/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_ports/mem.h" #include "av1/encoder/aq_variance.h" #include "av1/common/seg_common.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/dwt.h" static const double rate_ratio[MAX_SEGMENTS] = { 2.2, 1.7, 1.3, 1.0, 0.9, .8, .7, .6 }; static const double deltaq_rate_ratio[MAX_SEGMENTS] = { 2.5, 2.0, 1.5, 1.0, 0.75, 1.0, 1.0, 1.0 }; #define ENERGY_MIN (-4) #define ENERGY_MAX (1) #define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1) #define ENERGY_IN_BOUNDS(energy) \ assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX) DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 }; DECLARE_ALIGNED(16, static const uint16_t, av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 }; #define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN] void av1_vaq_frame_setup(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const int base_qindex = cm->quant_params.base_qindex; struct segmentation *seg = &cm->seg; int i; int resolution_change = cm->prev_frame && (cm->width != cm->prev_frame->width || cm->height != cm->prev_frame->height); int avg_energy = (int)(cpi->twopass_frame.mb_av_energy - 2); double avg_ratio; if (avg_energy > 7) avg_energy = 7; if (avg_energy < 0) avg_energy = 0; avg_ratio = rate_ratio[avg_energy]; if (resolution_change) { memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); av1_clearall_segfeatures(seg); av1_disable_segmentation(seg); return; } if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || refresh_frame->alt_ref_frame || (refresh_frame->golden_frame && !cpi->rc.is_src_frame_alt_ref)) { cpi->vaq_refresh = 1; av1_enable_segmentation(seg); av1_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; ++i) { // Set up avg segment id to be 1.0 and adjust the other segments around // it. int qindex_delta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, base_qindex, rate_ratio[i] / avg_ratio); // We don't allow qindex 0 in a segment if the base value is not 0. // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment // Q delta is sometimes applied without going back around the rd loop. // This could lead to an illegal combination of partition size and q. if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) { qindex_delta = -base_qindex + 1; } av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q); } } } int av1_log_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { // This functions returns a score for the blocks local variance as calculated // by: sum of the log of the (4x4 variances) of each subblock to the current // block (x,bs) // * 32 / number of pixels in the block_size. // This is used for segmentation because to avoid situations in which a large // block with a gentle gradient gets marked high variance even though each // subblock has a low variance. This allows us to assign the same segment // number for the same sorts of area regardless of how the partitioning goes. MACROBLOCKD *xd = &x->e_mbd; double var = 0; unsigned int sse; int i, j; int right_overflow = (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; int bottom_overflow = (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; for (i = 0; i < bh; i += 4) { for (j = 0; j < bw; j += 4) { if (is_cur_buf_hbd(xd)) { var += log1p(cpi->ppi->fn_ptr[BLOCK_4X4].vf( x->plane[0].src.buf + i * x->plane[0].src.stride + j, x->plane[0].src.stride, CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse) / 16.0); } else { var += log1p(cpi->ppi->fn_ptr[BLOCK_4X4].vf( x->plane[0].src.buf + i * x->plane[0].src.stride + j, x->plane[0].src.stride, av1_all_zeros, 0, &sse) / 16.0); } } } // Use average of 4x4 log variance. The range for 8 bit 0 - 9.704121561. var /= (bw / 4 * bh / 4); if (var > 7) var = 7; return (int)(var); } int av1_log_block_avg(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, int mi_row, int mi_col) { // This functions returns the block average of luma block unsigned int sum, avg, num_pix; int r, c; const int pic_w = cpi->common.width; const int pic_h = cpi->common.height; const int bw = MI_SIZE * mi_size_wide[bs]; const int bh = MI_SIZE * mi_size_high[bs]; const uint16_t *x16 = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); sum = 0; num_pix = 0; avg = 0; int row = mi_row << MI_SIZE_LOG2; int col = mi_col << MI_SIZE_LOG2; for (r = row; (r < (row + bh)) && (r < pic_h); r++) { for (c = col; (c < (col + bw)) && (c < pic_w); c++) { sum += *(x16 + r * x->plane[0].src.stride + c); num_pix++; } } if (num_pix != 0) { avg = sum / num_pix; } return avg; } #define DEFAULT_E_MIDPOINT 10.0 static unsigned int haar_ac_energy(MACROBLOCK *x, BLOCK_SIZE bs) { MACROBLOCKD *xd = &x->e_mbd; int stride = x->plane[0].src.stride; uint8_t *buf = x->plane[0].src.buf; const int num_8x8_cols = block_size_wide[bs] / 8; const int num_8x8_rows = block_size_high[bs] / 8; const int hbd = is_cur_buf_hbd(xd); int64_t var = av1_haar_ac_sad_mxn_uint8_input(buf, stride, hbd, num_8x8_rows, num_8x8_cols); return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs]; } static double log_block_wavelet_energy(MACROBLOCK *x, BLOCK_SIZE bs) { unsigned int haar_sad = haar_ac_energy(x, bs); return log1p(haar_sad); } int av1_block_wavelet_energy_level(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { double energy, energy_midpoint; energy_midpoint = (is_stat_consumption_stage_twopass(cpi)) ? cpi->twopass_frame.frame_avg_haar_energy : DEFAULT_E_MIDPOINT; energy = log_block_wavelet_energy(x, bs) - energy_midpoint; return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); } int av1_compute_q_from_energy_level_deltaq_mode(const AV1_COMP *const cpi, int block_var_level) { int rate_level; const AV1_COMMON *const cm = &cpi->common; if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { ENERGY_IN_BOUNDS(block_var_level); rate_level = SEGMENT_ID(block_var_level); } else { rate_level = block_var_level; } const int base_qindex = cm->quant_params.base_qindex; int qindex_delta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, base_qindex, deltaq_rate_ratio[rate_level]); if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) { qindex_delta = -base_qindex + 1; } return base_qindex + qindex_delta; }