/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/bitops.h" #include "aom_ports/mem.h" #include "av1/common/idct.h" #include "av1/common/quant_common.h" #include "av1/common/scan.h" #include "av1/common/seg_common.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/rd.h" void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) { memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); *eob_ptr = 0; } int av1_quantize_fp_no_qmatrix(const int16_t quant_ptr[2], const int16_t dequant_ptr[2], const int16_t round_ptr[2], int log_scale, const int16_t *scan, int coeff_count, const tran_low_t *coeff_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr) { memset(qcoeff_ptr, 0, coeff_count * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, coeff_count * sizeof(*dqcoeff_ptr)); const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale), ROUND_POWER_OF_TWO(round_ptr[1], log_scale) }; int eob = 0; for (int i = 0; i < coeff_count; i++) { const int rc = scan[i]; const int32_t thresh = (int32_t)(dequant_ptr[rc != 0]); const int coeff = coeff_ptr[rc]; const int coeff_sign = AOMSIGN(coeff); int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; int tmp32 = 0; if ((abs_coeff << (1 + log_scale)) >= thresh) { abs_coeff = clamp64(abs_coeff + rounding[rc != 0], INT16_MIN, INT16_MAX); tmp32 = (int)((abs_coeff * quant_ptr[rc != 0]) >> (16 - log_scale)); if (tmp32) { qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; const tran_low_t abs_dqcoeff = (tmp32 * dequant_ptr[rc != 0]) >> log_scale; dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign; } } if (tmp32) eob = i + 1; } return eob; } static void quantize_fp_helper_c( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, int log_scale) { int i, eob = -1; const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale), ROUND_POWER_OF_TWO(round_ptr[1], log_scale) }; // TODO(jingning) Decide the need of these arguments after the // quantization process is completed. (void)zbin_ptr; (void)quant_shift_ptr; (void)iscan; memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); if (qm_ptr == NULL && iqm_ptr == NULL) { *eob_ptr = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr, log_scale, scan, (int)n_coeffs, coeff_ptr, qcoeff_ptr, dqcoeff_ptr); } else { // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. for (i = 0; i < n_coeffs; i++) { const int rc = scan[i]; const int coeff = coeff_ptr[rc]; const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS); const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS); const int dequant = (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; const int coeff_sign = AOMSIGN(coeff); int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; int tmp32 = 0; if (abs_coeff * wt >= (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) { abs_coeff += rounding[rc != 0]; abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX); tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >> (16 - log_scale + AOM_QM_BITS)); qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale; dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign; } if (tmp32) eob = i; } *eob_ptr = eob + 1; } } #if CONFIG_AV1_HIGHBITDEPTH static void highbd_quantize_fp_helper_c( const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, int log_scale) { int i; int eob = -1; const int shift = 16 - log_scale; // TODO(jingning) Decide the need of these arguments after the // quantization process is completed. (void)zbin_ptr; (void)quant_shift_ptr; (void)iscan; if (qm_ptr || iqm_ptr) { // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. for (i = 0; i < count; i++) { const int rc = scan[i]; const int coeff = coeff_ptr[rc]; const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS); const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS); const int dequant = (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; const int coeff_sign = AOMSIGN(coeff); const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; int abs_qcoeff = 0; if (abs_coeff * wt >= (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) { const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale); abs_qcoeff = (int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS)); qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); if (abs_qcoeff) eob = i; } else { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } } } else { const int log_scaled_round_arr[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale), ROUND_POWER_OF_TWO(round_ptr[1], log_scale), }; for (i = 0; i < count; i++) { const int rc = scan[i]; const int coeff = coeff_ptr[rc]; const int rc01 = (rc != 0); const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int log_scaled_round = log_scaled_round_arr[rc01]; if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) { const int quant = quant_ptr[rc01]; const int dequant = dequant_ptr[rc01]; const int64_t tmp = (int64_t)abs_coeff + log_scaled_round; const int abs_qcoeff = (int)((tmp * quant) >> shift); qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; if (abs_qcoeff) eob = i; dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); } else { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } } } *eob_ptr = eob + 1; } #endif // CONFIG_AV1_HIGHBITDEPTH void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, NULL, NULL, 0); } void av1_quantize_lp_c(const int16_t *coeff_ptr, intptr_t n_coeffs, const int16_t *round_ptr, const int16_t *quant_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { (void)iscan; int eob = -1; memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. for (int i = 0; i < n_coeffs; i++) { const int rc = scan[i]; const int coeff = coeff_ptr[rc]; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); tmp = (tmp * quant_ptr[rc != 0]) >> 16; qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; if (tmp) eob = i; } *eob_ptr = eob + 1; } void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, NULL, NULL, 1); } void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, NULL, NULL, 2); } void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; if (qm_ptr != NULL && iqm_ptr != NULL) { quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { switch (qparam->log_scale) { case 0: av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 1: av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 2: av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; default: assert(0); } } } void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; #if !CONFIG_REALTIME_ONLY if (qparam->use_quant_b_adapt) { // TODO(sarahparker) These quantize_b optimizations need SIMD // implementations if (qm_ptr != NULL && iqm_ptr != NULL) { aom_quantize_b_adaptive_helper_c( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { switch (qparam->log_scale) { case 0: aom_quantize_b_adaptive(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 1: aom_quantize_b_32x32_adaptive( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 2: aom_quantize_b_64x64_adaptive( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; default: assert(0); } } return; } #endif // !CONFIG_REALTIME_ONLY if (qm_ptr != NULL && iqm_ptr != NULL) { aom_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { switch (qparam->log_scale) { case 0: aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 1: aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 2: aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; default: assert(0); } } } static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, int skip_block, const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr, const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) { const int rc = 0; const int coeff = coeff_ptr[rc]; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; int64_t tmp; int eob = -1; int32_t tmp32; int dequant; memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); if (!skip_block) { const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS); const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS); tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale), INT16_MIN, INT16_MAX); tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS)); qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale; dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); if (tmp32) eob = 0; } *eob_ptr = eob + 1; } void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { // obsolete skip_block const int skip_block = 0; (void)sc; assert(qparam->log_scale >= 0 && qparam->log_scale < (3)); const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX, p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale); } #if CONFIG_AV1_HIGHBITDEPTH void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; if (qm_ptr != NULL && iqm_ptr != NULL) { highbd_quantize_fp_helper_c( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qparam->log_scale); } } void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; #if !CONFIG_REALTIME_ONLY if (qparam->use_quant_b_adapt) { if (qm_ptr != NULL && iqm_ptr != NULL) { aom_highbd_quantize_b_adaptive_helper_c( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { switch (qparam->log_scale) { case 0: aom_highbd_quantize_b_adaptive( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 1: aom_highbd_quantize_b_32x32_adaptive( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 2: aom_highbd_quantize_b_64x64_adaptive( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; default: assert(0); } } return; } #endif // !CONFIG_REALTIME_ONLY if (qm_ptr != NULL && iqm_ptr != NULL) { aom_highbd_quantize_b_helper_c( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); } else { switch (qparam->log_scale) { case 0: aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 1: aom_highbd_quantize_b_32x32( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; case 2: aom_highbd_quantize_b_64x64( coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); break; default: assert(0); } } } static INLINE void highbd_quantize_dc( const tran_low_t *coeff_ptr, int n_coeffs, int skip_block, const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr, const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) { int eob = -1; memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); if (!skip_block) { const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS); const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS); const int coeff = coeff_ptr[0]; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale); const int64_t tmpw = tmp * wt; const int abs_qcoeff = (int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS)); qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); const int dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); if (abs_qcoeff) eob = 0; } *eob_ptr = eob + 1; } void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { // obsolete skip_block const int skip_block = 0; const qm_val_t *qm_ptr = qparam->qmatrix; const qm_val_t *iqm_ptr = qparam->iqmatrix; (void)sc; highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX, p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale); } void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan, int log_scale) { highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, NULL, NULL, log_scale); } #endif // CONFIG_AV1_HIGHBITDEPTH static void invert_quant(int16_t *quant, int16_t *shift, int d) { uint32_t t; int l, m; t = d; l = get_msb(t); m = 1 + (1 << (16 + l)) / d; *quant = (int16_t)(m - (1 << 16)); *shift = 1 << (16 - l); } static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) { const int quant = av1_dc_quant_QTX(q, 0, bit_depth); switch (bit_depth) { case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80); case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80); case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80); default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); return -1; } } void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q, int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q, int v_ac_delta_q, QUANTS *const quants, Dequants *const deq) { int i, q, quant_QTX; for (q = 0; q < QINDEX_RANGE; q++) { const int qzbin_factor = get_qzbin_factor(q, bit_depth); const int qrounding_factor = q == 0 ? 64 : 48; for (i = 0; i < 2; ++i) { const int qrounding_factor_fp = 64; // y quantizer with TX scale quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth) : av1_ac_quant_QTX(q, 0, bit_depth); invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant_QTX); quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX; quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7; deq->y_dequant_QTX[q][i] = quant_QTX; // u quantizer with TX scale quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth) : av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth); invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i], quant_QTX); quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX; quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7; deq->u_dequant_QTX[q][i] = quant_QTX; // v quantizer with TX scale quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth) : av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth); invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i], quant_QTX); quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX; quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7; deq->v_dequant_QTX[q][i] = quant_QTX; } for (i = 2; i < 8; i++) { // 8: SIMD width quants->y_quant[q][i] = quants->y_quant[q][1]; quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1]; quants->y_round_fp[q][i] = quants->y_round_fp[q][1]; quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1]; quants->y_zbin[q][i] = quants->y_zbin[q][1]; quants->y_round[q][i] = quants->y_round[q][1]; deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1]; quants->u_quant[q][i] = quants->u_quant[q][1]; quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1]; quants->u_round_fp[q][i] = quants->u_round_fp[q][1]; quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1]; quants->u_zbin[q][i] = quants->u_zbin[q][1]; quants->u_round[q][i] = quants->u_round[q][1]; deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1]; quants->v_quant[q][i] = quants->v_quant[q][1]; quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1]; quants->v_round_fp[q][i] = quants->v_round_fp[q][1]; quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1]; quants->v_zbin[q][i] = quants->v_zbin[q][1]; quants->v_round[q][i] = quants->v_round[q][1]; deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1]; } } } static INLINE bool deltaq_params_have_changed( const DeltaQuantParams *prev_deltaq_params, const CommonQuantParams *quant_params) { return (prev_deltaq_params->y_dc_delta_q != quant_params->y_dc_delta_q || prev_deltaq_params->u_dc_delta_q != quant_params->u_dc_delta_q || prev_deltaq_params->v_dc_delta_q != quant_params->v_dc_delta_q || prev_deltaq_params->u_ac_delta_q != quant_params->u_ac_delta_q || prev_deltaq_params->v_ac_delta_q != quant_params->v_ac_delta_q); } void av1_init_quantizer(EncQuantDequantParams *const enc_quant_dequant_params, const CommonQuantParams *quant_params, aom_bit_depth_t bit_depth) { DeltaQuantParams *const prev_deltaq_params = &enc_quant_dequant_params->prev_deltaq_params; // Re-initialize the quantizer only if any of the dc/ac deltaq parameters // change. if (!deltaq_params_have_changed(prev_deltaq_params, quant_params)) return; QUANTS *const quants = &enc_quant_dequant_params->quants; Dequants *const dequants = &enc_quant_dequant_params->dequants; av1_build_quantizer(bit_depth, quant_params->y_dc_delta_q, quant_params->u_dc_delta_q, quant_params->u_ac_delta_q, quant_params->v_dc_delta_q, quant_params->v_ac_delta_q, quants, dequants); // Record the state of deltaq parameters. prev_deltaq_params->y_dc_delta_q = quant_params->y_dc_delta_q; prev_deltaq_params->u_dc_delta_q = quant_params->u_dc_delta_q; prev_deltaq_params->v_dc_delta_q = quant_params->v_dc_delta_q; prev_deltaq_params->u_ac_delta_q = quant_params->u_ac_delta_q; prev_deltaq_params->v_ac_delta_q = quant_params->v_ac_delta_q; } void av1_set_q_index(const EncQuantDequantParams *enc_quant_dequant_params, int qindex, MACROBLOCK *x) { const QUANTS *const quants = &enc_quant_dequant_params->quants; const Dequants *const dequants = &enc_quant_dequant_params->dequants; x->qindex = qindex; x->seg_skip_block = 0; // TODO(angiebird): Find a proper place to init this variable. // Y x->plane[0].quant_QTX = quants->y_quant[qindex]; x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex]; x->plane[0].round_fp_QTX = quants->y_round_fp[qindex]; x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex]; x->plane[0].zbin_QTX = quants->y_zbin[qindex]; x->plane[0].round_QTX = quants->y_round[qindex]; x->plane[0].dequant_QTX = dequants->y_dequant_QTX[qindex]; // U x->plane[1].quant_QTX = quants->u_quant[qindex]; x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex]; x->plane[1].round_fp_QTX = quants->u_round_fp[qindex]; x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex]; x->plane[1].zbin_QTX = quants->u_zbin[qindex]; x->plane[1].round_QTX = quants->u_round[qindex]; x->plane[1].dequant_QTX = dequants->u_dequant_QTX[qindex]; // V x->plane[2].quant_QTX = quants->v_quant[qindex]; x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex]; x->plane[2].round_fp_QTX = quants->v_round_fp[qindex]; x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex]; x->plane[2].zbin_QTX = quants->v_zbin[qindex]; x->plane[2].round_QTX = quants->v_round[qindex]; x->plane[2].dequant_QTX = dequants->v_dequant_QTX[qindex]; } void av1_set_qmatrix(const CommonQuantParams *quant_params, int segment_id, MACROBLOCKD *xd) { const int use_qmatrix = av1_use_qmatrix(quant_params, xd, segment_id); const int qmlevel_y = use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1; const int qmlevel_u = use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1; const int qmlevel_v = use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1; const int qmlevel_ls[MAX_MB_PLANE] = { qmlevel_y, qmlevel_u, qmlevel_v }; for (int i = 0; i < MAX_MB_PLANE; ++i) { const int qmlevel = qmlevel_ls[i]; memcpy(&xd->plane[i].seg_qmatrix[segment_id], quant_params->gqmatrix[qmlevel][i], sizeof(quant_params->gqmatrix[qmlevel][i])); memcpy(&xd->plane[i].seg_iqmatrix[segment_id], quant_params->giqmatrix[qmlevel][i], sizeof(quant_params->giqmatrix[qmlevel][i])); } } void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x, int segment_id, const int do_update) { const AV1_COMMON *const cm = &cpi->common; const CommonQuantParams *const quant_params = &cm->quant_params; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); const FRAME_TYPE frame_type = cm->current_frame.frame_type; int qindex_rd; const int current_qindex = AOMMAX( 0, AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag ? quant_params->base_qindex + x->delta_qindex : quant_params->base_qindex)); const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex); if (cpi->oxcf.sb_qp_sweep) { const int current_rd_qindex = AOMMAX(0, AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag ? quant_params->base_qindex + x->rdmult_delta_qindex : quant_params->base_qindex)); qindex_rd = av1_get_qindex(&cm->seg, segment_id, current_rd_qindex); } else { qindex_rd = qindex; } const int qindex_rdmult = qindex_rd + quant_params->y_dc_delta_q; const int rdmult = av1_compute_rd_mult( qindex_rdmult, cm->seq_params->bit_depth, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); const int qindex_change = x->qindex != qindex; if (qindex_change || do_update) { av1_set_q_index(&cpi->enc_quant_dequant_params, qindex, x); } MACROBLOCKD *const xd = &x->e_mbd; if ((segment_id != x->prev_segment_id) || av1_use_qmatrix(quant_params, xd, segment_id)) { av1_set_qmatrix(quant_params, segment_id, xd); } x->seg_skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP); av1_set_error_per_bit(&x->errorperbit, rdmult); av1_set_sad_per_bit(cpi, &x->sadperbit, qindex_rd); x->prev_segment_id = segment_id; } void av1_frame_init_quantizer(AV1_COMP *cpi) { MACROBLOCK *const x = &cpi->td.mb; MACROBLOCKD *const xd = &x->e_mbd; x->prev_segment_id = -1; av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 1); } static int adjust_hdr_cb_deltaq(int base_qindex) { double baseQp = base_qindex / QP_SCALE_FACTOR; const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET; const double dcbQP = CHROMA_CB_QP_SCALE * chromaQp * QP_SCALE_FACTOR; int dqpCb = (int)(dcbQP + (dcbQP < 0 ? -0.5 : 0.5)); dqpCb = AOMMIN(0, dqpCb); dqpCb = (int)CLIP(dqpCb, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR); return dqpCb; } static int adjust_hdr_cr_deltaq(int base_qindex) { double baseQp = base_qindex / QP_SCALE_FACTOR; const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET; const double dcrQP = CHROMA_CR_QP_SCALE * chromaQp * QP_SCALE_FACTOR; int dqpCr = (int)(dcrQP + (dcrQP < 0 ? -0.5 : 0.5)); dqpCr = AOMMIN(0, dqpCr); dqpCr = (int)CLIP(dqpCr, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR); return dqpCr; } void av1_set_quantizer(AV1_COMMON *const cm, int min_qmlevel, int max_qmlevel, int q, int enable_chroma_deltaq, int enable_hdr_deltaq) { // quantizer has to be reinitialized with av1_init_quantizer() if any // delta_q changes. CommonQuantParams *quant_params = &cm->quant_params; quant_params->base_qindex = AOMMAX(cm->delta_q_info.delta_q_present_flag, q); quant_params->y_dc_delta_q = 0; if (enable_chroma_deltaq) { // TODO(aomedia:2717): need to design better delta quant_params->u_dc_delta_q = 2; quant_params->u_ac_delta_q = 2; quant_params->v_dc_delta_q = 2; quant_params->v_ac_delta_q = 2; } else { quant_params->u_dc_delta_q = 0; quant_params->u_ac_delta_q = 0; quant_params->v_dc_delta_q = 0; quant_params->v_ac_delta_q = 0; } // following section 8.3.2 in T-REC-H.Sup15 document // to apply to AV1 qindex in the range of [0, 255] if (enable_hdr_deltaq) { int dqpCb = adjust_hdr_cb_deltaq(quant_params->base_qindex); int dqpCr = adjust_hdr_cr_deltaq(quant_params->base_qindex); quant_params->u_dc_delta_q = quant_params->u_ac_delta_q = dqpCb; quant_params->v_dc_delta_q = quant_params->v_ac_delta_q = dqpCr; if (dqpCb != dqpCr) { cm->seq_params->separate_uv_delta_q = 1; } } quant_params->qmatrix_level_y = aom_get_qmlevel(quant_params->base_qindex, min_qmlevel, max_qmlevel); quant_params->qmatrix_level_u = aom_get_qmlevel(quant_params->base_qindex + quant_params->u_ac_delta_q, min_qmlevel, max_qmlevel); if (!cm->seq_params->separate_uv_delta_q) quant_params->qmatrix_level_v = quant_params->qmatrix_level_u; else quant_params->qmatrix_level_v = aom_get_qmlevel(quant_params->base_qindex + quant_params->v_ac_delta_q, min_qmlevel, max_qmlevel); } // Table that converts 0-63 Q-range values passed in outside to the Qindex // range used internally. static const int quantizer_to_qindex[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, }; int av1_quantizer_to_qindex(int quantizer) { return quantizer_to_qindex[quantizer]; } int av1_qindex_to_quantizer(int qindex) { int quantizer; for (quantizer = 0; quantizer < 64; ++quantizer) if (quantizer_to_qindex[quantizer] >= qindex) return quantizer; return 63; }