/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/transpose_neon.h" #include "aom_dsp/txfm_common.h" #include "aom_ports/mem.h" #include "av1/common/av1_txfm.h" #include "av1/encoder/av1_fwd_txfm1d_cfg.h" #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "shift_neon.h" #include "txfm_neon.h" static AOM_FORCE_INLINE void transpose_arrays_s32_64x64(const int32x4_t *in, int32x4_t *out) { // This is not quite the same as the other transposes defined in // transpose_neon.h: We only write the low 64x32 sub-matrix since the rest is // unused by the following row transform. for (int j = 0; j < 8; ++j) { for (int i = 0; i < 16; ++i) { transpose_arrays_s32_4x4(in + 64 * i + 4 * j, out + 64 * j + 4 * i); } } } // A note on butterfly helper naming: // // butterfly_[weight_indices]_neon // e.g. butterfly_0312_neon // ^ Weights are applied as indices 0, 3, 2, 1 // (see more detail below) // // Weight indices are treated as an index into the 4-tuple of the weight // itself, plus related and negated constants: w=(w0, 1-w0, -w0, w0-1). // This is then represented in the helper naming by referring to the lane index // in the loaded tuple that each multiply is performed with: // // in0 in1 // /------------ // out0 | w[0] w[1] ==> out0 = in0 * w[0] + in1 * w[1] // out1 | w[2] w[3] ==> out1 = in0 * w[2] + in1 * w[3] // // So for indices 0321 from the earlier example, we end up with: // // in0 in1 // /------------------ // out0 | (lane 0) (lane 3) ==> out0 = in0 * w0 + in1 * (w0-1) // out1 | (lane 2) (lane 1) ==> out1 = in0 * -w0 + in1 * (1-w0) #define butterfly_half_neon(wvec, lane0, lane1, in0, in1, out, v_bit) \ do { \ int32x2x2_t wvecs = { { wvec, vneg_s32(wvec) } }; \ int32x4_t x = vmulq_lane_s32(in0, wvecs.val[lane0 / 2], lane0 % 2); \ x = vmlaq_lane_s32(x, in1, wvecs.val[lane1 / 2], lane1 % 2); \ *out = vrshlq_s32(x, v_bit); \ } while (false) static AOM_FORCE_INLINE void butterfly_0112_neon( const int32_t *cospi, const int widx0, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * widx0); butterfly_half_neon(w01, 0, 1, n0, n1, out0, v_bit); butterfly_half_neon(w01, 1, 2, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void butterfly_2312_neon( const int32_t *cospi, const int widx0, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * widx0); butterfly_half_neon(w01, 2, 3, n0, n1, out0, v_bit); butterfly_half_neon(w01, 1, 2, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void butterfly_0332_neon( const int32_t *cospi, const int widx0, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * widx0); butterfly_half_neon(w01, 0, 3, n0, n1, out0, v_bit); butterfly_half_neon(w01, 3, 2, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void butterfly_0130_neon( const int32_t *cospi, const int widx0, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * widx0); butterfly_half_neon(w01, 0, 1, n0, n1, out0, v_bit); butterfly_half_neon(w01, 3, 0, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void butterfly_cospi32_0002_neon( const int32_t *cospi, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * 32); butterfly_half_neon(w01, 0, 0, n0, n1, out0, v_bit); butterfly_half_neon(w01, 0, 2, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void butterfly_cospi32_0222_neon( const int32_t *cospi, const int32x4_t n0, const int32x4_t n1, int32x4_t *out0, int32x4_t *out1, const int32x4_t v_bit) { int32x2_t w01 = vld1_s32(cospi + 2 * 32); butterfly_half_neon(w01, 0, 2, n0, n1, out0, v_bit); butterfly_half_neon(w01, 2, 2, n0, n1, out1, v_bit); } static AOM_FORCE_INLINE void round_rect_array_s32_neon(const int32x4_t *input, int32x4_t *output, const int size) { const int32x4_t sqrt2 = vdupq_n_s32(NewSqrt2); int i = 0; do { const int32x4_t r1 = vmulq_s32(input[i], sqrt2); output[i] = vrshrq_n_s32(r1, NewSqrt2Bits); } while (++i < size); } static AOM_FORCE_INLINE void round_shift2_rect_array_s32_neon( const int32x4_t *input, int32x4_t *output, const int size) { const int32x4_t sqrt2 = vdupq_n_s32(NewSqrt2); int i = 0; do { const int32x4_t r0 = vrshrq_n_s32(input[i], 2); const int32x4_t r1 = vmulq_s32(r0, sqrt2); output[i] = vrshrq_n_s32(r1, NewSqrt2Bits); } while (++i < size); } #define LOAD_BUFFER_4XH(h) \ static AOM_FORCE_INLINE void load_buffer_4x##h( \ const int16_t *input, int32x4_t *in, int stride, int fliplr) { \ if (fliplr) { \ for (int i = 0; i < (h); ++i) { \ int16x4_t a = vld1_s16(input + i * stride); \ a = vrev64_s16(a); \ in[i] = vshll_n_s16(a, 2); \ } \ } else { \ for (int i = 0; i < (h); ++i) { \ int16x4_t a = vld1_s16(input + i * stride); \ in[i] = vshll_n_s16(a, 2); \ } \ } \ } // AArch32 does not permit the argument to vshll_n_s16 to be zero, so need to // avoid the expression even though the compiler can prove that the code path // is never taken if `shift == 0`. #define shift_left_long_s16(a, shift) \ ((shift) == 0 ? vmovl_s16(a) : vshll_n_s16((a), (shift) == 0 ? 1 : (shift))) #define LOAD_BUFFER_WXH(w, h, shift) \ static AOM_FORCE_INLINE void load_buffer_##w##x##h( \ const int16_t *input, int32x4_t *in, int stride, int fliplr) { \ assert(w >= 8); \ if (fliplr) { \ for (int i = 0; i < (h); ++i) { \ for (int j = 0; j < (w) / 8; ++j) { \ int16x8_t a = vld1q_s16(input + i * stride + j * 8); \ a = vrev64q_s16(a); \ int j2 = (w) / 8 - j - 1; \ in[i + (h) * (2 * j2 + 0)] = \ shift_left_long_s16(vget_high_s16(a), (shift)); \ in[i + (h) * (2 * j2 + 1)] = \ shift_left_long_s16(vget_low_s16(a), (shift)); \ } \ } \ } else { \ for (int i = 0; i < (h); ++i) { \ for (int j = 0; j < (w) / 8; ++j) { \ int16x8_t a = vld1q_s16(input + i * stride + j * 8); \ in[i + (h) * (2 * j + 0)] = \ shift_left_long_s16(vget_low_s16(a), (shift)); \ in[i + (h) * (2 * j + 1)] = \ shift_left_long_s16(vget_high_s16(a), (shift)); \ } \ } \ } \ } LOAD_BUFFER_4XH(4) LOAD_BUFFER_4XH(8) LOAD_BUFFER_4XH(16) LOAD_BUFFER_4XH(32) LOAD_BUFFER_WXH(8, 8, 2) LOAD_BUFFER_WXH(16, 16, 2) LOAD_BUFFER_WXH(32, 64, 0) LOAD_BUFFER_WXH(64, 32, 2) LOAD_BUFFER_WXH(64, 64, 0) #if !CONFIG_REALTIME_ONLY LOAD_BUFFER_WXH(16, 64, 0) LOAD_BUFFER_WXH(64, 16, 2) #endif // !CONFIG_REALTIME_ONLY #define STORE_BUFFER_WXH(w, h) \ static AOM_FORCE_INLINE void store_buffer_##w##x##h( \ const int32x4_t *in, int32_t *out, int stride) { \ for (int i = 0; i < (w); ++i) { \ for (int j = 0; j < (h) / 4; ++j) { \ vst1q_s32(&out[i * stride + j * 4], in[i + j * (w)]); \ } \ } \ } STORE_BUFFER_WXH(4, 4) STORE_BUFFER_WXH(8, 4) STORE_BUFFER_WXH(8, 8) STORE_BUFFER_WXH(16, 4) STORE_BUFFER_WXH(16, 16) STORE_BUFFER_WXH(32, 4) STORE_BUFFER_WXH(32, 32) STORE_BUFFER_WXH(64, 32) #if !CONFIG_REALTIME_ONLY STORE_BUFFER_WXH(16, 32) STORE_BUFFER_WXH(64, 16) #endif // !CONFIG_REALTIME_ONLY static AOM_FORCE_INLINE void highbd_fdct4_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32_t *const cospi = cospi_arr_s32(bit); const int32x4_t cospi32 = vdupq_n_s32(cospi[2 * 32]); const int32x2_t cospi16_48 = vld1_s32(&cospi[2 * 16]); const int32x4_t a0 = vaddq_s32(in[0], in[3]); const int32x4_t a1 = vsubq_s32(in[0], in[3]); const int32x4_t a2 = vaddq_s32(in[1], in[2]); const int32x4_t a3 = vsubq_s32(in[1], in[2]); const int32x4_t b0 = vmulq_s32(a0, cospi32); const int32x4_t b1 = vmulq_lane_s32(a1, cospi16_48, 1); const int32x4_t b2 = vmulq_s32(a2, cospi32); const int32x4_t b3 = vmulq_lane_s32(a3, cospi16_48, 1); const int32x4_t c0 = vaddq_s32(b0, b2); const int32x4_t c1 = vsubq_s32(b0, b2); const int32x4_t c2 = vmlaq_lane_s32(b3, a1, cospi16_48, 0); const int32x4_t c3 = vmlsq_lane_s32(b1, a3, cospi16_48, 0); const int32x4_t v_bit = vdupq_n_s32(-bit); const int32x4_t d0 = vrshlq_s32(c0, v_bit); const int32x4_t d1 = vrshlq_s32(c1, v_bit); const int32x4_t d2 = vrshlq_s32(c2, v_bit); const int32x4_t d3 = vrshlq_s32(c3, v_bit); out[0] = d0; out[1] = d2; out[2] = d1; out[3] = d3; } static AOM_FORCE_INLINE void highbd_fadst4_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32x4_t sinpi = vld1q_s32(sinpi_arr(bit) + 1); const int32x4_t a0 = vaddq_s32(in[0], in[1]); const int32x4_t a1 = vmulq_lane_s32(in[0], vget_low_s32(sinpi), 0); const int32x4_t a2 = vmulq_lane_s32(in[0], vget_high_s32(sinpi), 1); const int32x4_t a3 = vmulq_lane_s32(in[2], vget_high_s32(sinpi), 0); const int32x4_t b0 = vmlaq_lane_s32(a1, in[1], vget_low_s32(sinpi), 1); const int32x4_t b1 = vmlsq_lane_s32(a2, in[1], vget_low_s32(sinpi), 0); const int32x4_t b2 = vsubq_s32(a0, in[3]); const int32x4_t c0 = vmlaq_lane_s32(b0, in[3], vget_high_s32(sinpi), 1); const int32x4_t c1 = vmlaq_lane_s32(b1, in[3], vget_low_s32(sinpi), 1); const int32x4_t c2 = vmulq_lane_s32(b2, vget_high_s32(sinpi), 0); const int32x4_t d0 = vaddq_s32(c0, a3); const int32x4_t d1 = vsubq_s32(c1, a3); const int32x4_t d2 = vsubq_s32(c1, c0); const int32x4_t e0 = vaddq_s32(d2, a3); const int32x4_t v_bit = vdupq_n_s32(-bit); out[0] = vrshlq_s32(d0, v_bit); out[1] = vrshlq_s32(c2, v_bit); out[2] = vrshlq_s32(d1, v_bit); out[3] = vrshlq_s32(e0, v_bit); } static AOM_FORCE_INLINE void highbd_fidentity4_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { (void)bit; int32x4_t fact = vdupq_n_s32(NewSqrt2); for (int i = 0; i < 4; i++) { const int32x4_t a_low = vmulq_s32(in[i], fact); out[i] = vrshrq_n_s32(a_low, NewSqrt2Bits); } } void av1_fwd_txfm2d_4x4_neon(const int16_t *input, int32_t *coeff, int input_stride, TX_TYPE tx_type, int bd) { (void)bd; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &input_stride, 4); // Workspace for column/row-wise transforms. int32x4_t buf[4]; switch (tx_type) { case DCT_DCT: load_buffer_4x4(input, buf, input_stride, 0); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case ADST_DCT: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case DCT_ADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case ADST_ADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case FLIPADST_DCT: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case DCT_FLIPADST: load_buffer_4x4(input, buf, input_stride, 1); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case FLIPADST_FLIPADST: load_buffer_4x4(input, buf, input_stride, 1); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case ADST_FLIPADST: load_buffer_4x4(input, buf, input_stride, 1); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case FLIPADST_ADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case IDTX: load_buffer_4x4(input, buf, input_stride, 0); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case V_DCT: load_buffer_4x4(input, buf, input_stride, 0); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case H_DCT: load_buffer_4x4(input, buf, input_stride, 0); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fdct4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case V_ADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case H_ADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_col[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case V_FLIPADST: load_buffer_4x4(input, buf, input_stride, 0); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; case H_FLIPADST: load_buffer_4x4(input, buf, input_stride, 1); highbd_fidentity4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); transpose_arrays_s32_4x4(buf, buf); highbd_fadst4_x4_neon(buf, buf, av1_fwd_cos_bit_row[0][0]); store_buffer_4x4(buf, coeff, /*stride=*/4); break; default: assert(0); } } // Butterfly pre-processing: // e.g. n=4: // out[0] = in[0] + in[3] // out[1] = in[1] + in[2] // out[2] = in[1] - in[2] // out[3] = in[0] - in[3] static AOM_FORCE_INLINE void butterfly_dct_pre(const int32x4_t *input, int32x4_t *output, int n) { for (int i = 0; i < n / 2; ++i) { output[i] = vaddq_s32(input[i], input[n - i - 1]); } for (int i = 0; i < n / 2; ++i) { output[n / 2 + i] = vsubq_s32(input[n / 2 - i - 1], input[n / 2 + i]); } } // Butterfly post-processing: // e.g. n=8: // out[0] = in0[0] + in1[3]; // out[1] = in0[1] + in1[2]; // out[2] = in0[1] - in1[2]; // out[3] = in0[0] - in1[3]; // out[4] = in0[7] - in1[4]; // out[5] = in0[6] - in1[5]; // out[6] = in0[6] + in1[5]; // out[7] = in0[7] + in1[4]; static AOM_FORCE_INLINE void butterfly_dct_post(const int32x4_t *in0, const int32x4_t *in1, int32x4_t *output, int n) { for (int i = 0; i < n / 4; ++i) { output[i] = vaddq_s32(in0[i], in1[n / 2 - i - 1]); } for (int i = 0; i < n / 4; ++i) { output[n / 4 + i] = vsubq_s32(in0[n / 4 - i - 1], in1[n / 4 + i]); } for (int i = 0; i < n / 4; ++i) { output[n / 2 + i] = vsubq_s32(in0[n - i - 1], in1[n / 2 + i]); } for (int i = 0; i < n / 4; ++i) { output[(3 * n) / 4 + i] = vaddq_s32(in0[(3 * n) / 4 + i], in1[(3 * n) / 4 - i - 1]); } } static AOM_FORCE_INLINE void highbd_fdct8_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32_t *const cospi = cospi_arr_s32(bit); const int32x4_t v_bit = vdupq_n_s32(-bit); // stage 1 int32x4_t a[8]; butterfly_dct_pre(in, a, 8); // stage 2 int32x4_t b[8]; butterfly_dct_pre(a, b, 4); butterfly_0130_neon(cospi, 32, a[5], a[6], &b[6], &b[5], v_bit); // stage 3 int32x4_t c[8]; butterfly_0130_neon(cospi, 32, b[1], b[0], &c[0], &c[1], v_bit); butterfly_0112_neon(cospi, 16, b[3], b[2], &c[2], &c[3], v_bit); butterfly_dct_post(a + 4, b + 4, c + 4, 4); // stage 4-5 butterfly_0112_neon(cospi, 8, c[7], c[4], &out[1], &out[7], v_bit); butterfly_0130_neon(cospi, 24, c[5], c[6], &out[5], &out[3], v_bit); out[0] = c[0]; out[2] = c[2]; out[4] = c[1]; out[6] = c[3]; } static AOM_FORCE_INLINE void highbd_fadst8_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32_t *const cospi = cospi_arr_s32(bit); const int32x4_t v_bit = vdupq_n_s32(-bit); int32x4_t u0, u1, u2, u3, u4, u5, u6, u7; int32x4_t v0, v1, v2, v3, v4, v5, v6, v7; // stage 0-1 u0 = in[0]; u1 = in[7]; u2 = in[3]; u3 = in[4]; u4 = in[1]; u5 = in[6]; u6 = in[2]; u7 = in[5]; // stage 2 v0 = u0; v1 = u1; butterfly_cospi32_0222_neon(cospi, u3, u2, &v2, &v3, v_bit); v4 = u4; v5 = u5; butterfly_cospi32_0002_neon(cospi, u6, u7, &v7, &v6, v_bit); // stage 3 u0 = vaddq_s32(v0, v2); u1 = vsubq_s32(v3, v1); u2 = vsubq_s32(v0, v2); u3 = vaddq_s32(v1, v3); u4 = vsubq_s32(v6, v4); u5 = vaddq_s32(v5, v7); u6 = vaddq_s32(v4, v6); u7 = vsubq_s32(v5, v7); // stage 4 v0 = u0; v1 = u1; v2 = u2; v3 = u3; butterfly_0112_neon(cospi, 16, u4, u5, &v4, &v5, v_bit); butterfly_0112_neon(cospi, 16, u7, u6, &v6, &v7, v_bit); // stage 5 u0 = vaddq_s32(v0, v4); u1 = vaddq_s32(v1, v5); u2 = vaddq_s32(v2, v6); u3 = vsubq_s32(v7, v3); u4 = vsubq_s32(v0, v4); u5 = vsubq_s32(v1, v5); u6 = vsubq_s32(v2, v6); u7 = vaddq_s32(v3, v7); // stage 6 butterfly_0112_neon(cospi, 4, u0, u1, &v0, &v1, v_bit); butterfly_0112_neon(cospi, 20, u2, u3, &v2, &v3, v_bit); butterfly_0130_neon(cospi, 28, u5, u4, &v4, &v5, v_bit); butterfly_0112_neon(cospi, 12, u6, u7, &v7, &v6, v_bit); // stage 7 out[0] = v1; out[1] = v6; out[2] = v3; out[3] = v4; out[4] = v5; out[5] = v2; out[6] = v7; out[7] = v0; } static AOM_FORCE_INLINE void highbd_fidentity8_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { (void)bit; out[0] = vshlq_n_s32(in[0], 1); out[1] = vshlq_n_s32(in[1], 1); out[2] = vshlq_n_s32(in[2], 1); out[3] = vshlq_n_s32(in[3], 1); out[4] = vshlq_n_s32(in[4], 1); out[5] = vshlq_n_s32(in[5], 1); out[6] = vshlq_n_s32(in[6], 1); out[7] = vshlq_n_s32(in[7], 1); } static AOM_FORCE_INLINE void highbd_fdct8_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, int howmany) { const int stride = 8; int i = 0; do { highbd_fdct8_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } static AOM_FORCE_INLINE void highbd_fadst8_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, int howmany) { const int stride = 8; int i = 0; do { highbd_fadst8_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } static AOM_FORCE_INLINE void highbd_fidentity8_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, int howmany) { (void)bit; const int stride = 8; int i = 0; do { highbd_fidentity8_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } void av1_fwd_txfm2d_8x8_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 8); // Workspaces for column/row-wise transforms. int32x4_t buf0[16], buf1[16]; switch (tx_type) { case DCT_DCT: load_buffer_8x8(input, buf0, stride, 0); highbd_fdct8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fdct8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case ADST_DCT: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fdct8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case DCT_ADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fdct8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case ADST_ADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case FLIPADST_DCT: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fdct8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case DCT_FLIPADST: load_buffer_8x8(input, buf0, stride, 1); highbd_fdct8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case FLIPADST_FLIPADST: load_buffer_8x8(input, buf0, stride, 1); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case ADST_FLIPADST: load_buffer_8x8(input, buf0, stride, 1); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case FLIPADST_ADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case IDTX: load_buffer_8x8(input, buf0, stride, 0); highbd_fidentity8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fidentity8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case V_DCT: load_buffer_8x8(input, buf0, stride, 0); highbd_fdct8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fidentity8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case H_DCT: load_buffer_8x8(input, buf0, stride, 0); highbd_fidentity8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fdct8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case V_ADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fidentity8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case H_ADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fidentity8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case V_FLIPADST: load_buffer_8x8(input, buf0, stride, 0); highbd_fadst8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fidentity8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; case H_FLIPADST: load_buffer_8x8(input, buf0, stride, 1); highbd_fidentity8_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[1][1], 2); shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_8x8(buf0, buf1); highbd_fadst8_xn_neon(buf1, buf1, av1_fwd_cos_bit_col[1][1], 2); store_buffer_8x8(buf1, coeff, /*stride=*/8); break; default: assert(0); } } static void highbd_fdct16_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32_t *const cospi = cospi_arr_s32(bit); const int32x4_t v_bit = vdupq_n_s32(-bit); int32x4_t u[16], v[16]; // stage 1 butterfly_dct_pre(in, u, 16); // stage 2 butterfly_dct_pre(u, v, 8); v[8] = u[8]; v[9] = u[9]; butterfly_cospi32_0002_neon(cospi, u[13], u[10], &v[13], &v[10], v_bit); butterfly_cospi32_0002_neon(cospi, u[12], u[11], &v[12], &v[11], v_bit); v[14] = u[14]; v[15] = u[15]; // stage 3 butterfly_dct_pre(v, u, 4); u[4] = v[4]; butterfly_cospi32_0002_neon(cospi, v[6], v[5], &u[6], &u[5], v_bit); u[7] = v[7]; butterfly_dct_post(v + 8, v + 8, u + 8, 8); // stage 4 butterfly_cospi32_0002_neon(cospi, u[0], u[1], &v[0], &v[1], v_bit); butterfly_0112_neon(cospi, 16, u[3], u[2], &v[2], &v[3], v_bit); butterfly_dct_post(u + 4, u + 4, v + 4, 4); v[8] = u[8]; butterfly_0112_neon(cospi, 16, u[14], u[9], &v[14], &v[9], v_bit); butterfly_2312_neon(cospi, 16, u[13], u[10], &v[10], &v[13], v_bit); v[11] = u[11]; v[12] = u[12]; v[15] = u[15]; // stage 5 u[0] = v[0]; u[1] = v[1]; u[2] = v[2]; u[3] = v[3]; butterfly_0112_neon(cospi, 8, v[7], v[4], &u[4], &u[7], v_bit); butterfly_0130_neon(cospi, 24, v[5], v[6], &u[5], &u[6], v_bit); butterfly_dct_post(v + 8, v + 8, u + 8, 4); butterfly_dct_post(v + 12, v + 12, u + 12, 4); // stage 6 v[0] = u[0]; v[1] = u[1]; v[2] = u[2]; v[3] = u[3]; v[4] = u[4]; v[5] = u[5]; v[6] = u[6]; v[7] = u[7]; butterfly_0112_neon(cospi, 4, u[15], u[8], &v[8], &v[15], v_bit); butterfly_0130_neon(cospi, 28, u[9], u[14], &v[9], &v[14], v_bit); butterfly_0112_neon(cospi, 20, u[13], u[10], &v[10], &v[13], v_bit); butterfly_0130_neon(cospi, 12, u[11], u[12], &v[11], &v[12], v_bit); out[0] = v[0]; out[1] = v[8]; out[2] = v[4]; out[3] = v[12]; out[4] = v[2]; out[5] = v[10]; out[6] = v[6]; out[7] = v[14]; out[8] = v[1]; out[9] = v[9]; out[10] = v[5]; out[11] = v[13]; out[12] = v[3]; out[13] = v[11]; out[14] = v[7]; out[15] = v[15]; } static void highbd_fadst16_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { const int32_t *const cospi = cospi_arr_s32(bit); const int32x4_t v_bit = vdupq_n_s32(-bit); int32x4_t u[16], v[16]; // stage 0-1 u[0] = in[0]; u[1] = in[15]; u[2] = in[7]; u[3] = in[8]; u[4] = in[3]; u[5] = in[12]; u[6] = in[4]; u[7] = in[11]; u[8] = in[1]; u[9] = in[14]; u[10] = in[6]; u[11] = in[9]; u[12] = in[2]; u[13] = in[13]; u[14] = in[5]; u[15] = in[10]; // stage 2 v[0] = u[0]; v[1] = u[1]; butterfly_cospi32_0222_neon(cospi, u[3], u[2], &v[2], &v[3], v_bit); v[4] = u[4]; v[5] = u[5]; butterfly_cospi32_0002_neon(cospi, u[6], u[7], &v[7], &v[6], v_bit); v[8] = u[8]; v[9] = u[9]; butterfly_cospi32_0002_neon(cospi, u[10], u[11], &v[11], &v[10], v_bit); v[12] = u[12]; v[13] = u[13]; butterfly_cospi32_0222_neon(cospi, u[15], u[14], &v[14], &v[15], v_bit); // stage 3 u[0] = vaddq_s32(v[0], v[2]); u[1] = vsubq_s32(v[3], v[1]); u[2] = vsubq_s32(v[0], v[2]); u[3] = vaddq_s32(v[1], v[3]); u[4] = vsubq_s32(v[6], v[4]); u[5] = vaddq_s32(v[5], v[7]); u[6] = vaddq_s32(v[4], v[6]); u[7] = vsubq_s32(v[5], v[7]); u[8] = vsubq_s32(v[10], v[8]); u[9] = vaddq_s32(v[9], v[11]); u[10] = vaddq_s32(v[8], v[10]); u[11] = vsubq_s32(v[9], v[11]); u[12] = vaddq_s32(v[12], v[14]); u[13] = vsubq_s32(v[15], v[13]); u[14] = vsubq_s32(v[12], v[14]); u[15] = vaddq_s32(v[13], v[15]); // stage 4 v[0] = u[0]; v[1] = u[1]; v[2] = u[2]; v[3] = u[3]; butterfly_0112_neon(cospi, 16, u[4], u[5], &v[4], &v[5], v_bit); butterfly_0112_neon(cospi, 16, u[7], u[6], &v[6], &v[7], v_bit); v[8] = u[8]; v[9] = u[9]; v[10] = u[10]; v[11] = u[11]; butterfly_0112_neon(cospi, 16, u[12], u[13], &v[12], &v[13], v_bit); butterfly_0332_neon(cospi, 16, u[14], u[15], &v[15], &v[14], v_bit); // stage 5 u[0] = vaddq_s32(v[0], v[4]); u[1] = vaddq_s32(v[1], v[5]); u[2] = vaddq_s32(v[2], v[6]); u[3] = vsubq_s32(v[7], v[3]); u[4] = vsubq_s32(v[0], v[4]); u[5] = vsubq_s32(v[1], v[5]); u[6] = vsubq_s32(v[2], v[6]); u[7] = vaddq_s32(v[3], v[7]); u[8] = vaddq_s32(v[8], v[12]); u[9] = vaddq_s32(v[9], v[13]); u[10] = vsubq_s32(v[14], v[10]); u[11] = vaddq_s32(v[11], v[15]); u[12] = vsubq_s32(v[8], v[12]); u[13] = vsubq_s32(v[9], v[13]); u[14] = vaddq_s32(v[10], v[14]); u[15] = vsubq_s32(v[11], v[15]); // stage 6 v[0] = u[0]; v[1] = u[1]; v[2] = u[2]; v[3] = u[3]; v[4] = u[4]; v[5] = u[5]; v[6] = u[6]; v[7] = u[7]; butterfly_0112_neon(cospi, 8, u[8], u[9], &v[8], &v[9], v_bit); butterfly_0130_neon(cospi, 8, u[12], u[13], &v[13], &v[12], v_bit); butterfly_0130_neon(cospi, 24, u[11], u[10], &v[10], &v[11], v_bit); butterfly_0130_neon(cospi, 24, u[14], u[15], &v[14], &v[15], v_bit); // stage 7 u[0] = vaddq_s32(v[0], v[8]); u[1] = vaddq_s32(v[1], v[9]); u[2] = vaddq_s32(v[2], v[10]); u[3] = vaddq_s32(v[3], v[11]); u[4] = vaddq_s32(v[4], v[12]); u[5] = vaddq_s32(v[5], v[13]); u[6] = vaddq_s32(v[6], v[14]); u[7] = vsubq_s32(v[15], v[7]); u[8] = vsubq_s32(v[0], v[8]); u[9] = vsubq_s32(v[1], v[9]); u[10] = vsubq_s32(v[2], v[10]); u[11] = vsubq_s32(v[3], v[11]); u[12] = vsubq_s32(v[4], v[12]); u[13] = vsubq_s32(v[5], v[13]); u[14] = vsubq_s32(v[6], v[14]); u[15] = vaddq_s32(v[7], v[15]); // stage 8 butterfly_0112_neon(cospi, 2, u[0], u[1], &v[0], &v[1], v_bit); butterfly_0112_neon(cospi, 10, u[2], u[3], &v[2], &v[3], v_bit); butterfly_0112_neon(cospi, 18, u[4], u[5], &v[4], &v[5], v_bit); butterfly_0112_neon(cospi, 26, u[6], u[7], &v[6], &v[7], v_bit); butterfly_0130_neon(cospi, 30, u[9], u[8], &v[8], &v[9], v_bit); butterfly_0130_neon(cospi, 22, u[11], u[10], &v[10], &v[11], v_bit); butterfly_0130_neon(cospi, 14, u[13], u[12], &v[12], &v[13], v_bit); butterfly_0112_neon(cospi, 6, u[14], u[15], &v[15], &v[14], v_bit); // stage 9 out[0] = v[1]; out[1] = v[14]; out[2] = v[3]; out[3] = v[12]; out[4] = v[5]; out[5] = v[10]; out[6] = v[7]; out[7] = v[8]; out[8] = v[9]; out[9] = v[6]; out[10] = v[11]; out[11] = v[4]; out[12] = v[13]; out[13] = v[2]; out[14] = v[15]; out[15] = v[0]; } static void highbd_fidentity16_x4_neon(const int32x4_t *in, int32x4_t *out, int bit) { (void)bit; const int32x4_t fact = vdupq_n_s32(2 * NewSqrt2); const int32x4_t offset = vdupq_n_s32(1 << (NewSqrt2Bits - 1)); for (int i = 0; i < 16; i++) { int32x4_t a = vmulq_s32(in[i], fact); a = vaddq_s32(a, offset); out[i] = vshrq_n_s32(a, NewSqrt2Bits); } } static void highbd_fdct16_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, const int howmany) { const int stride = 16; int i = 0; do { highbd_fdct16_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } static void highbd_fadst16_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, int howmany) { const int stride = 16; int i = 0; do { highbd_fadst16_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } static void highbd_fidentity16_xn_neon(const int32x4_t *in, int32x4_t *out, int bit, int howmany) { const int stride = 16; int i = 0; do { highbd_fidentity16_x4_neon(in + i * stride, out + i * stride, bit); } while (++i < howmany); } void av1_fwd_txfm2d_16x16_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 16); // Workspaces for column/row-wise transforms. int32x4_t buf0[64], buf1[64]; switch (tx_type) { case DCT_DCT: load_buffer_16x16(input, buf0, stride, 0); highbd_fdct16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fdct16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case ADST_DCT: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fdct16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case DCT_ADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fdct16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case ADST_ADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case FLIPADST_DCT: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fdct16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case DCT_FLIPADST: load_buffer_16x16(input, buf0, stride, 1); highbd_fdct16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case FLIPADST_FLIPADST: load_buffer_16x16(input, buf0, stride, 1); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case ADST_FLIPADST: load_buffer_16x16(input, buf0, stride, 1); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case FLIPADST_ADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case IDTX: load_buffer_16x16(input, buf0, stride, 0); highbd_fidentity16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fidentity16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case V_DCT: load_buffer_16x16(input, buf0, stride, 0); highbd_fdct16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fidentity16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case H_DCT: load_buffer_16x16(input, buf0, stride, 0); highbd_fidentity16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fdct16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case V_ADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fidentity16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case H_ADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fidentity16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case V_FLIPADST: load_buffer_16x16(input, buf0, stride, 0); highbd_fadst16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fidentity16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; case H_FLIPADST: load_buffer_16x16(input, buf0, stride, 1); highbd_fidentity16_xn_neon(buf0, buf0, av1_fwd_cos_bit_col[2][2], 4); shift_right_2_round_s32_x4(buf0, buf0, 64); transpose_arrays_s32_16x16(buf0, buf1); highbd_fadst16_xn_neon(buf1, buf1, av1_fwd_cos_bit_row[2][2], 4); store_buffer_16x16(buf1, coeff, /*stride=*/16); break; default: assert(0); } } typedef void (*fwd_transform_1d_col_neon)(const int16_t *in, int32x4_t *out, int stride, int bit, int lr_flip); typedef void (*fwd_transform_1d_col_many_neon)(const int16_t *in, int32x4_t *out, int stride, int bit, int lr_flip, int howmany, int hm_stride); typedef void (*fwd_transform_1d_row_neon)(const int32x4_t *in, int32_t *out, int bit, int stride); typedef void (*fwd_transform_1d_row_many_neon)(const int32x4_t *in, int32_t *out, int bit, int howmany, int hm_stride, int stride); // Construct component kernels that include the load_buffer and store_buffer // stages to avoid the need to spill loaded data to the stack between these and // the txfm kernel calls. // The TRANSFORM_*_ONE cases are only ever called in situations where the // howmany parameter would be one, so no need for the loop at all in these // cases. #define TRANSFORM_COL_ONE(name, n) \ static void highbd_##name##_col_neon(const int16_t *input, \ int32x4_t *output, int stride, \ int cos_bit, int lr_flip) { \ int32x4_t buf0[n]; \ load_buffer_4x##n(input, buf0, stride, lr_flip); \ highbd_##name##_x4_neon(buf0, output, cos_bit); \ } #define TRANSFORM_COL_MANY(name, n) \ static void highbd_##name##_col_many_neon( \ const int16_t *input, int32x4_t *output, int stride, int cos_bit, \ int lr_flip, int howmany, int hm_stride) { \ int i = 0; \ do { \ int32x4_t buf0[n]; \ load_buffer_4x##n(input + 4 * i, buf0, stride, lr_flip); \ highbd_##name##_x4_neon(buf0, output + i * hm_stride, cos_bit); \ } while (++i < howmany); \ } #define TRANSFORM_ROW_ONE(name, n) \ static void highbd_##name##_row_neon( \ const int32x4_t *input, int32_t *output, int cos_bit, int stride) { \ int32x4_t buf0[n]; \ highbd_##name##_x4_neon(input, buf0, cos_bit); \ store_buffer_##n##x4(buf0, output, stride); \ } #define TRANSFORM_ROW_RECT_ONE(name, n) \ static void highbd_##name##_row_rect_neon( \ const int32x4_t *input, int32_t *output, int cos_bit, int stride) { \ int32x4_t buf0[n]; \ highbd_##name##_x4_neon(input, buf0, cos_bit); \ round_rect_array_s32_neon(buf0, buf0, (n)); \ store_buffer_##n##x4(buf0, output, stride); \ } #define TRANSFORM_ROW_MANY(name, n) \ static void highbd_##name##_row_many_neon( \ const int32x4_t *input, int32_t *output, int cos_bit, int howmany, \ int hm_stride, int stride) { \ int i = 0; \ do { \ int32x4_t buf0[n]; \ highbd_##name##_x4_neon(input + hm_stride * i, buf0, cos_bit); \ store_buffer_##n##x4(buf0, output + 4 * i, stride); \ } while (++i < howmany); \ } #define TRANSFORM_ROW_RECT_MANY(name, n) \ static void highbd_##name##_row_rect_many_neon( \ const int32x4_t *input, int32_t *output, int cos_bit, int howmany, \ int hm_stride, int stride) { \ int i = 0; \ do { \ int32x4_t buf0[n]; \ highbd_##name##_x4_neon(input + hm_stride * i, buf0, cos_bit); \ round_rect_array_s32_neon(buf0, buf0, (n)); \ store_buffer_##n##x4(buf0, output + 4 * i, stride); \ } while (++i < howmany); \ } TRANSFORM_COL_ONE(fdct8, 8) TRANSFORM_COL_ONE(fadst8, 8) TRANSFORM_COL_ONE(fidentity8, 8) TRANSFORM_COL_MANY(fdct4, 4) TRANSFORM_COL_MANY(fdct8, 8) TRANSFORM_COL_MANY(fdct16, 16) TRANSFORM_COL_MANY(fadst4, 4) TRANSFORM_COL_MANY(fadst8, 8) TRANSFORM_COL_MANY(fadst16, 16) TRANSFORM_COL_MANY(fidentity4, 4) TRANSFORM_COL_MANY(fidentity8, 8) TRANSFORM_COL_MANY(fidentity16, 16) TRANSFORM_ROW_ONE(fdct16, 16) TRANSFORM_ROW_ONE(fadst16, 16) TRANSFORM_ROW_ONE(fidentity16, 16) TRANSFORM_ROW_RECT_ONE(fdct8, 8) TRANSFORM_ROW_RECT_ONE(fadst8, 8) TRANSFORM_ROW_RECT_ONE(fidentity8, 8) #if !CONFIG_REALTIME_ONLY TRANSFORM_ROW_MANY(fdct4, 4) TRANSFORM_ROW_MANY(fdct8, 8) TRANSFORM_ROW_MANY(fadst4, 4) TRANSFORM_ROW_MANY(fadst8, 8) TRANSFORM_ROW_MANY(fidentity4, 4) TRANSFORM_ROW_MANY(fidentity8, 8) #endif TRANSFORM_ROW_RECT_MANY(fdct4, 4) TRANSFORM_ROW_RECT_MANY(fdct8, 8) TRANSFORM_ROW_RECT_MANY(fdct16, 16) TRANSFORM_ROW_RECT_MANY(fadst4, 4) TRANSFORM_ROW_RECT_MANY(fadst8, 8) TRANSFORM_ROW_RECT_MANY(fadst16, 16) TRANSFORM_ROW_RECT_MANY(fidentity4, 4) TRANSFORM_ROW_RECT_MANY(fidentity8, 8) TRANSFORM_ROW_RECT_MANY(fidentity16, 16) static const fwd_transform_1d_col_many_neon col_highbd_txfm8_xn_arr[TX_TYPES] = { highbd_fdct8_col_many_neon, // DCT_DCT highbd_fadst8_col_many_neon, // ADST_DCT highbd_fdct8_col_many_neon, // DCT_ADST highbd_fadst8_col_many_neon, // ADST_ADST highbd_fadst8_col_many_neon, // FLIPADST_DCT highbd_fdct8_col_many_neon, // DCT_FLIPADST highbd_fadst8_col_many_neon, // FLIPADST_FLIPADST highbd_fadst8_col_many_neon, // ADST_FLIPADST highbd_fadst8_col_many_neon, // FLIPADST_ADST highbd_fidentity8_col_many_neon, // IDTX highbd_fdct8_col_many_neon, // V_DCT highbd_fidentity8_col_many_neon, // H_DCT highbd_fadst8_col_many_neon, // V_ADST highbd_fidentity8_col_many_neon, // H_ADST highbd_fadst8_col_many_neon, // V_FLIPADST highbd_fidentity8_col_many_neon // H_FLIPADST }; static const fwd_transform_1d_col_neon col_highbd_txfm8_x4_arr[TX_TYPES] = { highbd_fdct8_col_neon, // DCT_DCT highbd_fadst8_col_neon, // ADST_DCT highbd_fdct8_col_neon, // DCT_ADST highbd_fadst8_col_neon, // ADST_ADST highbd_fadst8_col_neon, // FLIPADST_DCT highbd_fdct8_col_neon, // DCT_FLIPADST highbd_fadst8_col_neon, // FLIPADST_FLIPADST highbd_fadst8_col_neon, // ADST_FLIPADST highbd_fadst8_col_neon, // FLIPADST_ADST highbd_fidentity8_col_neon, // IDTX highbd_fdct8_col_neon, // V_DCT highbd_fidentity8_col_neon, // H_DCT highbd_fadst8_col_neon, // V_ADST highbd_fidentity8_col_neon, // H_ADST highbd_fadst8_col_neon, // V_FLIPADST highbd_fidentity8_col_neon // H_FLIPADST }; static const fwd_transform_1d_col_many_neon col_highbd_txfm16_xn_arr[TX_TYPES] = { highbd_fdct16_col_many_neon, // DCT_DCT highbd_fadst16_col_many_neon, // ADST_DCT highbd_fdct16_col_many_neon, // DCT_ADST highbd_fadst16_col_many_neon, // ADST_ADST highbd_fadst16_col_many_neon, // FLIPADST_DCT highbd_fdct16_col_many_neon, // DCT_FLIPADST highbd_fadst16_col_many_neon, // FLIPADST_FLIPADST highbd_fadst16_col_many_neon, // ADST_FLIPADST highbd_fadst16_col_many_neon, // FLIPADST_ADST highbd_fidentity16_col_many_neon, // IDTX highbd_fdct16_col_many_neon, // V_DCT highbd_fidentity16_col_many_neon, // H_DCT highbd_fadst16_col_many_neon, // V_ADST highbd_fidentity16_col_many_neon, // H_ADST highbd_fadst16_col_many_neon, // V_FLIPADST highbd_fidentity16_col_many_neon // H_FLIPADST }; static const fwd_transform_1d_col_many_neon col_highbd_txfm4_xn_arr[TX_TYPES] = { highbd_fdct4_col_many_neon, // DCT_DCT highbd_fadst4_col_many_neon, // ADST_DCT highbd_fdct4_col_many_neon, // DCT_ADST highbd_fadst4_col_many_neon, // ADST_ADST highbd_fadst4_col_many_neon, // FLIPADST_DCT highbd_fdct4_col_many_neon, // DCT_FLIPADST highbd_fadst4_col_many_neon, // FLIPADST_FLIPADST highbd_fadst4_col_many_neon, // ADST_FLIPADST highbd_fadst4_col_many_neon, // FLIPADST_ADST highbd_fidentity4_col_many_neon, // IDTX highbd_fdct4_col_many_neon, // V_DCT highbd_fidentity4_col_many_neon, // H_DCT highbd_fadst4_col_many_neon, // V_ADST highbd_fidentity4_col_many_neon, // H_ADST highbd_fadst4_col_many_neon, // V_FLIPADST highbd_fidentity4_col_many_neon // H_FLIPADST }; static const fwd_transform_1d_row_neon row_highbd_txfm16_xn_arr[TX_TYPES] = { highbd_fdct16_row_neon, // DCT_DCT highbd_fdct16_row_neon, // ADST_DCT highbd_fadst16_row_neon, // DCT_ADST highbd_fadst16_row_neon, // ADST_ADST highbd_fdct16_row_neon, // FLIPADST_DCT highbd_fadst16_row_neon, // DCT_FLIPADST highbd_fadst16_row_neon, // FLIPADST_FLIPADST highbd_fadst16_row_neon, // ADST_FLIPADST highbd_fadst16_row_neon, // FLIPADST_ADST highbd_fidentity16_row_neon, // IDTX highbd_fidentity16_row_neon, // V_DCT highbd_fdct16_row_neon, // H_DCT highbd_fidentity16_row_neon, // V_ADST highbd_fadst16_row_neon, // H_ADST highbd_fidentity16_row_neon, // V_FLIPADST highbd_fadst16_row_neon // H_FLIPADST }; static const fwd_transform_1d_row_many_neon row_rect_highbd_txfm16_xn_arr[TX_TYPES] = { highbd_fdct16_row_rect_many_neon, // DCT_DCT highbd_fdct16_row_rect_many_neon, // ADST_DCT highbd_fadst16_row_rect_many_neon, // DCT_ADST highbd_fadst16_row_rect_many_neon, // ADST_ADST highbd_fdct16_row_rect_many_neon, // FLIPADST_DCT highbd_fadst16_row_rect_many_neon, // DCT_FLIPADST highbd_fadst16_row_rect_many_neon, // FLIPADST_FLIPADST highbd_fadst16_row_rect_many_neon, // ADST_FLIPADST highbd_fadst16_row_rect_many_neon, // FLIPADST_ADST highbd_fidentity16_row_rect_many_neon, // IDTX highbd_fidentity16_row_rect_many_neon, // V_DCT highbd_fdct16_row_rect_many_neon, // H_DCT highbd_fidentity16_row_rect_many_neon, // V_ADST highbd_fadst16_row_rect_many_neon, // H_ADST highbd_fidentity16_row_rect_many_neon, // V_FLIPADST highbd_fadst16_row_rect_many_neon // H_FLIPADST }; #if !CONFIG_REALTIME_ONLY static const fwd_transform_1d_row_many_neon row_highbd_txfm8_xn_arr[TX_TYPES] = { highbd_fdct8_row_many_neon, // DCT_DCT highbd_fdct8_row_many_neon, // ADST_DCT highbd_fadst8_row_many_neon, // DCT_ADST highbd_fadst8_row_many_neon, // ADST_ADST highbd_fdct8_row_many_neon, // FLIPADST_DCT highbd_fadst8_row_many_neon, // DCT_FLIPADST highbd_fadst8_row_many_neon, // FLIPADST_FLIPADST highbd_fadst8_row_many_neon, // ADST_FLIPADST highbd_fadst8_row_many_neon, // FLIPADST_ADST highbd_fidentity8_row_many_neon, // IDTX highbd_fidentity8_row_many_neon, // V_DCT highbd_fdct8_row_many_neon, // H_DCT highbd_fidentity8_row_many_neon, // V_ADST highbd_fadst8_row_many_neon, // H_ADST highbd_fidentity8_row_many_neon, // V_FLIPADST highbd_fadst8_row_many_neon // H_FLIPADST }; #endif static const fwd_transform_1d_row_many_neon row_rect_highbd_txfm8_xn_arr[TX_TYPES] = { highbd_fdct8_row_rect_many_neon, // DCT_DCT highbd_fdct8_row_rect_many_neon, // ADST_DCT highbd_fadst8_row_rect_many_neon, // DCT_ADST highbd_fadst8_row_rect_many_neon, // ADST_ADST highbd_fdct8_row_rect_many_neon, // FLIPADST_DCT highbd_fadst8_row_rect_many_neon, // DCT_FLIPADST highbd_fadst8_row_rect_many_neon, // FLIPADST_FLIPADST highbd_fadst8_row_rect_many_neon, // ADST_FLIPADST highbd_fadst8_row_rect_many_neon, // FLIPADST_ADST highbd_fidentity8_row_rect_many_neon, // IDTX highbd_fidentity8_row_rect_many_neon, // V_DCT highbd_fdct8_row_rect_many_neon, // H_DCT highbd_fidentity8_row_rect_many_neon, // V_ADST highbd_fadst8_row_rect_many_neon, // H_ADST highbd_fidentity8_row_rect_many_neon, // V_FLIPADST highbd_fadst8_row_rect_many_neon // H_FLIPADST }; static const fwd_transform_1d_row_neon row_highbd_txfm8_x4_arr[TX_TYPES] = { highbd_fdct8_row_rect_neon, // DCT_DCT highbd_fdct8_row_rect_neon, // ADST_DCT highbd_fadst8_row_rect_neon, // DCT_ADST highbd_fadst8_row_rect_neon, // ADST_ADST highbd_fdct8_row_rect_neon, // FLIPADST_DCT highbd_fadst8_row_rect_neon, // DCT_FLIPADST highbd_fadst8_row_rect_neon, // FLIPADST_FLIPADST highbd_fadst8_row_rect_neon, // ADST_FLIPADST highbd_fadst8_row_rect_neon, // FLIPADST_ADST highbd_fidentity8_row_rect_neon, // IDTX highbd_fidentity8_row_rect_neon, // V_DCT highbd_fdct8_row_rect_neon, // H_DCT highbd_fidentity8_row_rect_neon, // V_ADST highbd_fadst8_row_rect_neon, // H_ADST highbd_fidentity8_row_rect_neon, // V_FLIPADST highbd_fadst8_row_rect_neon // H_FLIPADST }; #if !CONFIG_REALTIME_ONLY static const fwd_transform_1d_row_many_neon row_highbd_txfm4_xn_arr[TX_TYPES] = { highbd_fdct4_row_many_neon, // DCT_DCT highbd_fdct4_row_many_neon, // ADST_DCT highbd_fadst4_row_many_neon, // DCT_ADST highbd_fadst4_row_many_neon, // ADST_ADST highbd_fdct4_row_many_neon, // FLIPADST_DCT highbd_fadst4_row_many_neon, // DCT_FLIPADST highbd_fadst4_row_many_neon, // FLIPADST_FLIPADST highbd_fadst4_row_many_neon, // ADST_FLIPADST highbd_fadst4_row_many_neon, // FLIPADST_ADST highbd_fidentity4_row_many_neon, // IDTX highbd_fidentity4_row_many_neon, // V_DCT highbd_fdct4_row_many_neon, // H_DCT highbd_fidentity4_row_many_neon, // V_ADST highbd_fadst4_row_many_neon, // H_ADST highbd_fidentity4_row_many_neon, // V_FLIPADST highbd_fadst4_row_many_neon // H_FLIPADST }; #endif static const fwd_transform_1d_row_many_neon row_rect_highbd_txfm4_xn_arr[TX_TYPES] = { highbd_fdct4_row_rect_many_neon, // DCT_DCT highbd_fdct4_row_rect_many_neon, // ADST_DCT highbd_fadst4_row_rect_many_neon, // DCT_ADST highbd_fadst4_row_rect_many_neon, // ADST_ADST highbd_fdct4_row_rect_many_neon, // FLIPADST_DCT highbd_fadst4_row_rect_many_neon, // DCT_FLIPADST highbd_fadst4_row_rect_many_neon, // FLIPADST_FLIPADST highbd_fadst4_row_rect_many_neon, // ADST_FLIPADST highbd_fadst4_row_rect_many_neon, // FLIPADST_ADST highbd_fidentity4_row_rect_many_neon, // IDTX highbd_fidentity4_row_rect_many_neon, // V_DCT highbd_fdct4_row_rect_many_neon, // H_DCT highbd_fidentity4_row_rect_many_neon, // V_ADST highbd_fadst4_row_rect_many_neon, // H_ADST highbd_fidentity4_row_rect_many_neon, // V_FLIPADST highbd_fadst4_row_rect_many_neon // H_FLIPADST }; static void highbd_fdct32_x4_neon(const int32x4_t *input, int32x4_t *output, int cos_bit) { const int32_t *const cospi = cospi_arr_s32(cos_bit); const int32x4_t v_cos_bit = vdupq_n_s32(-cos_bit); // Workspaces for intermediate transform steps. int32x4_t buf0[32]; int32x4_t buf1[32]; // stage 1 butterfly_dct_pre(input, buf1, 32); // stage 2 butterfly_dct_pre(buf1, buf0, 16); buf0[16] = buf1[16]; buf0[17] = buf1[17]; buf0[18] = buf1[18]; buf0[19] = buf1[19]; butterfly_0112_neon(cospi, 32, buf1[27], buf1[20], &buf0[27], &buf0[20], v_cos_bit); butterfly_0112_neon(cospi, 32, buf1[26], buf1[21], &buf0[26], &buf0[21], v_cos_bit); butterfly_0112_neon(cospi, 32, buf1[25], buf1[22], &buf0[25], &buf0[22], v_cos_bit); butterfly_0112_neon(cospi, 32, buf1[24], buf1[23], &buf0[24], &buf0[23], v_cos_bit); buf0[28] = buf1[28]; buf0[29] = buf1[29]; buf0[30] = buf1[30]; buf0[31] = buf1[31]; // stage 3 butterfly_dct_pre(buf0, buf1, 8); buf1[8] = buf0[8]; buf1[9] = buf0[9]; butterfly_0112_neon(cospi, 32, buf0[13], buf0[10], &buf1[13], &buf1[10], v_cos_bit); butterfly_0112_neon(cospi, 32, buf0[12], buf0[11], &buf1[12], &buf1[11], v_cos_bit); buf1[14] = buf0[14]; buf1[15] = buf0[15]; butterfly_dct_post(buf0 + 16, buf0 + 16, buf1 + 16, 16); // stage 4 butterfly_dct_pre(buf1, buf0, 4); buf0[4] = buf1[4]; butterfly_0112_neon(cospi, 32, buf1[6], buf1[5], &buf0[6], &buf0[5], v_cos_bit); buf0[7] = buf1[7]; butterfly_dct_post(buf1 + 8, buf1 + 8, buf0 + 8, 8); buf0[16] = buf1[16]; buf0[17] = buf1[17]; butterfly_0112_neon(cospi, 16, buf1[29], buf1[18], &buf0[29], &buf0[18], v_cos_bit); butterfly_0112_neon(cospi, 16, buf1[28], buf1[19], &buf0[28], &buf0[19], v_cos_bit); butterfly_2312_neon(cospi, 16, buf1[27], buf1[20], &buf0[20], &buf0[27], v_cos_bit); butterfly_2312_neon(cospi, 16, buf1[26], buf1[21], &buf0[21], &buf0[26], v_cos_bit); buf0[22] = buf1[22]; buf0[23] = buf1[23]; buf0[24] = buf1[24]; buf0[25] = buf1[25]; buf0[30] = buf1[30]; buf0[31] = buf1[31]; // stage 5 butterfly_0112_neon(cospi, 32, buf0[0], buf0[1], &buf1[0], &buf1[1], v_cos_bit); butterfly_0112_neon(cospi, 16, buf0[3], buf0[2], &buf1[2], &buf1[3], v_cos_bit); butterfly_dct_post(buf0 + 4, buf0 + 4, buf1 + 4, 4); buf1[8] = buf0[8]; butterfly_0112_neon(cospi, 16, buf0[14], buf0[9], &buf1[14], &buf1[9], v_cos_bit); butterfly_2312_neon(cospi, 16, buf0[13], buf0[10], &buf1[10], &buf1[13], v_cos_bit); buf1[11] = buf0[11]; buf1[12] = buf0[12]; buf1[15] = buf0[15]; butterfly_dct_post(buf0 + 16, buf0 + 16, buf1 + 16, 8); butterfly_dct_post(buf0 + 24, buf0 + 24, buf1 + 24, 8); // stage 6 buf0[0] = buf1[0]; buf0[1] = buf1[1]; buf0[2] = buf1[2]; buf0[3] = buf1[3]; butterfly_0112_neon(cospi, 8, buf1[7], buf1[4], &buf0[4], &buf0[7], v_cos_bit); butterfly_0112_neon(cospi, 8, buf1[30], buf1[17], &buf0[30], &buf0[17], v_cos_bit); butterfly_2312_neon(cospi, 8, buf1[29], buf1[18], &buf0[18], &buf0[29], v_cos_bit); butterfly_dct_post(buf1 + 8, buf1 + 8, buf0 + 8, 4); butterfly_dct_post(buf1 + 12, buf1 + 12, buf0 + 12, 4); buf0[16] = buf1[16]; buf0[19] = buf1[19]; buf0[20] = buf1[20]; butterfly_0130_neon(cospi, 24, buf1[5], buf1[6], &buf0[5], &buf0[6], v_cos_bit); butterfly_0130_neon(cospi, 24, buf1[21], buf1[26], &buf0[26], &buf0[21], v_cos_bit); butterfly_0332_neon(cospi, 24, buf1[25], buf1[22], &buf0[25], &buf0[22], v_cos_bit); buf0[23] = buf1[23]; buf0[24] = buf1[24]; buf0[27] = buf1[27]; buf0[28] = buf1[28]; buf0[31] = buf1[31]; // stage 7 buf1[0] = buf0[0]; buf1[1] = buf0[1]; buf1[2] = buf0[2]; buf1[3] = buf0[3]; buf1[4] = buf0[4]; buf1[5] = buf0[5]; buf1[6] = buf0[6]; buf1[7] = buf0[7]; butterfly_0112_neon(cospi, 4, buf0[15], buf0[8], &buf1[8], &buf1[15], v_cos_bit); butterfly_0130_neon(cospi, 28, buf0[9], buf0[14], &buf1[9], &buf1[14], v_cos_bit); butterfly_0112_neon(cospi, 20, buf0[13], buf0[10], &buf1[10], &buf1[13], v_cos_bit); butterfly_0130_neon(cospi, 12, buf0[11], buf0[12], &buf1[11], &buf1[12], v_cos_bit); butterfly_dct_post(buf0 + 16, buf0 + 16, buf1 + 16, 4); butterfly_dct_post(buf0 + 20, buf0 + 20, buf1 + 20, 4); butterfly_dct_post(buf0 + 24, buf0 + 24, buf1 + 24, 4); butterfly_dct_post(buf0 + 28, buf0 + 28, buf1 + 28, 4); // stage 8 buf0[0] = buf1[0]; buf0[1] = buf1[1]; buf0[2] = buf1[2]; buf0[3] = buf1[3]; buf0[4] = buf1[4]; buf0[5] = buf1[5]; buf0[6] = buf1[6]; buf0[7] = buf1[7]; buf0[8] = buf1[8]; buf0[9] = buf1[9]; buf0[10] = buf1[10]; buf0[11] = buf1[11]; buf0[12] = buf1[12]; buf0[13] = buf1[13]; buf0[14] = buf1[14]; buf0[15] = buf1[15]; butterfly_0112_neon(cospi, 2, buf1[31], buf1[16], &buf0[16], &buf0[31], v_cos_bit); butterfly_0130_neon(cospi, 30, buf1[17], buf1[30], &buf0[17], &buf0[30], v_cos_bit); butterfly_0112_neon(cospi, 18, buf1[29], buf1[18], &buf0[18], &buf0[29], v_cos_bit); butterfly_0130_neon(cospi, 14, buf1[19], buf1[28], &buf0[19], &buf0[28], v_cos_bit); butterfly_0112_neon(cospi, 10, buf1[27], buf1[20], &buf0[20], &buf0[27], v_cos_bit); butterfly_0130_neon(cospi, 22, buf1[21], buf1[26], &buf0[21], &buf0[26], v_cos_bit); butterfly_0112_neon(cospi, 26, buf1[25], buf1[22], &buf0[22], &buf0[25], v_cos_bit); butterfly_0130_neon(cospi, 6, buf1[23], buf1[24], &buf0[23], &buf0[24], v_cos_bit); // stage 9 output[0] = buf0[0]; output[1] = buf0[16]; output[2] = buf0[8]; output[3] = buf0[24]; output[4] = buf0[4]; output[5] = buf0[20]; output[6] = buf0[12]; output[7] = buf0[28]; output[8] = buf0[2]; output[9] = buf0[18]; output[10] = buf0[10]; output[11] = buf0[26]; output[12] = buf0[6]; output[13] = buf0[22]; output[14] = buf0[14]; output[15] = buf0[30]; output[16] = buf0[1]; output[17] = buf0[17]; output[18] = buf0[9]; output[19] = buf0[25]; output[20] = buf0[5]; output[21] = buf0[21]; output[22] = buf0[13]; output[23] = buf0[29]; output[24] = buf0[3]; output[25] = buf0[19]; output[26] = buf0[11]; output[27] = buf0[27]; output[28] = buf0[7]; output[29] = buf0[23]; output[30] = buf0[15]; output[31] = buf0[31]; } static void highbd_fdct64_x4_neon(const int32x4_t *input, int32x4_t *output, int8_t cos_bit) { const int32_t *const cospi = cospi_arr_s32(cos_bit); const int32x4_t v_cos_bit = vdupq_n_s32(-cos_bit); // stage 1 int32x4_t x1[64]; butterfly_dct_pre(input, x1, 64); // stage 2 int32x4_t x2[64]; butterfly_dct_pre(x1, x2, 32); x2[32] = x1[32]; x2[33] = x1[33]; x2[34] = x1[34]; x2[35] = x1[35]; x2[36] = x1[36]; x2[37] = x1[37]; x2[38] = x1[38]; x2[39] = x1[39]; butterfly_0112_neon(cospi, 32, x1[55], x1[40], &x2[55], &x2[40], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[54], x1[41], &x2[54], &x2[41], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[53], x1[42], &x2[53], &x2[42], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[52], x1[43], &x2[52], &x2[43], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[51], x1[44], &x2[51], &x2[44], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[50], x1[45], &x2[50], &x2[45], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[49], x1[46], &x2[49], &x2[46], v_cos_bit); butterfly_0112_neon(cospi, 32, x1[48], x1[47], &x2[48], &x2[47], v_cos_bit); x2[56] = x1[56]; x2[57] = x1[57]; x2[58] = x1[58]; x2[59] = x1[59]; x2[60] = x1[60]; x2[61] = x1[61]; x2[62] = x1[62]; x2[63] = x1[63]; // stage 3 int32x4_t x3[64]; butterfly_dct_pre(x2, x3, 16); x3[16] = x2[16]; x3[17] = x2[17]; x3[18] = x2[18]; x3[19] = x2[19]; butterfly_0112_neon(cospi, 32, x2[27], x2[20], &x3[27], &x3[20], v_cos_bit); butterfly_0112_neon(cospi, 32, x2[26], x2[21], &x3[26], &x3[21], v_cos_bit); butterfly_0112_neon(cospi, 32, x2[25], x2[22], &x3[25], &x3[22], v_cos_bit); butterfly_0112_neon(cospi, 32, x2[24], x2[23], &x3[24], &x3[23], v_cos_bit); x3[28] = x2[28]; x3[29] = x2[29]; x3[30] = x2[30]; x3[31] = x2[31]; butterfly_dct_post(x2 + 32, x2 + 32, x3 + 32, 32); // stage 4 int32x4_t x4[64]; butterfly_dct_pre(x3, x4, 8); x4[8] = x3[8]; x4[9] = x3[9]; butterfly_0112_neon(cospi, 32, x3[13], x3[10], &x4[13], &x4[10], v_cos_bit); butterfly_0112_neon(cospi, 32, x3[12], x3[11], &x4[12], &x4[11], v_cos_bit); x4[14] = x3[14]; x4[15] = x3[15]; butterfly_dct_post(x3 + 16, x3 + 16, x4 + 16, 16); x4[32] = x3[32]; x4[33] = x3[33]; x4[34] = x3[34]; x4[35] = x3[35]; butterfly_0112_neon(cospi, 16, x3[59], x3[36], &x4[59], &x4[36], v_cos_bit); butterfly_0112_neon(cospi, 16, x3[58], x3[37], &x4[58], &x4[37], v_cos_bit); butterfly_0112_neon(cospi, 16, x3[57], x3[38], &x4[57], &x4[38], v_cos_bit); butterfly_0112_neon(cospi, 16, x3[56], x3[39], &x4[56], &x4[39], v_cos_bit); butterfly_2312_neon(cospi, 16, x3[55], x3[40], &x4[40], &x4[55], v_cos_bit); butterfly_2312_neon(cospi, 16, x3[54], x3[41], &x4[41], &x4[54], v_cos_bit); butterfly_2312_neon(cospi, 16, x3[53], x3[42], &x4[42], &x4[53], v_cos_bit); butterfly_2312_neon(cospi, 16, x3[52], x3[43], &x4[43], &x4[52], v_cos_bit); x4[44] = x3[44]; x4[45] = x3[45]; x4[46] = x3[46]; x4[47] = x3[47]; x4[48] = x3[48]; x4[49] = x3[49]; x4[50] = x3[50]; x4[51] = x3[51]; x4[60] = x3[60]; x4[61] = x3[61]; x4[62] = x3[62]; x4[63] = x3[63]; // stage 5 int32x4_t x5[64]; butterfly_dct_pre(x4, x5, 4); x5[4] = x4[4]; butterfly_0112_neon(cospi, 32, x4[6], x4[5], &x5[6], &x5[5], v_cos_bit); x5[7] = x4[7]; butterfly_dct_post(x4 + 8, x4 + 8, x5 + 8, 8); x5[16] = x4[16]; x5[17] = x4[17]; butterfly_0112_neon(cospi, 16, x4[29], x4[18], &x5[29], &x5[18], v_cos_bit); butterfly_0112_neon(cospi, 16, x4[28], x4[19], &x5[28], &x5[19], v_cos_bit); butterfly_2312_neon(cospi, 16, x4[27], x4[20], &x5[20], &x5[27], v_cos_bit); butterfly_2312_neon(cospi, 16, x4[26], x4[21], &x5[21], &x5[26], v_cos_bit); x5[22] = x4[22]; x5[23] = x4[23]; x5[24] = x4[24]; x5[25] = x4[25]; x5[30] = x4[30]; x5[31] = x4[31]; butterfly_dct_post(x4 + 32, x4 + 32, x5 + 32, 16); butterfly_dct_post(x4 + 48, x4 + 48, x5 + 48, 16); // stage 6 int32x4_t x6[64]; butterfly_0112_neon(cospi, 32, x5[0], x5[1], &x6[0], &x6[1], v_cos_bit); butterfly_0112_neon(cospi, 16, x5[3], x5[2], &x6[2], &x6[3], v_cos_bit); butterfly_dct_post(x5 + 4, x5 + 4, x6 + 4, 4); x6[8] = x5[8]; butterfly_0112_neon(cospi, 16, x5[14], x5[9], &x6[14], &x6[9], v_cos_bit); butterfly_2312_neon(cospi, 16, x5[13], x5[10], &x6[10], &x6[13], v_cos_bit); x6[11] = x5[11]; x6[12] = x5[12]; x6[15] = x5[15]; butterfly_dct_post(x5 + 16, x5 + 16, x6 + 16, 8); butterfly_dct_post(x5 + 24, x5 + 24, x6 + 24, 8); x6[32] = x5[32]; x6[33] = x5[33]; butterfly_0112_neon(cospi, 8, x5[61], x5[34], &x6[61], &x6[34], v_cos_bit); butterfly_0112_neon(cospi, 8, x5[60], x5[35], &x6[60], &x6[35], v_cos_bit); butterfly_2312_neon(cospi, 8, x5[59], x5[36], &x6[36], &x6[59], v_cos_bit); butterfly_2312_neon(cospi, 8, x5[58], x5[37], &x6[37], &x6[58], v_cos_bit); x6[38] = x5[38]; x6[39] = x5[39]; x6[40] = x5[40]; x6[41] = x5[41]; butterfly_0130_neon(cospi, 24, x5[42], x5[53], &x6[53], &x6[42], v_cos_bit); butterfly_0130_neon(cospi, 24, x5[43], x5[52], &x6[52], &x6[43], v_cos_bit); butterfly_0332_neon(cospi, 24, x5[51], x5[44], &x6[51], &x6[44], v_cos_bit); butterfly_0332_neon(cospi, 24, x5[50], x5[45], &x6[50], &x6[45], v_cos_bit); x6[46] = x5[46]; x6[47] = x5[47]; x6[48] = x5[48]; x6[49] = x5[49]; x6[54] = x5[54]; x6[55] = x5[55]; x6[56] = x5[56]; x6[57] = x5[57]; x6[62] = x5[62]; x6[63] = x5[63]; // stage 7 int32x4_t x7[64]; x7[0] = x6[0]; x7[1] = x6[1]; x7[2] = x6[2]; x7[3] = x6[3]; butterfly_0112_neon(cospi, 8, x6[7], x6[4], &x7[4], &x7[7], v_cos_bit); butterfly_0130_neon(cospi, 24, x6[5], x6[6], &x7[5], &x7[6], v_cos_bit); butterfly_dct_post(x6 + 8, x6 + 8, x7 + 8, 4); butterfly_dct_post(x6 + 12, x6 + 12, x7 + 12, 4); x7[16] = x6[16]; butterfly_0112_neon(cospi, 8, x6[30], x6[17], &x7[30], &x7[17], v_cos_bit); butterfly_2312_neon(cospi, 8, x6[29], x6[18], &x7[18], &x7[29], v_cos_bit); x7[19] = x6[19]; x7[20] = x6[20]; butterfly_0130_neon(cospi, 24, x6[21], x6[26], &x7[26], &x7[21], v_cos_bit); butterfly_0332_neon(cospi, 24, x6[25], x6[22], &x7[25], &x7[22], v_cos_bit); x7[23] = x6[23]; x7[24] = x6[24]; x7[27] = x6[27]; x7[28] = x6[28]; x7[31] = x6[31]; butterfly_dct_post(x6 + 32, x6 + 32, x7 + 32, 8); butterfly_dct_post(x6 + 40, x6 + 40, x7 + 40, 8); butterfly_dct_post(x6 + 48, x6 + 48, x7 + 48, 8); butterfly_dct_post(x6 + 56, x6 + 56, x7 + 56, 8); // stage 8 int32x4_t x8[64]; x8[0] = x7[0]; x8[1] = x7[1]; x8[2] = x7[2]; x8[3] = x7[3]; x8[4] = x7[4]; x8[5] = x7[5]; x8[6] = x7[6]; x8[7] = x7[7]; butterfly_0112_neon(cospi, 4, x7[15], x7[8], &x8[8], &x8[15], v_cos_bit); butterfly_0130_neon(cospi, 28, x7[9], x7[14], &x8[9], &x8[14], v_cos_bit); butterfly_0112_neon(cospi, 20, x7[13], x7[10], &x8[10], &x8[13], v_cos_bit); butterfly_0130_neon(cospi, 12, x7[11], x7[12], &x8[11], &x8[12], v_cos_bit); butterfly_dct_post(x7 + 16, x7 + 16, x8 + 16, 4); butterfly_dct_post(x7 + 20, x7 + 20, x8 + 20, 4); butterfly_dct_post(x7 + 24, x7 + 24, x8 + 24, 4); butterfly_dct_post(x7 + 28, x7 + 28, x8 + 28, 4); x8[32] = x7[32]; butterfly_0112_neon(cospi, 4, x7[62], x7[33], &x8[62], &x8[33], v_cos_bit); butterfly_2312_neon(cospi, 4, x7[61], x7[34], &x8[34], &x8[61], v_cos_bit); x8[35] = x7[35]; x8[36] = x7[36]; butterfly_0130_neon(cospi, 28, x7[37], x7[58], &x8[58], &x8[37], v_cos_bit); butterfly_0332_neon(cospi, 28, x7[57], x7[38], &x8[57], &x8[38], v_cos_bit); x8[39] = x7[39]; x8[40] = x7[40]; butterfly_0112_neon(cospi, 20, x7[54], x7[41], &x8[54], &x8[41], v_cos_bit); butterfly_2312_neon(cospi, 20, x7[53], x7[42], &x8[42], &x8[53], v_cos_bit); x8[43] = x7[43]; x8[44] = x7[44]; butterfly_0130_neon(cospi, 12, x7[45], x7[50], &x8[50], &x8[45], v_cos_bit); butterfly_0332_neon(cospi, 12, x7[49], x7[46], &x8[49], &x8[46], v_cos_bit); x8[47] = x7[47]; x8[48] = x7[48]; x8[51] = x7[51]; x8[52] = x7[52]; x8[55] = x7[55]; x8[56] = x7[56]; x8[59] = x7[59]; x8[60] = x7[60]; x8[63] = x7[63]; // stage 9 int32x4_t x9[64]; x9[0] = x8[0]; x9[1] = x8[1]; x9[2] = x8[2]; x9[3] = x8[3]; x9[4] = x8[4]; x9[5] = x8[5]; x9[6] = x8[6]; x9[7] = x8[7]; x9[8] = x8[8]; x9[9] = x8[9]; x9[10] = x8[10]; x9[11] = x8[11]; x9[12] = x8[12]; x9[13] = x8[13]; x9[14] = x8[14]; x9[15] = x8[15]; butterfly_0112_neon(cospi, 2, x8[31], x8[16], &x9[16], &x9[31], v_cos_bit); butterfly_0130_neon(cospi, 30, x8[17], x8[30], &x9[17], &x9[30], v_cos_bit); butterfly_0112_neon(cospi, 18, x8[29], x8[18], &x9[18], &x9[29], v_cos_bit); butterfly_0130_neon(cospi, 14, x8[19], x8[28], &x9[19], &x9[28], v_cos_bit); butterfly_0112_neon(cospi, 10, x8[27], x8[20], &x9[20], &x9[27], v_cos_bit); butterfly_0130_neon(cospi, 22, x8[21], x8[26], &x9[21], &x9[26], v_cos_bit); butterfly_0112_neon(cospi, 26, x8[25], x8[22], &x9[22], &x9[25], v_cos_bit); butterfly_0130_neon(cospi, 6, x8[23], x8[24], &x9[23], &x9[24], v_cos_bit); butterfly_dct_post(x8 + 32, x8 + 32, x9 + 32, 4); butterfly_dct_post(x8 + 36, x8 + 36, x9 + 36, 4); butterfly_dct_post(x8 + 40, x8 + 40, x9 + 40, 4); butterfly_dct_post(x8 + 44, x8 + 44, x9 + 44, 4); butterfly_dct_post(x8 + 48, x8 + 48, x9 + 48, 4); butterfly_dct_post(x8 + 52, x8 + 52, x9 + 52, 4); butterfly_dct_post(x8 + 56, x8 + 56, x9 + 56, 4); butterfly_dct_post(x8 + 60, x8 + 60, x9 + 60, 4); // stage 10 int32x4_t x10[64]; x10[0] = x9[0]; x10[1] = x9[1]; x10[2] = x9[2]; x10[3] = x9[3]; x10[4] = x9[4]; x10[5] = x9[5]; x10[6] = x9[6]; x10[7] = x9[7]; x10[8] = x9[8]; x10[9] = x9[9]; x10[10] = x9[10]; x10[11] = x9[11]; x10[12] = x9[12]; x10[13] = x9[13]; x10[14] = x9[14]; x10[15] = x9[15]; x10[16] = x9[16]; x10[17] = x9[17]; x10[18] = x9[18]; x10[19] = x9[19]; x10[20] = x9[20]; x10[21] = x9[21]; x10[22] = x9[22]; x10[23] = x9[23]; x10[24] = x9[24]; x10[25] = x9[25]; x10[26] = x9[26]; x10[27] = x9[27]; x10[28] = x9[28]; x10[29] = x9[29]; x10[30] = x9[30]; x10[31] = x9[31]; butterfly_0112_neon(cospi, 1, x9[63], x9[32], &x10[32], &x10[63], v_cos_bit); butterfly_0130_neon(cospi, 31, x9[33], x9[62], &x10[33], &x10[62], v_cos_bit); butterfly_0112_neon(cospi, 17, x9[61], x9[34], &x10[34], &x10[61], v_cos_bit); butterfly_0130_neon(cospi, 15, x9[35], x9[60], &x10[35], &x10[60], v_cos_bit); butterfly_0112_neon(cospi, 9, x9[59], x9[36], &x10[36], &x10[59], v_cos_bit); butterfly_0130_neon(cospi, 23, x9[37], x9[58], &x10[37], &x10[58], v_cos_bit); butterfly_0112_neon(cospi, 25, x9[57], x9[38], &x10[38], &x10[57], v_cos_bit); butterfly_0130_neon(cospi, 7, x9[39], x9[56], &x10[39], &x10[56], v_cos_bit); butterfly_0112_neon(cospi, 5, x9[55], x9[40], &x10[40], &x10[55], v_cos_bit); butterfly_0130_neon(cospi, 27, x9[41], x9[54], &x10[41], &x10[54], v_cos_bit); butterfly_0112_neon(cospi, 21, x9[53], x9[42], &x10[42], &x10[53], v_cos_bit); butterfly_0130_neon(cospi, 11, x9[43], x9[52], &x10[43], &x10[52], v_cos_bit); butterfly_0112_neon(cospi, 13, x9[51], x9[44], &x10[44], &x10[51], v_cos_bit); butterfly_0130_neon(cospi, 19, x9[45], x9[50], &x10[45], &x10[50], v_cos_bit); butterfly_0112_neon(cospi, 29, x9[49], x9[46], &x10[46], &x10[49], v_cos_bit); butterfly_0130_neon(cospi, 3, x9[47], x9[48], &x10[47], &x10[48], v_cos_bit); // stage 11 output[0] = x10[0]; output[1] = x10[32]; output[2] = x10[16]; output[3] = x10[48]; output[4] = x10[8]; output[5] = x10[40]; output[6] = x10[24]; output[7] = x10[56]; output[8] = x10[4]; output[9] = x10[36]; output[10] = x10[20]; output[11] = x10[52]; output[12] = x10[12]; output[13] = x10[44]; output[14] = x10[28]; output[15] = x10[60]; output[16] = x10[2]; output[17] = x10[34]; output[18] = x10[18]; output[19] = x10[50]; output[20] = x10[10]; output[21] = x10[42]; output[22] = x10[26]; output[23] = x10[58]; output[24] = x10[6]; output[25] = x10[38]; output[26] = x10[22]; output[27] = x10[54]; output[28] = x10[14]; output[29] = x10[46]; output[30] = x10[30]; output[31] = x10[62]; output[32] = x10[1]; output[33] = x10[33]; output[34] = x10[17]; output[35] = x10[49]; output[36] = x10[9]; output[37] = x10[41]; output[38] = x10[25]; output[39] = x10[57]; output[40] = x10[5]; output[41] = x10[37]; output[42] = x10[21]; output[43] = x10[53]; output[44] = x10[13]; output[45] = x10[45]; output[46] = x10[29]; output[47] = x10[61]; output[48] = x10[3]; output[49] = x10[35]; output[50] = x10[19]; output[51] = x10[51]; output[52] = x10[11]; output[53] = x10[43]; output[54] = x10[27]; output[55] = x10[59]; output[56] = x10[7]; output[57] = x10[39]; output[58] = x10[23]; output[59] = x10[55]; output[60] = x10[15]; output[61] = x10[47]; output[62] = x10[31]; output[63] = x10[63]; } static void highbd_fidentity32_x4_neon(const int32x4_t *input, int32x4_t *output, int cos_bit) { (void)cos_bit; for (int i = 0; i < 32; i++) { output[i] = vshlq_n_s32(input[i], 2); } } TRANSFORM_COL_MANY(fdct32, 32) TRANSFORM_COL_MANY(fidentity32, 32) static const fwd_transform_1d_col_many_neon col_highbd_txfm32_x4_arr[TX_TYPES] = { highbd_fdct32_col_many_neon, // DCT_DCT NULL, // ADST_DCT NULL, // DCT_ADST NULL, // ADST_ADST NULL, // FLIPADST_DCT NULL, // DCT_FLIPADST NULL, // FLIPADST_FLIPADST NULL, // ADST_FLIPADST NULL, // FLIPADST_ADST highbd_fidentity32_col_many_neon, // IDTX NULL, // V_DCT NULL, // H_DCT NULL, // V_ADST NULL, // H_ADST NULL, // V_FLIPADST NULL // H_FLIPADST }; TRANSFORM_ROW_MANY(fdct32, 32) TRANSFORM_ROW_MANY(fidentity32, 32) static const fwd_transform_1d_row_many_neon row_highbd_txfm32_x4_arr[TX_TYPES] = { highbd_fdct32_row_many_neon, // DCT_DCT NULL, // ADST_DCT NULL, // DCT_ADST NULL, // ADST_ADST NULL, // FLIPADST_DCT NULL, // DCT_FLIPADST NULL, // FLIPADST_FLIPADST NULL, // ADST_FLIPADST NULL, // FLIPADST_ADST highbd_fidentity32_row_many_neon, // IDTX NULL, // V_DCT NULL, // H_DCT NULL, // V_ADST NULL, // H_ADST NULL, // V_FLIPADST NULL // H_FLIPADST }; TRANSFORM_ROW_RECT_MANY(fdct32, 32) TRANSFORM_ROW_RECT_MANY(fidentity32, 32) static const fwd_transform_1d_row_many_neon row_rect_highbd_txfm32_x4_arr[TX_TYPES] = { highbd_fdct32_row_rect_many_neon, // DCT_DCT NULL, // ADST_DCT NULL, // DCT_ADST NULL, // ADST_ADST NULL, // FLIPADST_DCT NULL, // DCT_FLIPADST NULL, // FLIPADST_FLIPADST NULL, // ADST_FLIPADST NULL, // FLIPADST_ADST highbd_fidentity32_row_rect_many_neon, // IDTX NULL, // V_DCT NULL, // H_DCT NULL, // V_ADST NULL, // H_ADST NULL, // V_FLIPADST NULL // H_FLIPADST }; void av1_fwd_txfm2d_16x8_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm8_xn_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_rect_highbd_txfm16_xn_arr[tx_type]; int bit = av1_fwd_cos_bit_col[2][1]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 8); // Column-wise transform. int32x4_t buf0[32]; if (lr_flip) { col_txfm(input, buf0 + 3 * 8, stride, bit, /*lr_flip=*/1, /*howmany=*/4, /*hm_stride=*/-8); } else { col_txfm(input, buf0, stride, bit, /*lr_flip=*/0, /*howmany=*/4, /*hm_stride=*/8); } shift_right_2_round_s32_x4(buf0, buf0, 32); int32x4_t buf1[32]; transpose_arrays_s32_16x8(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bit, /*howmany=*/2, /*hm_stride=*/16, /*stride=*/8); } void av1_fwd_txfm2d_8x16_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm16_xn_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_rect_highbd_txfm8_xn_arr[tx_type]; int bit = av1_fwd_cos_bit_col[1][2]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 16); // Column-wise transform. int32x4_t buf0[32]; if (lr_flip) { col_txfm(input, buf0 + 16, stride, bit, /*lr_flip=*/1, /*howmany=*/2, /*hm_stride=*/-16); } else { col_txfm(input, buf0, stride, bit, /*lr_flip=*/0, /*howmany=*/2, /*hm_stride=*/16); } shift_right_2_round_s32_x4(buf0, buf0, 32); int32x4_t buf1[32]; transpose_arrays_s32_8x16(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bit, /*howmany=*/4, /*hm_stride=*/8, /*stride=*/16); } #if !CONFIG_REALTIME_ONLY void av1_fwd_txfm2d_4x16_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; int bitcol = av1_fwd_cos_bit_col[0][2]; int bitrow = av1_fwd_cos_bit_row[0][2]; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm16_xn_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_highbd_txfm4_xn_arr[tx_type]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 16); // Column-wise transform. int32x4_t buf0[16]; if (lr_flip) { col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/1, /*howmany=*/1, /*hm_stride=*/0); } else { col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/1, /*hm_stride=*/0); } shift_right_1_round_s32_x4(buf0, buf0, 16); int32x4_t buf1[16]; transpose_arrays_s32_4x16(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/4, /*hm_stride=*/4, /*stride=*/16); } #endif void av1_fwd_txfm2d_16x4_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; int bitcol = av1_fwd_cos_bit_col[2][0]; int bitrow = av1_fwd_cos_bit_row[2][0]; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm4_xn_arr[tx_type]; const fwd_transform_1d_row_neon row_txfm = row_highbd_txfm16_xn_arr[tx_type]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 4); // Column-wise transform. int32x4_t buf0[16]; if (lr_flip) { col_txfm(input, buf0 + 3 * 4, stride, bitcol, /*lr_flip=*/1, /*howmany=*/4, /*hm_stride=*/-4); } else { col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/4, /*hm_stride=*/4); } shift_right_1_round_s32_x4(buf0, buf0, 16); transpose_arrays_s32_4x16(buf0, buf0); // Row-wise transform. row_txfm(buf0, coeff, bitrow, /*stride=*/4); } void av1_fwd_txfm2d_16x32_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm32_x4_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_rect_highbd_txfm16_xn_arr[tx_type]; int bitcol = av1_fwd_cos_bit_col[2][3]; int bitrow = av1_fwd_cos_bit_row[2][3]; // Column-wise transform. int32x4_t buf0[128]; col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/4, /*hm_stride=*/32); shift_right_4_round_s32_x4(buf0, buf0, 128); int32x4_t buf1[128]; transpose_arrays_s32_16x32(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/8, /*hm_stride=*/16, /*stride=*/32); } void av1_fwd_txfm2d_32x64_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; (void)tx_type; int bitcol = av1_fwd_cos_bit_col[3][4]; int bitrow = av1_fwd_cos_bit_row[3][4]; // Column-wise transform. int32x4_t buf0[512]; load_buffer_32x64(input, buf0, stride, 0); for (int i = 0; i < 8; i++) { highbd_fdct64_x4_neon(buf0 + i * 64, buf0 + i * 64, bitcol); } shift_right_2_round_s32_x4(buf0, buf0, 512); int32x4_t buf1[512]; transpose_arrays_s32_32x64(buf0, buf1); // Row-wise transform. for (int i = 0; i < 16; i++) { highbd_fdct32_x4_neon(buf1 + i * 32, buf1 + i * 32, bitrow); } round_shift2_rect_array_s32_neon(buf1, buf1, 512); store_buffer_32x32(buf1, coeff, /*stride=*/32); } void av1_fwd_txfm2d_64x32_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; (void)tx_type; int bitcol = av1_fwd_cos_bit_col[4][3]; int bitrow = av1_fwd_cos_bit_row[4][3]; // Column-wise transform. int32x4_t buf0[512]; load_buffer_64x32(input, buf0, stride, 0); for (int i = 0; i < 16; i++) { highbd_fdct32_x4_neon(buf0 + i * 32, buf0 + i * 32, bitcol); } shift_right_4_round_s32_x4(buf0, buf0, 512); int32x4_t buf1[512]; transpose_arrays_s32_64x32(buf0, buf1); // Row-wise transform. for (int i = 0; i < 8; i++) { highbd_fdct64_x4_neon(buf1 + i * 64, buf1 + i * 64, bitrow); } round_shift2_rect_array_s32_neon(buf1, buf1, 512); store_buffer_64x32(buf1, coeff, /*stride=*/32); } void av1_fwd_txfm2d_32x16_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm16_xn_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_rect_highbd_txfm32_x4_arr[tx_type]; int bitcol = av1_fwd_cos_bit_col[3][2]; int bitrow = av1_fwd_cos_bit_row[3][2]; // Column-wise transform. int32x4_t buf0[128]; col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/8, /*hm_stride=*/16); shift_right_4_round_s32_x4(buf0, buf0, 128); int32x4_t buf1[128]; transpose_arrays_s32_32x16(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/4, /*hm_stride=*/32, /*stride=*/16); } #if !CONFIG_REALTIME_ONLY void av1_fwd_txfm2d_8x32_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm32_x4_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_highbd_txfm8_xn_arr[tx_type]; int bitcol = av1_fwd_cos_bit_col[1][3]; int bitrow = av1_fwd_cos_bit_row[1][3]; // Column-wise transform. int32x4_t buf0[64]; col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/2, /*hm_stride=*/32); shift_right_2_round_s32_x4(buf0, buf0, 64); int32x4_t buf1[64]; transpose_arrays_s32_8x32(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/8, /*hm_stride=*/8, /*stride=*/32); } void av1_fwd_txfm2d_32x8_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm8_xn_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_highbd_txfm32_x4_arr[tx_type]; int bitcol = av1_fwd_cos_bit_col[3][1]; int bitrow = av1_fwd_cos_bit_row[3][1]; // Column-wise transform. int32x4_t buf0[64]; col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/8, /*hm_stride=*/8); shift_right_2_round_s32_x4(buf0, buf0, 64); int32x4_t buf1[64]; transpose_arrays_s32_32x8(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/2, /*hm_stride=*/32, /*stride=*/8); } #endif void av1_fwd_txfm2d_4x8_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; int bitcol = av1_fwd_cos_bit_col[0][1]; int bitrow = av1_fwd_cos_bit_row[0][1]; const fwd_transform_1d_col_neon col_txfm = col_highbd_txfm8_x4_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_rect_highbd_txfm4_xn_arr[tx_type]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 8); // Column-wise transform. int32x4_t buf0[8]; col_txfm(input, buf0, stride, bitcol, lr_flip); shift_right_1_round_s32_x4(buf0, buf0, 8); int32x4_t buf1[8]; transpose_arrays_s32_4x8(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*howmany=*/2, /*hm_stride=*/4, /*stride=*/8); } void av1_fwd_txfm2d_8x4_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const int bitcol = av1_fwd_cos_bit_col[1][0]; const int bitrow = av1_fwd_cos_bit_row[1][0]; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm4_xn_arr[tx_type]; const fwd_transform_1d_row_neon row_txfm = row_highbd_txfm8_x4_arr[tx_type]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 4); // Column-wise transform. int32x4_t buf0[8]; if (lr_flip) { col_txfm(input, buf0 + 4, stride, bitcol, /*lr_flip=*/1, /*howmany=*/2, /*hm_stride=*/-4); } else { col_txfm(input, buf0, stride, bitcol, /*lr_flip=*/0, /*howmany=*/2, /*hm_stride=*/4); } shift_right_1_round_s32_x4(buf0, buf0, 8); int32x4_t buf1[8]; transpose_arrays_s32_8x4(buf0, buf1); // Row-wise transform. row_txfm(buf1, coeff, bitrow, /*stride=*/4); } #if !CONFIG_REALTIME_ONLY void av1_fwd_txfm2d_16x64_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const int bitcol = av1_fwd_cos_bit_col[2][4]; const int bitrow = av1_fwd_cos_bit_row[2][4]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 64); // Column-wise transform. int32x4_t buf0[256]; load_buffer_16x64(input, buf0, stride, lr_flip); for (int i = 0; i < 4; i++) { highbd_fdct64_x4_neon(buf0 + i * 64, buf0 + i * 64, bitcol); } shift_right_2_round_s32_x4(buf0, buf0, 256); int32x4_t buf1[256]; transpose_arrays_s32_16x64(buf0, buf1); // Row-wise transform. highbd_fdct16_xn_neon(buf1, buf1, bitrow, 8); store_buffer_16x32(buf1, coeff, /*stride=*/32); } void av1_fwd_txfm2d_64x16_neon(const int16_t *input, int32_t *coeff, int stride, TX_TYPE tx_type, int bd) { (void)bd; const int bitcol = av1_fwd_cos_bit_col[4][2]; const int bitrow = av1_fwd_cos_bit_row[4][2]; int ud_flip, lr_flip; get_flip_cfg(tx_type, &ud_flip, &lr_flip); ud_adjust_input_and_stride(ud_flip, &input, &stride, 16); // Column-wise transform. int32x4_t buf0[256]; load_buffer_64x16(input, buf0, stride, lr_flip); highbd_fdct16_xn_neon(buf0, buf0, bitcol, 16); shift_right_4_round_s32_x4(buf0, buf0, 256); int32x4_t buf1[256]; transpose_arrays_s32_64x16(buf0, buf1); // Row-wise transform. for (int i = 0; i < 4; i++) { highbd_fdct64_x4_neon(buf1 + i * 64, buf1 + i * 64, bitrow); } store_buffer_64x16(buf1, coeff, /*stride=*/16); memset(coeff + 16 * 32, 0, 16 * 32 * sizeof(*coeff)); } #endif void av1_fwd_txfm2d_32x32_neon(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { (void)bd; const fwd_transform_1d_col_many_neon col_txfm = col_highbd_txfm32_x4_arr[tx_type]; const fwd_transform_1d_row_many_neon row_txfm = row_highbd_txfm32_x4_arr[tx_type]; // Column-wise transform. int32x4_t buf0[256]; col_txfm(input, buf0, stride, /*cos_bit=*/12, /*lr_flip=*/0, /*howmany=*/8, /*hm_stride=*/32); shift_right_4_round_s32_x4(buf0, buf0, 256); int32x4_t buf1[256]; transpose_arrays_s32_32x32(buf0, buf1); // Row-wise transform. row_txfm(buf1, output, /*cos_bit=*/12, /*howmany=*/8, /*hm_stride=*/32, /*stride=*/32); } void av1_fwd_txfm2d_64x64_neon(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { (void)bd; (void)tx_type; // Column-wise transform. int32x4_t buf0[1024]; load_buffer_64x64(input, buf0, stride, 0); for (int col = 0; col < 16; col++) { highbd_fdct64_x4_neon(buf0 + col * 64, buf0 + col * 64, 13); } shift_right_2_round_s32_x4(buf0, buf0, 1024); int32x4_t buf1[1024]; transpose_arrays_s32_64x64(buf0, buf1); // Row-wise transform. for (int col = 0; col < 8; col++) { highbd_fdct64_x4_neon(buf1 + col * 64, buf1 + col * 64, 10); } shift_right_2_round_s32_x4(buf1, buf1, 512); store_buffer_64x32(buf1, output, /*stride=*/32); }