb_cols; int mi_row = sb_row_index * cm->seq_params->mib_size; int mi_col = sb_col_index * cm->seq_params->mib_size; assert(mi_row >= 0 && mi_row < mi_rows); assert(mi_col >= 0 && mi_col < mi_cols); bl_index = mi_row * mi_stride + mi_col; // Loop through all MI blocks in superblock and update map. xmis = AOMMIN(mi_cols - mi_col, cm->seq_params->mib_size); ymis = AOMMIN(mi_rows - mi_row, cm->seq_params->mib_size); if (cr->use_block_sad_scene_det && cpi->rc.frames_since_key > 30 && cr->counter_encode_maxq_scene_change > 30 && cpi->src_sad_blk_64x64 != NULL && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { sb_sad = cpi->src_sad_blk_64x64[sb_col_index + sb_cols * sb_row_index]; int scale = (cm->width * cm->height < 640 * 360) ? 6 : 8; int scale_low = 2; thresh_sad = (scale * 64 * 64); thresh_sad_low = (scale_low * 64 * 64); // For temporal layers: the base temporal layer (temporal_layer_id = 0) // has larger frame separation (2 or 4 frames apart), so use larger sad // thresholds to compensate for larger frame sad. The larger thresholds // also increase the amount of refresh, which is needed for the base // temporal layer. if (cpi->svc.number_temporal_layers > 1 && cpi->svc.temporal_layer_id == 0) { thresh_sad <<= 4; thresh_sad_low <<= 2; } } // cr_map only needed at 8x8 blocks. for (y = 0; y < ymis; y += 2) { for (x = 0; x < xmis; x += 2) { const int bl_index2 = bl_index + y * mi_stride + x; // If the block is as a candidate for clean up then mark it // for possible boost/refresh (segment 1). The segment id may get // reset to 0 later if block gets coded anything other than low motion. // If the block_sad (sb_sad) is very low label it for refresh anyway. if (cr->map[bl_index2] == 0 || sb_sad < thresh_sad_low) { sum_map += 4; } else if (cr->map[bl_index2] < 0) { cr->map[bl_index2]++; } } } // Enforce constant segment over superblock. // If segment is at least half of superblock, set to 1. // Enforce that block sad (sb_sad) is not too high. if (sum_map >= (xmis * ymis) >> 1 && sb_sad < thresh_sad) { set_segment_id(seg_map, bl_index, xmis, ymis, mi_stride, CR_SEGMENT_ID_BOOST1); cr->target_num_seg_blocks += xmis * ymis; } i++; if (i == sbs_in_frame) { i = 0; } } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index); cr->sb_index = i; if (cr->target_num_seg_blocks == 0) { // Disable segmentation, seg_map is already set to 0 above. av1_disable_segmentation(&cm->seg); } } static int is_scene_change_detected(AV1_COMP *const cpi) { return cpi->rc.high_source_sad; } // Set cyclic refresh parameters. void av1_cyclic_refresh_update_parameters(AV1_COMP *const cpi) { // TODO(marpan): Parameters need to be tuned. const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; SVC *const svc = &cpi->svc; const int qp_thresh = AOMMAX(16, rc->best_quality + 4); const int qp_max_thresh = 118 * MAXQ >> 7; const int scene_change_detected = is_scene_change_detected(cpi); const int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN); // A scene change or key frame marks the start of a cyclic refresh cycle. const int frames_since_scene_change = (cpi->ppi->use_svc || !is_screen_content) ? cpi->rc.frames_since_key : AOMMIN(cpi->rc.frames_since_key, cr->counter_encode_maxq_scene_change); // Cases to reset the cyclic refresh adjustment parameters. if (frame_is_intra_only(cm) || scene_change_detected || cpi->ppi->rtc_ref.bias_recovery_frame) { // Reset adaptive elements for intra only frames and scene changes. cr->percent_refresh_adjustment = 5; cr->rate_ratio_qdelta_adjustment = 0.25; } // Although this segment feature for RTC is only used for // blocks >= 8X8, for more efficient coding of the seg map // cur_frame->seg_map needs to set at 4x4 along with the // function av1_cyclic_reset_segment_skip(). Skipping over // 4x4 will therefore have small bdrate loss (~0.2%), so // we use it only for speed > 9 for now. // Also if loop-filter deltas is applied via segment, then // we need to set cr->skip_over4x4 = 1. cr->skip_over4x4 = (cpi->oxcf.speed > 9) ? 1 : 0; // should we enable cyclic refresh on this frame. cr->apply_cyclic_refresh = 1; if (frame_is_intra_only(cm) || is_lossless_requested(&cpi->oxcf.rc_cfg) || scene_change_detected || svc->temporal_layer_id > 0 || svc->prev_number_spatial_layers != svc->number_spatial_layers || p_rc->avg_frame_qindex[INTER_FRAME] < qp_thresh || (svc->number_spatial_layers > 1 && svc->layer_context[svc->temporal_layer_id].is_key_frame) || (frames_since_scene_change > 20 && p_rc->avg_frame_qindex[INTER_FRAME] > qp_max_thresh) || (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 30 && frames_since_scene_change > 40) || cpi->ppi->rtc_ref.bias_recovery_frame) { cr->apply_cyclic_refresh = 0; return; } // Increase the amount of refresh for #temporal_layers > 2 if (svc->number_temporal_layers > 2) cr->percent_refresh = 15; else cr->percent_refresh = 10 + cr->percent_refresh_adjustment; cr->max_qdelta_perc = 60; cr->time_for_refresh = 0; cr->use_block_sad_scene_det = (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && cm->seq_params->sb_size == BLOCK_64X64) ? 1 : 0; cr->motion_thresh = 32; cr->rate_boost_fac = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) ? 10 : 15; // Use larger delta-qp (increase rate_ratio_qdelta) for first few // refresh cycles after a key frame (svc) or scene change (non svc). // For non svc screen content, after a scene change gradually reduce // this boost and supress it further if either of the previous two // frames overshot. if (cr->percent_refresh > 0) { if (cpi->ppi->use_svc || !is_screen_content) { if (frames_since_scene_change < ((4 * svc->number_temporal_layers) * (100 / cr->percent_refresh))) { cr->rate_ratio_qdelta = 3.0 + cr->rate_ratio_qdelta_adjustment; } else { cr->rate_ratio_qdelta = 2.25 + cr->rate_ratio_qdelta_adjustment; } } else { double distance_from_sc_factor = AOMMIN(0.75, (int)(frames_since_scene_change / 10) * 0.1); cr->rate_ratio_qdelta = 3.0 + cr->rate_ratio_qdelta_adjustment - distance_from_sc_factor; if ((frames_since_scene_change < 10) && ((cpi->rc.rc_1_frame < 0) || (cpi->rc.rc_2_frame < 0))) { cr->rate_ratio_qdelta -= 0.25; } } } else { cr->rate_ratio_qdelta = 2.25 + cr->rate_ratio_qdelta_adjustment; } // Adjust some parameters for low resolutions. if (cm->width * cm->height <= 352 * 288) { if (cpi->svc.number_temporal_layers > 1) { cr->motion_thresh = 32; cr->rate_boost_fac = 13; } else { if (rc->avg_frame_bandwidth < 3000) { cr->motion_thresh = 16; cr->rate_boost_fac = 13; } else { cr->max_qdelta_perc = 50; cr->rate_ratio_qdelta = AOMMAX(cr->rate_ratio_qdelta, 2.0); } } } if (cpi->oxcf.rc_cfg.mode == AOM_VBR) { // To be adjusted for VBR mode, e.g., based on gf period and boost. // For now use smaller qp-delta (than CBR), no second boosted seg, and // turn-off (no refresh) on golden refresh (since it's already boosted). cr->percent_refresh = 10; cr->rate_ratio_qdelta = 1.5; cr->rate_boost_fac = 10; if (cpi->refresh_frame.golden_frame) { cr->percent_refresh = 0; cr->rate_ratio_qdelta = 1.0; } } if (rc->rtc_external_ratectrl) { cr->actual_num_seg1_blocks = cr->percent_refresh * cm->mi_params.mi_rows * cm->mi_params.mi_cols / 100; cr->actual_num_seg2_blocks = 0; } } // Setup cyclic background refresh: set delta q and segmentation map. void av1_cyclic_refresh_setup(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; struct segmentation *const seg = &cm->seg; const int scene_change_detected = is_scene_change_detected(cpi); const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); const FRAME_TYPE frame_type = cm->current_frame.frame_type; // Set resolution_change flag: for svc only set it when the // number of spatial layers has not changed. const int resolution_change = cm->prev_frame && (cm->width != cm->prev_frame->width || cm->height != cm->prev_frame->height) && cpi->svc.prev_number_spatial_layers == cpi->svc.number_spatial_layers; if (resolution_change) av1_cyclic_refresh_reset_resize(cpi); if (!cr->apply_cyclic_refresh) { // Set segmentation map to 0 and disable. unsigned char *const seg_map = cpi->enc_seg.map; memset(seg_map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); av1_disable_segmentation(&cm->seg); if (frame_is_intra_only(cm) || scene_change_detected || cpi->ppi->rtc_ref.bias_recovery_frame) { cr->sb_index = 0; cr->last_sb_index = 0; cr->counter_encode_maxq_scene_change = 0; cr->actual_num_seg1_blocks = 0; cr->actual_num_seg2_blocks = 0; } return; } else { cr->counter_encode_maxq_scene_change++; const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex, cm->seq_params->bit_depth); // Set rate threshold to some multiple (set to 2 for now) of the target // rate (target is given by sb64_target_rate and scaled by 256). cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2; // Distortion threshold, quadratic in Q, scale factor to be adjusted. // q will not exceed 457, so (q * q) is within 32bit; see: // av1_convert_qindex_to_q(), av1_ac_quant(), ac_qlookup*[]. cr->thresh_dist_sb = ((int64_t)(q * q)) << 2; // For low-resoln or lower speeds, the rate/dist thresholds need to be // tuned/updated. if (cpi->oxcf.speed <= 7 || (cm->width * cm->height < 640 * 360)) { cr->thresh_dist_sb = 0; cr->thresh_rate_sb = INT64_MAX; } // Set up segmentation. // Clear down the segment map. av1_enable_segmentation(&cm->seg); av1_clearall_segfeatures(seg); // Note: setting temporal_update has no effect, as the seg-map coding method // (temporal or spatial) is determined in // av1_choose_segmap_coding_method(), // based on the coding cost of each method. For error_resilient mode on the // last_frame_seg_map is set to 0, so if temporal coding is used, it is // relative to 0 previous map. // seg->temporal_update = 0; // Segment BASE "Q" feature is disabled so it defaults to the baseline Q. av1_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q); // Use segment BOOST1 for in-frame Q adjustment. av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q); // Use segment BOOST2 for more aggressive in-frame Q adjustment. av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q); // Set the q delta for segment BOOST1. const CommonQuantParams *const quant_params = &cm->quant_params; int qindex_delta = compute_deltaq(cpi, quant_params->base_qindex, cr->rate_ratio_qdelta); cr->qindex_delta[1] = qindex_delta; // Compute rd-mult for segment BOOST1. const int qindex2 = clamp( quant_params->base_qindex + quant_params->y_dc_delta_q + qindex_delta, 0, MAXQ); cr->rdmult = av1_compute_rd_mult( qindex2, cm->seq_params->bit_depth, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); av1_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta); // Set a more aggressive (higher) q delta for segment BOOST2. qindex_delta = compute_deltaq( cpi, quant_params->base_qindex, AOMMIN(CR_MAX_RATE_TARGET_RATIO, 0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta)); cr->qindex_delta[2] = qindex_delta; av1_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta); // Update the segmentation and refresh map. cyclic_refresh_update_map(cpi); } } int av1_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { return cr->rdmult; } void av1_cyclic_refresh_reset_resize(AV1_COMP *const cpi) { const AV1_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; memset(cr->map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); cr->sb_index = 0; cr->last_sb_index = 0; cpi->refresh_frame.golden_frame = true; cr->apply_cyclic_refresh = 0; cr->counter_encode_maxq_scene_change = 0; cr->percent_refresh_adjustment = 5; cr->rate_ratio_qdelta_adjustment = 0.25; } int av1_cyclic_refresh_disable_lf_cdef(AV1_COMP *const cpi) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int qindex = cpi->common.quant_params.base_qindex; if (cpi->rc.frames_since_key > 30 && cr->percent_refresh > 0 && cr->counter_encode_maxq_scene_change > 300 / cr->percent_refresh && cpi->rc.frame_source_sad < 1000 && qindex < 7 * (cpi->rc.worst_quality >> 3)) return 1; // More aggressive skip. else if (cpi->sf.rt_sf.skip_lf_screen > 1 && !cpi->rc.high_source_sad && cpi->rc.frame_source_sad < 50000 && qindex < cpi->rc.worst_quality) return 1; return 0; }