/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "av1/encoder/rdopt.h" #include "config/aom_config.h" #include "config/av1_rtcd.h" // Process horizontal and vertical correlations in a 4x4 block of pixels. // We actually use the 4x4 pixels to calculate correlations corresponding to // the top-left 3x3 pixels, so this function must be called with 1x1 overlap, // moving the window along/down by 3 pixels at a time. INLINE static void horver_correlation_4x4(const int16_t *diff, int stride, int32x4_t *xy_sum_32, int32x4_t *xz_sum_32, int32x4_t *x_sum_32, int32x4_t *x2_sum_32) { // Pixels in this 4x4 [ a b c d ] // are referred to as: [ e f g h ] // [ i j k l ] // [ m n o p ] const int16x4_t pixelsa_2_lo = vld1_s16(diff + (0 * stride)); const int16x4_t pixelsa_2_sli = vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsa_2_lo), 16)); const int16x4_t pixelsb_2_lo = vld1_s16(diff + (1 * stride)); const int16x4_t pixelsb_2_sli = vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsb_2_lo), 16)); const int16x4_t pixelsa_1_lo = vld1_s16(diff + (2 * stride)); const int16x4_t pixelsa_1_sli = vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsa_1_lo), 16)); const int16x4_t pixelsb_1_lo = vld1_s16(diff + (3 * stride)); const int16x4_t pixelsb_1_sli = vreinterpret_s16_s64(vshl_n_s64(vreinterpret_s64_s16(pixelsb_1_lo), 16)); const int16x8_t slli_a = vcombine_s16(pixelsa_1_sli, pixelsa_2_sli); *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsa_1_lo, pixelsa_1_sli); *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsa_2_lo, pixelsa_2_sli); *xy_sum_32 = vmlal_s16(*xy_sum_32, pixelsb_2_lo, pixelsb_2_sli); *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_1_sli, pixelsb_1_sli); *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_2_sli, pixelsb_2_sli); *xz_sum_32 = vmlal_s16(*xz_sum_32, pixelsa_1_sli, pixelsb_2_sli); // Now calculate the straight sums, x_sum += a+b+c+e+f+g+i+j+k // (sum up every element in slli_a and swap_b) *x_sum_32 = vpadalq_s16(*x_sum_32, slli_a); *x_sum_32 = vaddw_s16(*x_sum_32, pixelsb_2_sli); // Also sum their squares *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsa_1_sli, pixelsa_1_sli); *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsa_2_sli, pixelsa_2_sli); *x2_sum_32 = vmlal_s16(*x2_sum_32, pixelsb_2_sli, pixelsb_2_sli); } void av1_get_horver_correlation_full_neon(const int16_t *diff, int stride, int width, int height, float *hcorr, float *vcorr) { // The following notation is used: // x - current pixel // y - right neighbour pixel // z - below neighbour pixel // w - down-right neighbour pixel int64_t xy_sum = 0, xz_sum = 0; int64_t x_sum = 0, x2_sum = 0; int32x4_t zero = vdupq_n_s32(0); int64x2_t v_x_sum = vreinterpretq_s64_s32(zero); int64x2_t v_xy_sum = vreinterpretq_s64_s32(zero); int64x2_t v_xz_sum = vreinterpretq_s64_s32(zero); int64x2_t v_x2_sum = vreinterpretq_s64_s32(zero); // Process horizontal and vertical correlations through the body in 4x4 // blocks. This excludes the final row and column and possibly one extra // column depending how 3 divides into width and height for (int i = 0; i <= height - 4; i += 3) { int32x4_t xy_sum_32 = zero; int32x4_t xz_sum_32 = zero; int32x4_t x_sum_32 = zero; int32x4_t x2_sum_32 = zero; for (int j = 0; j <= width - 4; j += 3) { horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32, &xz_sum_32, &x_sum_32, &x2_sum_32); } v_xy_sum = vpadalq_s32(v_xy_sum, xy_sum_32); v_xz_sum = vpadalq_s32(v_xz_sum, xz_sum_32); v_x_sum = vpadalq_s32(v_x_sum, x_sum_32); v_x2_sum = vpadalq_s32(v_x2_sum, x2_sum_32); } #if AOM_ARCH_AARCH64 xy_sum = vaddvq_s64(v_xy_sum); xz_sum = vaddvq_s64(v_xz_sum); x2_sum = vaddvq_s64(v_x2_sum); x_sum = vaddvq_s64(v_x_sum); #else xy_sum = vget_lane_s64( vadd_s64(vget_low_s64(v_xy_sum), vget_high_s64(v_xy_sum)), 0); xz_sum = vget_lane_s64( vadd_s64(vget_low_s64(v_xz_sum), vget_high_s64(v_xz_sum)), 0); x2_sum = vget_lane_s64( vadd_s64(vget_low_s64(v_x2_sum), vget_high_s64(v_x2_sum)), 0); x_sum = vget_lane_s64(vadd_s64(vget_low_s64(v_x_sum), vget_high_s64(v_x_sum)), 0); #endif // x_sum now covers every pixel except the final 1-2 rows and 1-2 cols int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0; // Do we have 2 rows remaining or just the one? Note that width and height // are powers of 2, so each modulo 3 must be 1 or 2. if (height % 3 == 1) { // Just horiz corrs on the final row const int16_t x0 = diff[(height - 1) * stride]; x_sum += x0; x_finalrow += x0; x2_sum += x0 * x0; x2_finalrow += x0 * x0; if (width >= 8) { int32x4_t v_y_sum = zero; int32x4_t v_y2_sum = zero; int32x4_t v_xy_sum_a = zero; int k = width - 1; int j = 0; while ((k - 8) > 0) { const int16x8_t v_x = vld1q_s16(&diff[(height - 1) * stride + j]); const int16x8_t v_y = vld1q_s16(&diff[(height - 1) * stride + j + 1]); const int16x4_t v_x_lo = vget_low_s16(v_x); const int16x4_t v_x_hi = vget_high_s16(v_x); const int16x4_t v_y_lo = vget_low_s16(v_y); const int16x4_t v_y_hi = vget_high_s16(v_y); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi); v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo); v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi); v_y_sum = vpadalq_s16(v_y_sum, v_y); k -= 8; j += 8; } const int16x8_t v_l = vld1q_s16(&diff[(height - 1) * stride] + j); const int16x8_t v_x = vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l, 7), vreinterpretq_s16_s32(zero), 1); const int16x8_t v_y = vextq_s16(v_l, vreinterpretq_s16_s32(zero), 1); const int16x4_t v_x_lo = vget_low_s16(v_x); const int16x4_t v_x_hi = vget_high_s16(v_x); const int16x4_t v_y_lo = vget_low_s16(v_y); const int16x4_t v_y_hi = vget_high_s16(v_y); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi); v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo); v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi); const int32x4_t v_y_sum_a = vpadalq_s16(v_y_sum, v_y); const int64x2_t v_xy_sum2 = vpaddlq_s32(v_xy_sum_a); #if AOM_ARCH_AARCH64 const int64x2_t v_y2_sum_a = vpaddlq_s32(v_y2_sum); xy_sum += vaddvq_s64(v_xy_sum2); const int32_t y = vaddvq_s32(v_y_sum_a); const int64_t y2 = vaddvq_s64(v_y2_sum_a); #else xy_sum += vget_lane_s64( vadd_s64(vget_low_s64(v_xy_sum2), vget_high_s64(v_xy_sum2)), 0); const int64x2_t v_y_a = vpaddlq_s32(v_y_sum_a); const int64_t y = vget_lane_s64(vadd_s64(vget_low_s64(v_y_a), vget_high_s64(v_y_a)), 0); const int64x2_t v_y2_sum_b = vpaddlq_s32(v_y2_sum); int64_t y2 = vget_lane_s64( vadd_s64(vget_low_s64(v_y2_sum_b), vget_high_s64(v_y2_sum_b)), 0); #endif x_sum += y; x2_sum += y2; x_finalrow += y; x2_finalrow += y2; } else { for (int j = 0; j < width - 1; ++j) { const int16_t x = diff[(height - 1) * stride + j]; const int16_t y = diff[(height - 1) * stride + j + 1]; xy_sum += x * y; x_sum += y; x2_sum += y * y; x_finalrow += y; x2_finalrow += y * y; } } } else { // Two rows remaining to do const int16_t x0 = diff[(height - 2) * stride]; const int16_t z0 = diff[(height - 1) * stride]; x_sum += x0 + z0; x2_sum += x0 * x0 + z0 * z0; x_finalrow += z0; x2_finalrow += z0 * z0; if (width >= 8) { int32x4_t v_y2_sum = zero; int32x4_t v_w2_sum = zero; int32x4_t v_xy_sum_a = zero; int32x4_t v_xz_sum_a = zero; int32x4_t v_x_sum_a = zero; int32x4_t v_w_sum = zero; int k = width - 1; int j = 0; while ((k - 8) > 0) { const int16x8_t v_x = vld1q_s16(&diff[(height - 2) * stride + j]); const int16x8_t v_y = vld1q_s16(&diff[(height - 2) * stride + j + 1]); const int16x8_t v_z = vld1q_s16(&diff[(height - 1) * stride + j]); const int16x8_t v_w = vld1q_s16(&diff[(height - 1) * stride + j + 1]); const int16x4_t v_x_lo = vget_low_s16(v_x); const int16x4_t v_y_lo = vget_low_s16(v_y); const int16x4_t v_z_lo = vget_low_s16(v_z); const int16x4_t v_w_lo = vget_low_s16(v_w); const int16x4_t v_x_hi = vget_high_s16(v_x); const int16x4_t v_y_hi = vget_high_s16(v_y); const int16x4_t v_z_hi = vget_high_s16(v_z); const int16x4_t v_w_hi = vget_high_s16(v_w); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_lo, v_w_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_hi, v_w_hi); v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_lo, v_z_lo); v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_hi, v_z_hi); v_w2_sum = vmlal_s16(v_w2_sum, v_w_lo, v_w_lo); v_w2_sum = vmlal_s16(v_w2_sum, v_w_hi, v_w_hi); v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo); v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi); v_w_sum = vpadalq_s16(v_w_sum, v_w); v_x_sum_a = vpadalq_s16(v_x_sum_a, v_y); v_x_sum_a = vpadalq_s16(v_x_sum_a, v_w); k -= 8; j += 8; } const int16x8_t v_l = vld1q_s16(&diff[(height - 2) * stride] + j); const int16x8_t v_x = vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l, 7), vreinterpretq_s16_s32(zero), 1); const int16x8_t v_y = vextq_s16(v_l, vreinterpretq_s16_s32(zero), 1); const int16x8_t v_l_2 = vld1q_s16(&diff[(height - 1) * stride] + j); const int16x8_t v_z = vextq_s16(vextq_s16(vreinterpretq_s16_s32(zero), v_l_2, 7), vreinterpretq_s16_s32(zero), 1); const int16x8_t v_w = vextq_s16(v_l_2, vreinterpretq_s16_s32(zero), 1); const int16x4_t v_x_lo = vget_low_s16(v_x); const int16x4_t v_y_lo = vget_low_s16(v_y); const int16x4_t v_z_lo = vget_low_s16(v_z); const int16x4_t v_w_lo = vget_low_s16(v_w); const int16x4_t v_x_hi = vget_high_s16(v_x); const int16x4_t v_y_hi = vget_high_s16(v_y); const int16x4_t v_z_hi = vget_high_s16(v_z); const int16x4_t v_w_hi = vget_high_s16(v_w); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_lo, v_y_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_x_hi, v_y_hi); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_lo, v_w_lo); v_xy_sum_a = vmlal_s16(v_xy_sum_a, v_z_hi, v_w_hi); v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_lo, v_z_lo); v_xz_sum_a = vmlal_s16(v_xz_sum_a, v_x_hi, v_z_hi); v_w2_sum = vmlal_s16(v_w2_sum, v_w_lo, v_w_lo); v_w2_sum = vmlal_s16(v_w2_sum, v_w_hi, v_w_hi); v_y2_sum = vmlal_s16(v_y2_sum, v_y_lo, v_y_lo); v_y2_sum = vmlal_s16(v_y2_sum, v_y_hi, v_y_hi); v_w_sum = vpadalq_s16(v_w_sum, v_w); v_x_sum_a = vpadalq_s16(v_x_sum_a, v_y); v_x_sum_a = vpadalq_s16(v_x_sum_a, v_w); #if AOM_ARCH_AARCH64 xy_sum += vaddvq_s64(vpaddlq_s32(v_xy_sum_a)); xz_sum += vaddvq_s64(vpaddlq_s32(v_xz_sum_a)); x_sum += vaddvq_s32(v_x_sum_a); x_finalrow += vaddvq_s32(v_w_sum); int64_t y2 = vaddvq_s64(vpaddlq_s32(v_y2_sum)); int64_t w2 = vaddvq_s64(vpaddlq_s32(v_w2_sum)); #else const int64x2_t v_xy_sum2 = vpaddlq_s32(v_xy_sum_a); xy_sum += vget_lane_s64( vadd_s64(vget_low_s64(v_xy_sum2), vget_high_s64(v_xy_sum2)), 0); const int64x2_t v_xz_sum2 = vpaddlq_s32(v_xz_sum_a); xz_sum += vget_lane_s64( vadd_s64(vget_low_s64(v_xz_sum2), vget_high_s64(v_xz_sum2)), 0); const int64x2_t v_x_sum2 = vpaddlq_s32(v_x_sum_a); x_sum += vget_lane_s64( vadd_s64(vget_low_s64(v_x_sum2), vget_high_s64(v_x_sum2)), 0); const int64x2_t v_w_sum_a = vpaddlq_s32(v_w_sum); x_finalrow += vget_lane_s64( vadd_s64(vget_low_s64(v_w_sum_a), vget_high_s64(v_w_sum_a)), 0); const int64x2_t v_y2_sum_a = vpaddlq_s32(v_y2_sum); int64_t y2 = vget_lane_s64( vadd_s64(vget_low_s64(v_y2_sum_a), vget_high_s64(v_y2_sum_a)), 0); const int64x2_t v_w2_sum_a = vpaddlq_s32(v_w2_sum); int64_t w2 = vget_lane_s64( vadd_s64(vget_low_s64(v_w2_sum_a), vget_high_s64(v_w2_sum_a)), 0); #endif x2_sum += y2 + w2; x2_finalrow += w2; } else { for (int j = 0; j < width - 1; ++j) { const int16_t x = diff[(height - 2) * stride + j]; const int16_t y = diff[(height - 2) * stride + j + 1]; const int16_t z = diff[(height - 1) * stride + j]; const int16_t w = diff[(height - 1) * stride + j + 1]; // Horizontal and vertical correlations for the penultimate row: xy_sum += x * y; xz_sum += x * z; // Now just horizontal correlations for the final row: xy_sum += z * w; x_sum += y + w; x2_sum += y * y + w * w; x_finalrow += w; x2_finalrow += w * w; } } } // Do we have 2 columns remaining or just the one? if (width % 3 == 1) { // Just vert corrs on the final col const int16_t x0 = diff[width - 1]; x_sum += x0; x_finalcol += x0; x2_sum += x0 * x0; x2_finalcol += x0 * x0; for (int i = 0; i < height - 1; ++i) { const int16_t x = diff[i * stride + width - 1]; const int16_t z = diff[(i + 1) * stride + width - 1]; xz_sum += x * z; x_finalcol += z; x2_finalcol += z * z; // So the bottom-right elements don't get counted twice: if (i < height - (height % 3 == 1 ? 2 : 3)) { x_sum += z; x2_sum += z * z; } } } else { // Two cols remaining const int16_t x0 = diff[width - 2]; const int16_t y0 = diff[width - 1]; x_sum += x0 + y0; x2_sum += x0 * x0 + y0 * y0; x_finalcol += y0; x2_finalcol += y0 * y0; for (int i = 0; i < height - 1; ++i) { const int16_t x = diff[i * stride + width - 2]; const int16_t y = diff[i * stride + width - 1]; const int16_t z = diff[(i + 1) * stride + width - 2]; const int16_t w = diff[(i + 1) * stride + width - 1]; // Horizontal and vertical correlations for the penultimate col: // Skip these on the last iteration of this loop if we also had two // rows remaining, otherwise the final horizontal and vertical correlation // get erroneously processed twice if (i < height - 2 || height % 3 == 1) { xy_sum += x * y; xz_sum += x * z; } x_finalcol += w; x2_finalcol += w * w; // So the bottom-right elements don't get counted twice: if (i < height - (height % 3 == 1 ? 2 : 3)) { x_sum += z + w; x2_sum += z * z + w * w; } // Now just vertical correlations for the final column: xz_sum += y * w; } } // Calculate the simple sums and squared-sums int64_t x_firstrow = 0, x_firstcol = 0; int64_t x2_firstrow = 0, x2_firstcol = 0; if (width >= 8) { int32x4_t v_x_firstrow = zero; int32x4_t v_x2_firstrow = zero; for (int j = 0; j < width; j += 8) { const int16x8_t v_diff = vld1q_s16(diff + j); const int16x4_t v_diff_lo = vget_low_s16(v_diff); const int16x4_t v_diff_hi = vget_high_s16(v_diff); v_x_firstrow = vpadalq_s16(v_x_firstrow, v_diff); v_x2_firstrow = vmlal_s16(v_x2_firstrow, v_diff_lo, v_diff_lo); v_x2_firstrow = vmlal_s16(v_x2_firstrow, v_diff_hi, v_diff_hi); } #if AOM_ARCH_AARCH64 x_firstrow += vaddvq_s32(v_x_firstrow); x2_firstrow += vaddvq_s32(v_x2_firstrow); #else const int64x2_t v_x_firstrow_64 = vpaddlq_s32(v_x_firstrow); x_firstrow += vget_lane_s64( vadd_s64(vget_low_s64(v_x_firstrow_64), vget_high_s64(v_x_firstrow_64)), 0); const int64x2_t v_x2_firstrow_64 = vpaddlq_s32(v_x2_firstrow); x2_firstrow += vget_lane_s64(vadd_s64(vget_low_s64(v_x2_firstrow_64), vget_high_s64(v_x2_firstrow_64)), 0); #endif } else { for (int j = 0; j < width; ++j) { x_firstrow += diff[j]; x2_firstrow += diff[j] * diff[j]; } } for (int i = 0; i < height; ++i) { x_firstcol += diff[i * stride]; x2_firstcol += diff[i * stride] * diff[i * stride]; } int64_t xhor_sum = x_sum - x_finalcol; int64_t xver_sum = x_sum - x_finalrow; int64_t y_sum = x_sum - x_firstcol; int64_t z_sum = x_sum - x_firstrow; int64_t x2hor_sum = x2_sum - x2_finalcol; int64_t x2ver_sum = x2_sum - x2_finalrow; int64_t y2_sum = x2_sum - x2_firstcol; int64_t z2_sum = x2_sum - x2_firstrow; const float num_hor = (float)(height * (width - 1)); const float num_ver = (float)((height - 1) * width); const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; if (xhor_var_n > 0 && y_var_n > 0) { *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); *hcorr = *hcorr < 0 ? 0 : *hcorr; } else { *hcorr = 1.0; } if (xver_var_n > 0 && z_var_n > 0) { *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); *vcorr = *vcorr < 0 ? 0 : *vcorr; } else { *vcorr = 1.0; } }