/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "aom/aom_encoder.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/bitwriter_buffer.h" #include "aom_mem/aom_mem.h" #include "aom_ports/bitops.h" #include "aom_ports/mem_ops.h" #if CONFIG_BITSTREAM_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG #include "av1/common/cdef.h" #include "av1/common/cfl.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/common/tile_common.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/ethread.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/palette.h" #include "av1/encoder/pickrst.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/tokenize.h" #define ENC_MISMATCH_DEBUG 0 #define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker #define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile static INLINE void write_uniform(aom_writer *w, int n, int v) { const int l = get_unsigned_bits(n); const int m = (1 << l) - n; if (l == 0) return; if (v < m) { aom_write_literal(w, v, l - 1); } else { aom_write_literal(w, m + ((v - m) >> 1), l - 1); aom_write_literal(w, (v - m) & 1, 1); } } #if !CONFIG_REALTIME_ONLY static AOM_INLINE void loop_restoration_write_sb_coeffs( const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx, aom_writer *const w, int plane, FRAME_COUNTS *counts); #endif static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, const MB_MODE_INFO *mi, const MB_MODE_INFO *above_mi, const MB_MODE_INFO *left_mi, PREDICTION_MODE mode, aom_writer *w) { assert(!is_intrabc_block(mi)); (void)mi; aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), INTRA_MODES); } static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); if (mode != NEWMV) { const int16_t zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); if (mode != GLOBALMV) { int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); } } } static AOM_INLINE void write_drl_idx( FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { assert(mbmi->ref_mv_idx < 3); const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; if (new_mv) { int idx; for (idx = 0; idx < 2; ++idx) { if (mbmi_ext_frame->ref_mv_count > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx); aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], 2); if (mbmi->ref_mv_idx == idx) return; } } return; } if (have_nearmv_in_inter_mode(mbmi->mode)) { int idx; // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. for (idx = 1; idx < 3; ++idx) { if (mbmi_ext_frame->ref_mv_count > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx); aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), ec_ctx->drl_cdf[drl_ctx], 2); if (mbmi->ref_mv_idx == (idx - 1)) return; } } return; } } static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, PREDICTION_MODE mode, const int16_t mode_ctx) { assert(is_inter_compound_mode(mode)); aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], INTER_COMPOUND_MODES); } static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, TX_SIZE tx_size, int depth, int blk_row, int blk_col, aom_writer *w) { FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0); const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (depth == MAX_VARTX_DEPTH) { txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); return; } const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, mbmi->bsize, tx_size); const int txb_size_index = av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col); const int write_txfm_partition = tx_size == mbmi->inter_tx_size[txb_size_index]; if (write_txfm_partition) { aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); // TODO(yuec): set correct txfm partition update for qttx } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); if (sub_txs == TX_4X4) { txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, sub_txs, tx_size); return; } assert(bsw > 0 && bsh > 0); for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { const int offsetr = blk_row + row; for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { const int offsetc = blk_col + col; write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); } } } } static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) { const MB_MODE_INFO *const mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (block_signals_txsize(bsize)) { const TX_SIZE tx_size = mbmi->tx_size; const int tx_size_ctx = get_tx_size_context(xd); const int depth = tx_size_to_depth(tx_size, bsize); const int max_depths = bsize_to_max_depth(bsize); const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); assert(depth >= 0 && depth <= max_depths); assert(!is_inter_block(mbmi)); assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], max_depths + 1); } } static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, uint8_t segment_id, const MB_MODE_INFO *mi, aom_writer *w) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int skip_txfm = mi->skip_txfm; const int ctx = av1_get_skip_txfm_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2); return skip_txfm; } } static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, uint8_t segment_id, const MB_MODE_INFO *mi, aom_writer *w) { if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 0; } const int skip_mode = mi->skip_mode; if (!is_comp_ref_allowed(mi->bsize)) { assert(!skip_mode); return 0; } if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { // These features imply single-reference mode, while skip mode implies // compound reference. Hence, the two are mutually exclusive. // In other words, skip_mode is implicitly 0 here. assert(!skip_mode); return 0; } const int ctx = av1_get_skip_mode_context(xd); aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); return skip_mode; } static AOM_INLINE void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, uint8_t segment_id, aom_writer *w, const int is_inter) { if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { assert(is_inter); return; } const int ctx = av1_get_intra_inter_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); } } static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, aom_writer *w) { MOTION_MODE last_motion_mode_allowed = cm->features.switchable_motion_mode ? motion_mode_allowed(cm->global_motion, xd, mbmi, cm->features.allow_warped_motion) : SIMPLE_TRANSLATION; assert(mbmi->motion_mode <= last_motion_mode_allowed); switch (last_motion_mode_allowed) { case SIMPLE_TRANSLATION: break; case OBMC_CAUSAL: aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, xd->tile_ctx->obmc_cdf[mbmi->bsize], 2); break; default: aom_write_symbol(w, mbmi->motion_mode, xd->tile_ctx->motion_mode_cdf[mbmi->bsize], MOTION_MODES); } } static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex, aom_writer *w) { int sign = delta_qindex < 0; int abs = sign ? -delta_qindex : delta_qindex; int rem_bits, thr; int smallval = abs < DELTA_Q_SMALL ? 1 : 0; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1); if (!smallval) { rem_bits = get_msb(abs - 1); thr = (1 << rem_bits) + 1; aom_write_literal(w, rem_bits - 1, 3); aom_write_literal(w, abs - thr, rem_bits); } if (abs > 0) { aom_write_bit(w, sign); } } static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, int lf_id, int delta_lflevel, int delta_lf_multi, aom_writer *w) { int sign = delta_lflevel < 0; int abs = sign ? -delta_lflevel : delta_lflevel; int rem_bits, thr; int smallval = abs < DELTA_LF_SMALL ? 1 : 0; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; if (delta_lf_multi) { assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2)); aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); } else { aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, DELTA_LF_PROBS + 1); } if (!smallval) { rem_bits = get_msb(abs - 1); thr = (1 << rem_bits) + 1; aom_write_literal(w, rem_bits - 1, 3); aom_write_literal(w, abs - thr, rem_bits); } if (abs > 0) { aom_write_bit(w, sign); } } static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp, int n, int num, MapCdf map_pb_cdf) { const TokenExtra *p = *tp; const int palette_size_idx = n - PALETTE_MIN_SIZE; write_uniform(w, n, p->token); // The first color index. ++p; --num; for (int i = 0; i < num; ++i) { assert((p->color_ctx >= 0) && (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS)); aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx]; aom_write_symbol(w, p->token, color_map_cdf, n); ++p; } *tp = p; } static AOM_INLINE void pack_txb_tokens( aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp, const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block, int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) { const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE plane_tx_size = plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, pd->subsampling_y) : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, blk_col)]; if (tx_size == plane_tx_size || plane) { av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size); #if CONFIG_RD_DEBUG TOKEN_STATS tmp_token_stats; init_token_stats(&tmp_token_stats); token_stats->cost += tmp_token_stats.cost; #endif } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int step = bsh * bsw; const int row_end = AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); const int col_end = AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); assert(bsw > 0 && bsh > 0); for (int r = 0; r < row_end; r += bsh) { const int offsetr = blk_row + r; for (int c = 0; c < col_end; c += bsw) { const int offsetc = blk_col + c; pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, bit_depth, block, offsetr, offsetc, sub_txs, token_stats); block += step; } } } } static INLINE void set_spatial_segment_id( const CommonModeInfoParams *const mi_params, uint8_t *segment_ids, BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) { const int mi_offset = mi_row * mi_params->mi_cols + mi_col; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); const int mi_stride = mi_params->mi_cols; set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id); } int av1_neg_interleave(int x, int ref, int max) { assert(x < max); const int diff = x - ref; if (!ref) return x; if (ref >= (max - 1)) return -x + max - 1; if (2 * ref < max) { if (abs(diff) <= ref) { if (diff > 0) return (diff << 1) - 1; else return ((-diff) << 1); } return x; } else { if (abs(diff) < (max - ref)) { if (diff > 0) return (diff << 1) - 1; else return ((-diff) << 1); } return (max - x) - 1; } } static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd, const MB_MODE_INFO *const mbmi, aom_writer *w, const struct segmentation *seg, struct segmentation_probs *segp, int skip_txfm) { if (!seg->enabled || !seg->update_map) return; AV1_COMMON *const cm = &cpi->common; int cdf_num; const uint8_t pred = av1_get_spatial_seg_pred( cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; if (skip_txfm) { // Still need to transmit tx size for intra blocks even if skip_txfm is // true. Changing segment_id may make the tx size become invalid, e.g // changing from lossless to lossy. assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment); set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize, mi_row, mi_col, pred); set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize, mi_row, mi_col, pred); /* mbmi is read only but we need to update segment_id */ ((MB_MODE_INFO *)mbmi)->segment_id = pred; return; } const int coded_id = av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize, mi_row, mi_col, mbmi->segment_id); } #define WRITE_REF_BIT(bname, pname) \ aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) // This function encodes the reference frame static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, aom_writer *w) { const MB_MODE_INFO *const mbmi = xd->mi[0]; const int is_compound = has_second_ref(mbmi); const uint8_t segment_id = mbmi->segment_id; // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { assert(!is_compound); assert(mbmi->ref_frame[0] == get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { assert(!is_compound); assert(mbmi->ref_frame[0] == LAST_FRAME); } else { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { if (is_comp_ref_allowed(mbmi->bsize)) aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2); } else { assert((!is_compound) == (cm->current_frame.reference_mode == SINGLE_REFERENCE)); } if (is_compound) { const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) ? UNIDIR_COMP_REFERENCE : BIDIR_COMP_REFERENCE; aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), 2); if (comp_ref_type == UNIDIR_COMP_REFERENCE) { const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; WRITE_REF_BIT(bit, uni_comp_ref_p); if (!bit) { assert(mbmi->ref_frame[0] == LAST_FRAME); const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || mbmi->ref_frame[1] == GOLDEN_FRAME; WRITE_REF_BIT(bit1, uni_comp_ref_p1); if (bit1) { const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; WRITE_REF_BIT(bit2, uni_comp_ref_p2); } } else { assert(mbmi->ref_frame[1] == ALTREF_FRAME); } return; } assert(comp_ref_type == BIDIR_COMP_REFERENCE); const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || mbmi->ref_frame[0] == LAST3_FRAME); WRITE_REF_BIT(bit, comp_ref_p); if (!bit) { const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; WRITE_REF_BIT(bit1, comp_ref_p1); } else { const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; WRITE_REF_BIT(bit2, comp_ref_p2); } const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; WRITE_REF_BIT(bit_bwd, comp_bwdref_p); if (!bit_bwd) { WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); } } else { const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && mbmi->ref_frame[0] >= BWDREF_FRAME); WRITE_REF_BIT(bit0, single_ref_p1); if (bit0) { const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; WRITE_REF_BIT(bit1, single_ref_p2); if (!bit1) { WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); } } else { const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[0] == GOLDEN_FRAME); WRITE_REF_BIT(bit2, single_ref_p3); if (!bit2) { const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; WRITE_REF_BIT(bit3, single_ref_p4); } else { const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; WRITE_REF_BIT(bit4, single_ref_p5); } } } } } static AOM_INLINE void write_filter_intra_mode_info( const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, aom_writer *w) { if (av1_filter_intra_allowed(cm, mbmi)) { aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2); if (mbmi->filter_intra_mode_info.use_filter_intra) { const FILTER_INTRA_MODE mode = mbmi->filter_intra_mode_info.filter_intra_mode; aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES); } } } static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta, aom_cdf_prob *cdf) { aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, 2 * MAX_ANGLE_DELTA + 1); } static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm, ThreadData *td, aom_writer *w) { const MACROBLOCKD *xd = &td->mb.e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (!av1_is_interp_needed(xd)) { int_interpfilters filters = av1_broadcast_interp_filter( av1_unswitchable_filter(cm->features.interp_filter)); assert(mbmi->interp_filters.as_int == filters.as_int); (void)filters; return; } if (cm->features.interp_filter == SWITCHABLE) { int dir; for (dir = 0; dir < 2; ++dir) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS); ++td->interp_filter_selected[filter]; if (cm->seq_params->enable_dual_filter == 0) return; } } } // Transmit color values with delta encoding. Write the first value as // literal, and the deltas between each value and the previous one. "min_val" is // the smallest possible value of the deltas. static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num, int bit_depth, int min_val, aom_writer *w) { if (num <= 0) return; assert(colors[0] < (1 << bit_depth)); aom_write_literal(w, colors[0], bit_depth); if (num == 1) return; int max_delta = 0; int deltas[PALETTE_MAX_SIZE]; memset(deltas, 0, sizeof(deltas)); for (int i = 1; i < num; ++i) { assert(colors[i] < (1 << bit_depth)); const int delta = colors[i] - colors[i - 1]; deltas[i - 1] = delta; assert(delta >= min_val); if (delta > max_delta) max_delta = delta; } const int min_bits = bit_depth - 3; int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); assert(bits <= bit_depth); int range = (1 << bit_depth) - colors[0] - min_val; aom_write_literal(w, bits - min_bits, 2); for (int i = 0; i < num - 1; ++i) { aom_write_literal(w, deltas[i] - min_val, bits); range -= deltas[i]; bits = AOMMIN(bits, av1_ceil_log2(range)); } } // Transmit luma palette color values. First signal if each color in the color // cache is used. Those colors that are not in the cache are transmitted with // delta encoding. static AOM_INLINE void write_palette_colors_y( const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, int bit_depth, aom_writer *w) { const int n = pmi->palette_size[0]; uint16_t color_cache[2 * PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 0, color_cache); int out_cache_colors[PALETTE_MAX_SIZE]; uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; const int n_out_cache = av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, cache_color_found, out_cache_colors); int n_in_cache = 0; for (int i = 0; i < n_cache && n_in_cache < n; ++i) { const int found = cache_color_found[i]; aom_write_bit(w, found); n_in_cache += found; } assert(n_in_cache + n_out_cache == n); delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); } // Write chroma palette color values. U channel is handled similarly to the luma // channel. For v channel, either use delta encoding or transmit raw values // directly, whichever costs less. static AOM_INLINE void write_palette_colors_uv( const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, int bit_depth, aom_writer *w) { const int n = pmi->palette_size[1]; const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; // U channel colors. uint16_t color_cache[2 * PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 1, color_cache); int out_cache_colors[PALETTE_MAX_SIZE]; uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; const int n_out_cache = av1_index_color_cache( color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); int n_in_cache = 0; for (int i = 0; i < n_cache && n_in_cache < n; ++i) { const int found = cache_color_found[i]; aom_write_bit(w, found); n_in_cache += found; } delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); // V channel colors. Don't use color cache as the colors are not sorted. const int max_val = 1 << bit_depth; int zero_count = 0, min_bits_v = 0; int bits_v = av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); const int rate_using_delta = 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; const int rate_using_raw = bit_depth * n; if (rate_using_delta < rate_using_raw) { // delta encoding assert(colors_v[0] < (1 << bit_depth)); aom_write_bit(w, 1); aom_write_literal(w, bits_v - min_bits_v, 2); aom_write_literal(w, colors_v[0], bit_depth); for (int i = 1; i < n; ++i) { assert(colors_v[i] < (1 << bit_depth)); if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. aom_write_literal(w, 0, bits_v); continue; } const int delta = abs((int)colors_v[i] - colors_v[i - 1]); const int sign_bit = colors_v[i] < colors_v[i - 1]; if (delta <= max_val - delta) { aom_write_literal(w, delta, bits_v); aom_write_bit(w, sign_bit); } else { aom_write_literal(w, max_val - delta, bits_v); aom_write_bit(w, !sign_bit); } } } else { // Transmit raw values. aom_write_bit(w, 0); for (int i = 0; i < n; ++i) { assert(colors_v[i] < (1 << bit_depth)); aom_write_literal(w, colors_v[i], bit_depth); } } } static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, aom_writer *w) { const int num_planes = av1_num_planes(cm); const BLOCK_SIZE bsize = mbmi->bsize; assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize)); const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); if (mbmi->mode == DC_PRED) { const int n = pmi->palette_size[0]; const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); aom_write_symbol( w, n > 0, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); if (n > 0) { aom_write_symbol(w, n - PALETTE_MIN_SIZE, xd->tile_ctx->palette_y_size_cdf[bsize_ctx], PALETTE_SIZES); write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w); } } const int uv_dc_pred = num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref; if (uv_dc_pred) { const int n = pmi->palette_size[1]; const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); aom_write_symbol(w, n > 0, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); if (n > 0) { aom_write_symbol(w, n - PALETTE_MIN_SIZE, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], PALETTE_SIZES); write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w); } } } void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) { MB_MODE_INFO *mbmi = xd->mi[0]; const FeatureFlags *const features = &cm->features; const int is_inter = is_inter_block(mbmi); if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && !mbmi->skip_txfm && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; const TxSetType tx_set_type = av1_get_ext_tx_set_type( tx_size, is_inter, features->reduced_tx_set_used); const int eset = get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used); // eset == 0 should correspond to a set with only DCT_DCT and there // is no need to send the tx_type assert(eset > 0); assert(av1_ext_tx_used[tx_set_type][tx_type]); if (is_inter) { aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], av1_num_ext_tx_set[tx_set_type]); } else { PREDICTION_MODE intra_dir; if (mbmi->filter_intra_mode_info.use_filter_intra) intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; else intra_dir = mbmi->mode; aom_write_symbol( w, av1_ext_tx_ind[tx_set_type][tx_type], ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], av1_num_ext_tx_set[tx_set_type]); } } } static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, PREDICTION_MODE mode, aom_writer *w) { aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], INTRA_MODES); } static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, UV_PREDICTION_MODE uv_mode, PREDICTION_MODE y_mode, CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) { aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], UV_INTRA_MODES - !cfl_allowed); } static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, uint8_t idx, int8_t joint_sign, aom_writer *w) { aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); // Magnitudes are only signaled for nonzero codes. if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); } if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); } } static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_writer *w, int skip) { if (cm->features.coded_lossless || cm->features.allow_intrabc) return; // At the start of a superblock, mark that we haven't yet written CDEF // strengths for any of the CDEF units contained in this superblock. const int sb_mask = (cm->seq_params->mib_size - 1); const int mi_row_in_sb = (xd->mi_row & sb_mask); const int mi_col_in_sb = (xd->mi_col & sb_mask); if (mi_row_in_sb == 0 && mi_col_in_sb == 0) { xd->cdef_transmitted[0] = xd->cdef_transmitted[1] = xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false; } // CDEF unit size is 64x64 irrespective of the superblock size. const int cdef_size = 1 << (6 - MI_SIZE_LOG2); // Find index of this CDEF unit in this superblock. const int index_mask = cdef_size; const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0); const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0); const int index = (cm->seq_params->sb_size == BLOCK_128X128) ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb : 0; // Write CDEF strength to the first non-skip coding block in this CDEF unit. if (!xd->cdef_transmitted[index] && !skip) { // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO // of the 1st block in this CDEF unit. const int first_block_mask = ~(cdef_size - 1); const CommonModeInfoParams *const mi_params = &cm->mi_params; const int grid_idx = get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask, xd->mi_col & first_block_mask); const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx]; aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits); xd->cdef_transmitted[index] = true; } } static AOM_INLINE void write_inter_segment_id( AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w, const struct segmentation *const seg, struct segmentation_probs *const segp, int skip, int preskip) { MB_MODE_INFO *const mbmi = xd->mi[0]; AV1_COMMON *const cm = &cpi->common; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; if (seg->update_map) { if (preskip) { if (!seg->segid_preskip) return; } else { if (seg->segid_preskip) return; if (skip) { write_segment_id(cpi, xd, mbmi, w, seg, segp, 1); if (seg->temporal_update) mbmi->seg_id_predicted = 0; return; } } if (seg->temporal_update) { const int pred_flag = mbmi->seg_id_predicted; aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); aom_write_symbol(w, pred_flag, pred_cdf, 2); if (!pred_flag) { write_segment_id(cpi, xd, mbmi, w, seg, segp, 0); } if (pred_flag) { set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize, mi_row, mi_col, mbmi->segment_id); } } else { write_segment_id(cpi, xd, mbmi, w, seg, segp, 0); } } } // If delta q is present, writes delta_q index. // Also writes delta_q loop filter levels, if present. static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd, int skip, aom_writer *w) { const DeltaQInfo *const delta_q_info = &cm->delta_q_info; if (delta_q_info->delta_q_present_flag) { const MB_MODE_INFO *const mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; const int super_block_upper_left = ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) && ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0); if ((bsize != cm->seq_params->sb_size || skip == 0) && super_block_upper_left) { assert(mbmi->current_qindex > 0); const int reduced_delta_qindex = (mbmi->current_qindex - xd->current_base_qindex) / delta_q_info->delta_q_res; write_delta_qindex(xd, reduced_delta_qindex, w); xd->current_base_qindex = mbmi->current_qindex; if (delta_q_info->delta_lf_present_flag) { if (delta_q_info->delta_lf_multi) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { int reduced_delta_lflevel = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / delta_q_info->delta_lf_res; write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w); xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; } } else { int reduced_delta_lflevel = (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / delta_q_info->delta_lf_res; write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w); xd->delta_lf_from_base = mbmi->delta_lf_from_base; } } } } } static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm, MACROBLOCKD *const xd, int is_keyframe, aom_writer *w) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const MB_MODE_INFO *const mbmi = xd->mi[0]; const PREDICTION_MODE mode = mbmi->mode; const BLOCK_SIZE bsize = mbmi->bsize; // Y mode. if (is_keyframe) { const MB_MODE_INFO *const above_mi = xd->above_mbmi; const MB_MODE_INFO *const left_mi = xd->left_mbmi; write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w); } else { write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); } // Y angle delta. const int use_angle_delta = av1_use_angle_delta(bsize); if (use_angle_delta && av1_is_directional_mode(mode)) { write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], ec_ctx->angle_delta_cdf[mode - V_PRED]); } // UV mode and UV angle delta. if (!cm->seq_params->monochrome && xd->is_chroma_ref) { const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); if (uv_mode == UV_CFL_PRED) write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode); if (use_angle_delta && av1_is_directional_mode(intra_mode)) { write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], ec_ctx->angle_delta_cdf[intra_mode - V_PRED]); } } // Palette. if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { write_palette_mode_info(cm, xd, mbmi, w); } // Filter intra. write_filter_intra_mode_info(cm, xd, mbmi, w); } static INLINE int16_t mode_context_analyzer( const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) { if (rf[1] <= INTRA_FRAME) return mode_context; const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK; const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN( newmv_ctx, COMP_NEWMV_CTXS - 1)]; return comp_ctx; } static INLINE int_mv get_ref_mv_from_stack( int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) { const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack; if (ref_frame[1] > INTRA_FRAME) { assert(ref_idx == 0 || ref_idx == 1); return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv : curr_ref_mv_stack[ref_mv_idx].this_mv; } assert(ref_idx == 0); return ref_mv_idx < mbmi_ext_frame->ref_mv_count ? curr_ref_mv_stack[ref_mv_idx].this_mv : mbmi_ext_frame->global_mvs[ref_frame_type]; } static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) { const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; int ref_mv_idx = mbmi->ref_mv_idx; if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) { assert(has_second_ref(mbmi)); ref_mv_idx += 1; } return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, x->mbmi_ext_frame); } static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td, aom_writer *w) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const struct segmentation *const seg = &cm->seg; struct segmentation_probs *const segp = &ec_ctx->seg; const MB_MODE_INFO *const mbmi = xd->mi[0]; const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame; const PREDICTION_MODE mode = mbmi->mode; const uint8_t segment_id = mbmi->segment_id; const BLOCK_SIZE bsize = mbmi->bsize; const int allow_hp = cm->features.allow_high_precision_mv; const int is_inter = is_inter_block(mbmi); const int is_compound = has_second_ref(mbmi); int ref; write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1); write_skip_mode(cm, xd, segment_id, mbmi, w); assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm)); const int skip = mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0); write_cdef(cm, xd, w, skip); write_delta_q_params(cm, xd, skip, w); if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); if (mbmi->skip_mode) return; if (!is_inter) { write_intra_prediction_modes(cm, xd, 0, w); } else { int16_t mode_ctx; av1_collect_neighbors_ref_counts(xd); write_ref_frames(cm, xd, w); mode_ctx = mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame); // If segment skip is not enabled code the mode. if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (is_inter_compound_mode(mode)) write_inter_compound_mode(xd, w, mode, mode_ctx); else if (is_inter_singleref_mode(mode)) write_inter_mode(w, mode, ec_ctx, mode_ctx); if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w); else assert(mbmi->ref_mv_idx == 0); } if (mode == NEWMV || mode == NEW_NEWMV) { for (ref = 0; ref < 1 + is_compound; ++ref) { nmv_context *nmvc = &ec_ctx->nmvc; const int_mv ref_mv = get_ref_mv(x, ref); av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, allow_hp); } } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { nmv_context *nmvc = &ec_ctx->nmvc; const int_mv ref_mv = get_ref_mv(x, 1); av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp); } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { nmv_context *nmvc = &ec_ctx->nmvc; const int_mv ref_mv = get_ref_mv(x, 0); av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp); } if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE && cpi->common.seq_params->enable_interintra_compound && is_interintra_allowed(mbmi)) { const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; const int bsize_group = size_group_lookup[bsize]; aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); if (interintra) { aom_write_symbol(w, mbmi->interintra_mode, ec_ctx->interintra_mode_cdf[bsize_group], INTERINTRA_MODES); if (av1_is_wedge_used(bsize)) { aom_write_symbol(w, mbmi->use_wedge_interintra, ec_ctx->wedge_interintra_cdf[bsize], 2); if (mbmi->use_wedge_interintra) { aom_write_symbol(w, mbmi->interintra_wedge_index, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); } } } } if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w); // First write idx to indicate current compound inter prediction mode group // Group A (0): dist_wtd_comp, compound_average // Group B (1): interintra, compound_diffwtd, wedge if (has_second_ref(mbmi)) { const int masked_compound_used = is_any_masked_compound_used(bsize) && cm->seq_params->enable_masked_compound; if (masked_compound_used) { const int ctx_comp_group_idx = get_comp_group_idx_context(xd); aom_write_symbol(w, mbmi->comp_group_idx, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); } else { assert(mbmi->comp_group_idx == 0); } if (mbmi->comp_group_idx == 0) { if (mbmi->compound_idx) assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) { const int comp_index_ctx = get_comp_index_context(cm, xd); aom_write_symbol(w, mbmi->compound_idx, ec_ctx->compound_index_cdf[comp_index_ctx], 2); } else { assert(mbmi->compound_idx == 1); } } else { assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && mbmi->motion_mode == SIMPLE_TRANSLATION); assert(masked_compound_used); // compound_diffwtd, wedge assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || mbmi->interinter_comp.type == COMPOUND_DIFFWTD); if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE, ec_ctx->compound_type_cdf[bsize], MASKED_COMPOUND_TYPES); if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); aom_write_symbol(w, mbmi->interinter_comp.wedge_index, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); aom_write_bit(w, mbmi->interinter_comp.wedge_sign); } else { assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); aom_write_literal(w, mbmi->interinter_comp.mask_type, MAX_DIFFWTD_MASK_BITS); } } } write_mb_interp_filter(cm, td, w); } } static AOM_INLINE void write_intrabc_info( MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { const MB_MODE_INFO *const mbmi = xd->mi[0]; int use_intrabc = is_intrabc_block(mbmi); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); if (use_intrabc) { assert(mbmi->mode == DC_PRED); assert(mbmi->uv_mode == UV_DC_PRED); assert(mbmi->motion_mode == SIMPLE_TRANSLATION); int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv; av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); } } static AOM_INLINE void write_mb_modes_kf( AV1_COMP *cpi, MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { AV1_COMMON *const cm = &cpi->common; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const struct segmentation *const seg = &cm->seg; struct segmentation_probs *const segp = &ec_ctx->seg; const MB_MODE_INFO *const mbmi = xd->mi[0]; if (seg->segid_preskip && seg->update_map) write_segment_id(cpi, xd, mbmi, w, seg, segp, 0); const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); if (!seg->segid_preskip && seg->update_map) write_segment_id(cpi, xd, mbmi, w, seg, segp, skip); write_cdef(cm, xd, w, skip); write_delta_q_params(cm, xd, skip, w); if (av1_allow_intrabc(cm)) { write_intrabc_info(xd, mbmi_ext_frame, w); if (is_intrabc_block(mbmi)) return; } write_intra_prediction_modes(cm, xd, 1, w); } #if CONFIG_RD_DEBUG static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) { printf("\nmi->mi_row == %d\n", mi->mi_row); printf("&& mi->mi_col == %d\n", mi->mi_col); printf("&& mi->bsize == %d\n", mi->bsize); printf("&& mi->tx_size == %d\n", mi->tx_size); printf("&& mi->mode == %d\n", mi->mode); } static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, int plane) { if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); return 1; } return 0; } #endif #if ENC_MISMATCH_DEBUG static AOM_INLINE void enc_dump_logs( const AV1_COMMON *const cm, const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) { const MB_MODE_INFO *const mbmi = *( cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col)); const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize, mbmi_ext_info->stride); if (is_inter_block(mbmi)) { #define FRAME_TO_CHECK 11 if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) { const BLOCK_SIZE bsize = mbmi->bsize; int_mv mv[2] = { 0 }; const int is_comp_ref = has_second_ref(mbmi); for (int ref = 0; ref < 1 + is_comp_ref; ++ref) mv[ref].as_mv = mbmi->mv[ref].as_mv; if (!is_comp_ref) { mv[1].as_int = 0; } const int16_t mode_ctx = is_comp_ref ? 0 : mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame); const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; int16_t zeromv_ctx = -1; int16_t refmv_ctx = -1; if (mbmi->mode != NEWMV) { zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mbmi->mode != GLOBALMV) refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; } printf( "=== ENCODER ===: " "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx, refmv_ctx, mbmi->tx_size); } } } #endif // ENC_MISMATCH_DEBUG static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td, aom_writer *w) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &td->mb.e_mbd; MB_MODE_INFO *m = xd->mi[0]; if (frame_is_intra_only(cm)) { write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w); } else { // has_subpel_mv_component needs the ref frame buffers set up to look // up if they are scaled. has_subpel_mv_component is in turn needed by // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); #if ENC_MISMATCH_DEBUG enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col); #endif // ENC_MISMATCH_DEBUG pack_inter_mode_mvs(cpi, td, w); } } static AOM_INLINE void write_inter_txb_coeff( AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi, aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end, TOKEN_STATS *token_stats, const int row, const int col, int *block, const int plane) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize = mbmi->bsize; assert(bsize < BLOCK_SIZES_ALL); const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); assert(plane_bsize < BLOCK_SIZES_ALL); const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); const int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; const int bkw = tx_size_wide_unit[max_tx_size]; const int bkh = tx_size_high_unit[max_tx_size]; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, ss_x, ss_y); const int num_4x4_w = mi_size_wide[plane_bsize]; const int num_4x4_h = mi_size_high[plane_bsize]; const int mu_blocks_wide = mi_size_wide[max_unit_bsize]; const int mu_blocks_high = mi_size_high[max_unit_bsize]; const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h); const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w); for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) { for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) { pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, cm->seq_params->bit_depth, *block, blk_row, blk_col, max_tx_size, token_stats); *block += step; } } } static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x, aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; assert(!mbmi->skip_txfm); const int is_inter = is_inter_block(mbmi); if (!is_inter) { av1_write_intra_coeffs_mb(cm, x, w, bsize); } else { int block[MAX_MB_PLANE] = { 0 }; assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, xd->plane[0].subsampling_y)); const int num_4x4_w = mi_size_wide[bsize]; const int num_4x4_h = mi_size_high[bsize]; TOKEN_STATS token_stats; init_token_stats(&token_stats); const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, xd->plane[0].subsampling_y)); int mu_blocks_wide = mi_size_wide[max_unit_bsize]; int mu_blocks_high = mi_size_high[max_unit_bsize]; mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); const int num_planes = av1_num_planes(cm); for (int row = 0; row < num_4x4_h; row += mu_blocks_high) { for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) { for (int plane = 0; plane < num_planes; ++plane) { if (plane && !xd->is_chroma_ref) break; write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row, col, &block[plane], plane); } } } #if CONFIG_RD_DEBUG for (int plane = 0; plane < num_planes; ++plane) { if (mbmi->bsize >= BLOCK_8X8 && rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { dump_mode_info(mbmi); assert(0); } } #endif // CONFIG_RD_DEBUG } } static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td, const TileInfo *const tile, aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end, int mi_row, int mi_col) { const AV1_COMMON *cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; MACROBLOCKD *xd = &td->mb.e_mbd; FRAME_CONTEXT *tile_ctx = xd->tile_ctx; const int grid_idx = mi_row * mi_params->mi_stride + mi_col; xd->mi = mi_params->mi_grid_base + grid_idx; td->mb.mbmi_ext_frame = cpi->mbmi_ext_info.frame_base + get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize, cpi->mbmi_ext_info.stride); xd->tx_type_map = mi_params->tx_type_map + grid_idx; xd->tx_type_map_stride = mi_params->mi_stride; const MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; assert(bsize <= cm->seq_params->sb_size || (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL)); const int bh = mi_size_high[bsize]; const int bw = mi_size_wide[bsize]; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, mi_params->mi_cols); xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); write_mbmi_b(cpi, td, w); for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) { const uint8_t palette_size_plane = mbmi->palette_mode_info.palette_size[plane]; assert(!mbmi->skip_mode || !palette_size_plane); if (palette_size_plane > 0) { assert(mbmi->use_intrabc == 0); assert(av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize)); assert(!plane || xd->is_chroma_ref); int rows, cols; av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows, &cols); assert(*tok < tok_end); MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf : tile_ctx->palette_y_color_index_cdf; pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf); } } const int is_inter_tx = is_inter_block(mbmi); const int skip_txfm = mbmi->skip_txfm; const uint8_t segment_id = mbmi->segment_id; if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) { if (is_inter_tx) { // This implies skip flag is 0. const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); const int txbh = tx_size_high_unit[max_tx_size]; const int txbw = tx_size_wide_unit[max_tx_size]; const int width = mi_size_wide[bsize]; const int height = mi_size_high[bsize]; for (int idy = 0; idy < height; idy += txbh) { for (int idx = 0; idx < width; idx += txbw) { write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); } } } else { write_selected_tx_size(xd, w); set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd); } } else { set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, skip_txfm && is_inter_tx, xd); } if (!mbmi->skip_txfm) { int start = aom_tell_size(w); write_tokens_b(cpi, &td->mb, w, tok, tok_end); const int end = aom_tell_size(w); td->coefficient_size += end - start; } } static AOM_INLINE void write_partition(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, int hbs, int mi_row, int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, aom_writer *w) { const int is_partition_point = bsize >= BLOCK_8X8; if (!is_partition_point) return; const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols; const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (!has_rows && !has_cols) { assert(p == PARTITION_SPLIT); return; } if (has_rows && has_cols) { aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], partition_cdf_length(bsize)); } else if (!has_rows && has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); assert(bsize > BLOCK_8X8); aom_cdf_prob cdf[2]; partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); } else { assert(has_rows && !has_cols); assert(p == PARTITION_SPLIT || p == PARTITION_VERT); assert(bsize > BLOCK_8X8); aom_cdf_prob cdf[2]; partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); } } static AOM_INLINE void write_modes_sb( AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile, aom_writer *const w, const TokenExtra **tok, const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; MACROBLOCKD *const xd = &td->mb.e_mbd; assert(bsize < BLOCK_SIZES_ALL); const int hbs = mi_size_wide[bsize] / 2; const int quarter_step = mi_size_wide[bsize] / 4; int i; const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; #if !CONFIG_REALTIME_ONLY const int num_planes = av1_num_planes(cm); for (int plane = 0; plane < num_planes; ++plane) { int rcol0, rcol1, rrow0, rrow1; // Skip some unnecessary work if loop restoration is disabled if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, &rcol0, &rcol1, &rrow0, &rrow1)) { const int rstride = cm->rst_info[plane].horz_units; for (int rrow = rrow0; rrow < rrow1; ++rrow) { for (int rcol = rcol0; rcol < rcol1; ++rcol) { const int runit_idx = rcol + rrow * rstride; loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane, td->counts); } } } } #endif write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); switch (partition) { case PARTITION_NONE: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); break; case PARTITION_HORZ: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); if (mi_row + hbs < mi_params->mi_rows) write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col); break; case PARTITION_VERT: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); if (mi_col + hbs < mi_params->mi_cols) write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs); break; case PARTITION_SPLIT: write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize); write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, subsize); break; case PARTITION_HORZ_A: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col); break; case PARTITION_HORZ_B: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); break; case PARTITION_VERT_A: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs); break; case PARTITION_VERT_B: write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs); write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); break; case PARTITION_HORZ_4: for (i = 0; i < 4; ++i) { int this_mi_row = mi_row + i * quarter_step; if (i > 0 && this_mi_row >= mi_params->mi_rows) break; write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col); } break; case PARTITION_VERT_4: for (i = 0; i < 4; ++i) { int this_mi_col = mi_col + i * quarter_step; if (i > 0 && this_mi_col >= mi_params->mi_cols) break; write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col); } break; default: assert(0); } // update partition context update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); } // Populate token pointers appropriately based on token_info. static AOM_INLINE void get_token_pointers(const TokenInfo *token_info, const int tile_row, int tile_col, const int sb_row_in_tile, const TokenExtra **tok, const TokenExtra **tok_end) { if (!is_token_info_allocated(token_info)) { *tok = NULL; *tok_end = NULL; return; } *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start; *tok_end = *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count; } static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile, aom_writer *const w, int tile_row, int tile_col) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &td->mb.e_mbd; const int mi_row_start = tile->mi_row_start; const int mi_row_end = tile->mi_row_end; const int mi_col_start = tile->mi_col_start; const int mi_col_end = tile->mi_col_end; const int num_planes = av1_num_planes(cm); av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd); if (cpi->common.delta_q_info.delta_q_present_flag) { xd->current_base_qindex = cpi->common.quant_params.base_qindex; if (cpi->common.delta_q_info.delta_lf_present_flag) { av1_reset_loop_filter_delta(xd, num_planes); } } for (int mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->seq_params->mib_size) { const int sb_row_in_tile = (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2; const TokenInfo *token_info = &cpi->token_info; const TokenExtra *tok; const TokenExtra *tok_end; get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok, &tok_end); av1_zero_left_context(xd); for (int mi_col = mi_col_start; mi_col < mi_col_end; mi_col += cm->seq_params->mib_size) { td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col, cm->seq_params->sb_size); } assert(tok == tok_end); } } static AOM_INLINE void encode_restoration_mode( AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { assert(!cm->features.all_lossless); if (!cm->seq_params->enable_restoration) return; if (cm->features.allow_intrabc) return; const int num_planes = av1_num_planes(cm); int all_none = 1, chroma_none = 1; for (int p = 0; p < num_planes; ++p) { RestorationInfo *rsi = &cm->rst_info[p]; if (rsi->frame_restoration_type != RESTORE_NONE) { all_none = 0; chroma_none &= p == 0; } switch (rsi->frame_restoration_type) { case RESTORE_NONE: aom_wb_write_bit(wb, 0); aom_wb_write_bit(wb, 0); break; case RESTORE_WIENER: aom_wb_write_bit(wb, 1); aom_wb_write_bit(wb, 0); break; case RESTORE_SGRPROJ: aom_wb_write_bit(wb, 1); aom_wb_write_bit(wb, 1); break; case RESTORE_SWITCHABLE: aom_wb_write_bit(wb, 0); aom_wb_write_bit(wb, 1); break; default: assert(0); } } if (!all_none) { assert(cm->seq_params->sb_size == BLOCK_64X64 || cm->seq_params->sb_size == BLOCK_128X128); const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64; RestorationInfo *rsi = &cm->rst_info[0]; assert(rsi->restoration_unit_size >= sb_size); assert(RESTORATION_UNITSIZE_MAX == 256); if (sb_size == 64) { aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); } if (rsi->restoration_unit_size > 64) { aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); } } if (num_planes > 1) { int s = AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y); if (s && !chroma_none) { aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != cm->rst_info[0].restoration_unit_size); assert(cm->rst_info[1].restoration_unit_size == cm->rst_info[0].restoration_unit_size || cm->rst_info[1].restoration_unit_size == (cm->rst_info[0].restoration_unit_size >> s)); assert(cm->rst_info[2].restoration_unit_size == cm->rst_info[1].restoration_unit_size); } else if (!s) { assert(cm->rst_info[1].restoration_unit_size == cm->rst_info[0].restoration_unit_size); assert(cm->rst_info[2].restoration_unit_size == cm->rst_info[1].restoration_unit_size); } } } #if !CONFIG_REALTIME_ONLY static AOM_INLINE void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, WienerInfo *ref_wiener_info, aom_writer *wb) { if (wiener_win == WIENER_WIN) aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); else assert(wiener_info->vfilter[0] == 0 && wiener_info->vfilter[WIENER_WIN - 1] == 0); aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); if (wiener_win == WIENER_WIN) aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); else assert(wiener_info->hfilter[0] == 0 && wiener_info->hfilter[WIENER_WIN - 1] == 0); aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); aom_write_primitive_refsubexpfin( wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); } static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, SgrprojInfo *ref_sgrproj_info, aom_writer *wb) { aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; if (params->r[0] == 0) { assert(sgrproj_info->xqd[0] == 0); aom_write_primitive_refsubexpfin( wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); } else if (params->r[1] == 0) { aom_write_primitive_refsubexpfin( wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); } else { aom_write_primitive_refsubexpfin( wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); aom_write_primitive_refsubexpfin( wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); } memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); } static AOM_INLINE void loop_restoration_write_sb_coeffs( const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx, aom_writer *const w, int plane, FRAME_COUNTS *counts) { const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx]; const RestorationInfo *rsi = cm->rst_info + plane; RestorationType frame_rtype = rsi->frame_restoration_type; assert(frame_rtype != RESTORE_NONE); (void)counts; assert(!cm->features.all_lossless); const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; WienerInfo *ref_wiener_info = &xd->wiener_info[plane]; SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane]; RestorationType unit_rtype = rui->restoration_type; if (frame_rtype == RESTORE_SWITCHABLE) { aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, RESTORE_SWITCHABLE_TYPES); #if CONFIG_ENTROPY_STATS ++counts->switchable_restore[unit_rtype]; #endif switch (unit_rtype) { case RESTORE_WIENER: #if DEBUG_LR_COSTING assert(!memcmp( ref_wiener_info, &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info, sizeof(*ref_wiener_info))); #endif write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w); break; case RESTORE_SGRPROJ: #if DEBUG_LR_COSTING assert(!memcmp(&ref_sgrproj_info->xqd, &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx] .sgrproj_info.xqd, sizeof(ref_sgrproj_info->xqd))); #endif write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w); break; default: assert(unit_rtype == RESTORE_NONE); break; } } else if (frame_rtype == RESTORE_WIENER) { aom_write_symbol(w, unit_rtype != RESTORE_NONE, xd->tile_ctx->wiener_restore_cdf, 2); #if CONFIG_ENTROPY_STATS ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; #endif if (unit_rtype != RESTORE_NONE) { #if DEBUG_LR_COSTING assert( !memcmp(ref_wiener_info, &lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info, sizeof(*ref_wiener_info))); #endif write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w); } } else if (frame_rtype == RESTORE_SGRPROJ) { aom_write_symbol(w, unit_rtype != RESTORE_NONE, xd->tile_ctx->sgrproj_restore_cdf, 2); #if CONFIG_ENTROPY_STATS ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; #endif if (unit_rtype != RESTORE_NONE) { #if DEBUG_LR_COSTING assert(!memcmp( &ref_sgrproj_info->xqd, &lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd, sizeof(ref_sgrproj_info->xqd))); #endif write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w); } } } #endif // !CONFIG_REALTIME_ONLY // Only write out the ref delta section if any of the elements // will signal a delta. static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) { struct loopfilter *lf = &cm->lf; if (!lf->mode_ref_delta_update) { return 0; } const RefCntBuffer *buf = get_primary_ref_frame_buf(cm); int8_t last_ref_deltas[REF_FRAMES]; int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; if (buf == NULL) { av1_set_default_ref_deltas(last_ref_deltas); av1_set_default_mode_deltas(last_mode_deltas); } else { memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES); memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS); } for (int i = 0; i < REF_FRAMES; i++) { if (lf->ref_deltas[i] != last_ref_deltas[i]) { return true; } } for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (lf->mode_deltas[i] != last_mode_deltas[i]) { return true; } } return false; } static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { assert(!cm->features.coded_lossless); if (cm->features.allow_intrabc) return; const int num_planes = av1_num_planes(cm); struct loopfilter *lf = &cm->lf; // Encode the loop filter level and type aom_wb_write_literal(wb, lf->filter_level[0], 6); aom_wb_write_literal(wb, lf->filter_level[1], 6); if (num_planes > 1) { if (lf->filter_level[0] || lf->filter_level[1]) { aom_wb_write_literal(wb, lf->filter_level_u, 6); aom_wb_write_literal(wb, lf->filter_level_v, 6); } } aom_wb_write_literal(wb, lf->sharpness_level, 3); aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled), only if there is information to write. int meaningful = is_mode_ref_delta_meaningful(cm); aom_wb_write_bit(wb, meaningful); if (!meaningful) { return; } const RefCntBuffer *buf = get_primary_ref_frame_buf(cm); int8_t last_ref_deltas[REF_FRAMES]; int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; if (buf == NULL) { av1_set_default_ref_deltas(last_ref_deltas); av1_set_default_mode_deltas(last_mode_deltas); } else { memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES); memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS); } for (int i = 0; i < REF_FRAMES; i++) { const int delta = lf->ref_deltas[i]; const int changed = delta != last_ref_deltas[i]; aom_wb_write_bit(wb, changed); if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); } for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; const int changed = delta != last_mode_deltas[i]; aom_wb_write_bit(wb, changed); if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); } } static AOM_INLINE void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { assert(!cm->features.coded_lossless); if (!cm->seq_params->enable_cdef) return; if (cm->features.allow_intrabc) return; const int num_planes = av1_num_planes(cm); int i; aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2); aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2); for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) { aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i], CDEF_STRENGTH_BITS); if (num_planes > 1) aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i], CDEF_STRENGTH_BITS); } } static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { aom_wb_write_bit(wb, 1); aom_wb_write_inv_signed_literal(wb, delta_q, 6); } else { aom_wb_write_bit(wb, 0); } } static AOM_INLINE void encode_quantization( const CommonQuantParams *const quant_params, int num_planes, bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) { aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS); write_delta_q(wb, quant_params->y_dc_delta_q); if (num_planes > 1) { int diff_uv_delta = (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) || (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q); if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); write_delta_q(wb, quant_params->u_dc_delta_q); write_delta_q(wb, quant_params->u_ac_delta_q); if (diff_uv_delta) { write_delta_q(wb, quant_params->v_dc_delta_q); write_delta_q(wb, quant_params->v_ac_delta_q); } } aom_wb_write_bit(wb, quant_params->using_qmatrix); if (quant_params->using_qmatrix) { aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS); aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS); if (!separate_uv_delta_q) assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v); else aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS); } } static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { int i, j; struct segmentation *seg = &cm->seg; aom_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Write update flags if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) { aom_wb_write_bit(wb, seg->update_map); if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update); aom_wb_write_bit(wb, seg->update_data); } // Segmentation data if (seg->update_data) { for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int active = segfeature_active(seg, i, j); aom_wb_write_bit(wb, active); if (active) { const int data_max = av1_seg_feature_data_max(j); const int data_min = -data_max; const int ubits = get_unsigned_bits(data_max); const int data = clamp(get_segdata(seg, i, j), data_min, data_max); if (av1_is_segfeature_signed(j)) { aom_wb_write_inv_signed_literal(wb, data, ubits); } else { aom_wb_write_literal(wb, data, ubits); } } } } } } static AOM_INLINE void write_frame_interp_filter( InterpFilter filter, struct aom_write_bit_buffer *wb) { aom_wb_write_bit(wb, filter == SWITCHABLE); if (filter != SWITCHABLE) aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); } // Same function as write_uniform but writing to uncompresses header wb static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { const int l = get_unsigned_bits(n); const int m = (1 << l) - n; if (l == 0) return; if (v < m) { aom_wb_write_literal(wb, v, l - 1); } else { aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); aom_wb_write_literal(wb, (v - m) & 1, 1); } } static AOM_INLINE void write_tile_info_max_tile( const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { int width_sb = CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); int height_sb = CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2); int size_sb, i; const CommonTileParams *const tiles = &cm->tiles; aom_wb_write_bit(wb, tiles->uniform_spacing); if (tiles->uniform_spacing) { int ones = tiles->log2_cols - tiles->min_log2_cols; while (ones--) { aom_wb_write_bit(wb, 1); } if (tiles->log2_cols < tiles->max_log2_cols) { aom_wb_write_bit(wb, 0); } // rows ones = tiles->log2_rows - tiles->min_log2_rows; while (ones--) { aom_wb_write_bit(wb, 1); } if (tiles->log2_rows < tiles->max_log2_rows) { aom_wb_write_bit(wb, 0); } } else { // Explicit tiles with configurable tile widths and heights // columns for (i = 0; i < tiles->cols; i++) { size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i]; wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1); width_sb -= size_sb; } assert(width_sb == 0); // rows for (i = 0; i < tiles->rows; i++) { size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i]; wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb), size_sb - 1); height_sb -= size_sb; } assert(height_sb == 0); } } static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb, struct aom_write_bit_buffer *wb) { write_tile_info_max_tile(cm, wb); *saved_wb = *wb; if (cm->tiles.rows * cm->tiles.cols > 1) { // tile id used for cdf update aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows); // Number of bytes in tile size - 1 aom_wb_write_literal(wb, 3, 2); } } static AOM_INLINE void write_ext_tile_info( const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb, struct aom_write_bit_buffer *wb) { // This information is stored as a separate byte. int mod = wb->bit_offset % CHAR_BIT; if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); assert(aom_wb_is_byte_aligned(wb)); *saved_wb = *wb; if (cm->tiles.rows * cm->tiles.cols > 1) { // Note that the last item in the uncompressed header is the data // describing tile configuration. // Number of bytes in tile column size - 1 aom_wb_write_literal(wb, 0, 2); // Number of bytes in tile size - 1 aom_wb_write_literal(wb, 0, 2); } } static INLINE int find_identical_tile( const int tile_row, const int tile_col, TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { const MV32 candidate_offset[1] = { { 1, 0 } }; const uint8_t *const cur_tile_data = tile_buffers[tile_row][tile_col].data + 4; const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; int i; if (tile_row == 0) return 0; // (TODO: yunqingwang) For now, only above tile is checked and used. // More candidates such as left tile can be added later. for (i = 0; i < 1; i++) { int row_offset = candidate_offset[0].row; int col_offset = candidate_offset[0].col; int row = tile_row - row_offset; int col = tile_col - col_offset; const uint8_t *tile_data; TileBufferEnc *candidate; if (row < 0 || col < 0) continue; const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data); // Read out tile-copy-mode bit: if ((tile_hdr >> 31) == 1) { // The candidate is a copy tile itself: the offset is stored in bits // 30 through 24 inclusive. row_offset += (tile_hdr >> 24) & 0x7f; row = tile_row - row_offset; } candidate = &tile_buffers[row][col]; if (row_offset >= 128 || candidate->size != cur_tile_size) continue; tile_data = candidate->data + 4; if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; // Identical tile found assert(row_offset > 0); return row_offset; } // No identical tile found return 0; } static AOM_INLINE void write_render_size(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { const int scaling_active = av1_resize_scaled(cm); aom_wb_write_bit(wb, scaling_active); if (scaling_active) { aom_wb_write_literal(wb, cm->render_width - 1, 16); aom_wb_write_literal(wb, cm->render_height - 1, 16); } } static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { const SequenceHeader *const seq_params = cm->seq_params; if (!seq_params->enable_superres) { assert(cm->superres_scale_denominator == SCALE_NUMERATOR); return; } // First bit is whether to to scale or not if (cm->superres_scale_denominator == SCALE_NUMERATOR) { aom_wb_write_bit(wb, 0); // no scaling } else { aom_wb_write_bit(wb, 1); // scaling, write scale factor assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); assert(cm->superres_scale_denominator < SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); aom_wb_write_literal( wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, SUPERRES_SCALE_BITS); } } static AOM_INLINE void write_frame_size(const AV1_COMMON *cm, int frame_size_override, struct aom_write_bit_buffer *wb) { const int coded_width = cm->superres_upscaled_width - 1; const int coded_height = cm->superres_upscaled_height - 1; if (frame_size_override) { const SequenceHeader *seq_params = cm->seq_params; int num_bits_width = seq_params->num_bits_width; int num_bits_height = seq_params->num_bits_height; aom_wb_write_literal(wb, coded_width, num_bits_width); aom_wb_write_literal(wb, coded_height, num_bits_height); } write_superres_scale(cm, wb); write_render_size(cm, wb); } static AOM_INLINE void write_frame_size_with_refs( const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { int found = 0; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); if (cfg != NULL) { found = cm->superres_upscaled_width == cfg->y_crop_width && cm->superres_upscaled_height == cfg->y_crop_height; found &= cm->render_width == cfg->render_width && cm->render_height == cfg->render_height; } aom_wb_write_bit(wb, found); if (found) { write_superres_scale(cm, wb); break; } } if (!found) { int frame_size_override = 1; // Always equal to 1 in this function write_frame_size(cm, frame_size_override, wb); } } static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile, struct aom_write_bit_buffer *wb) { assert(profile >= PROFILE_0 && profile < MAX_PROFILES); aom_wb_write_literal(wb, profile, PROFILE_BITS); } static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { // Profile 0/1: [0] for 8 bit, [1] 10-bit // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); } } static AOM_INLINE void write_color_config( const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { write_bitdepth(seq_params, wb); const int is_monochrome = seq_params->monochrome; // monochrome bit if (seq_params->profile != PROFILE_1) aom_wb_write_bit(wb, is_monochrome); else assert(!is_monochrome); if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { aom_wb_write_bit(wb, 0); // No color description present } else { aom_wb_write_bit(wb, 1); // Color description present aom_wb_write_literal(wb, seq_params->color_primaries, 8); aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); } if (is_monochrome) { // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] aom_wb_write_bit(wb, seq_params->color_range); return; } if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); assert(seq_params->profile == PROFILE_1 || (seq_params->profile == PROFILE_2 && seq_params->bit_depth == AOM_BITS_12)); } else { // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] aom_wb_write_bit(wb, seq_params->color_range); if (seq_params->profile == PROFILE_0) { // 420 only assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1); } else if (seq_params->profile == PROFILE_1) { // 444 only assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); } else if (seq_params->profile == PROFILE_2) { if (seq_params->bit_depth == AOM_BITS_12) { // 420, 444 or 422 aom_wb_write_bit(wb, seq_params->subsampling_x); if (seq_params->subsampling_x == 0) { assert(seq_params->subsampling_y == 0 && "4:4:0 subsampling not allowed in AV1"); } else { aom_wb_write_bit(wb, seq_params->subsampling_y); } } else { // 422 only assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0); } } if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); } if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); } } aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); } static AOM_INLINE void write_timing_info_header( const aom_timing_info_t *const timing_info, struct aom_write_bit_buffer *wb) { aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32); aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32); aom_wb_write_bit(wb, timing_info->equal_picture_interval); if (timing_info->equal_picture_interval) { aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1); } } static AOM_INLINE void write_decoder_model_info( const aom_dec_model_info_t *const decoder_model_info, struct aom_write_bit_buffer *wb) { aom_wb_write_literal( wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5); aom_wb_write_unsigned_literal( wb, decoder_model_info->num_units_in_decoding_tick, 32); aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1, 5); aom_wb_write_literal( wb, decoder_model_info->frame_presentation_time_length - 1, 5); } static AOM_INLINE void write_dec_model_op_parameters( const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length, struct aom_write_bit_buffer *wb) { aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay, buffer_delay_length); aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay, buffer_delay_length); aom_wb_write_bit(wb, op_params->low_delay_mode_flag); } static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { aom_wb_write_unsigned_literal( wb, cm->frame_presentation_time, cm->seq_params->decoder_model_info.frame_presentation_time_length); } static AOM_INLINE void write_film_grain_params( const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) { const AV1_COMMON *const cm = &cpi->common; const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params; aom_wb_write_bit(wb, pars->apply_grain); if (!pars->apply_grain) return; aom_wb_write_literal(wb, pars->random_seed, 16); if (cm->current_frame.frame_type == INTER_FRAME) aom_wb_write_bit(wb, pars->update_parameters); if (!pars->update_parameters) { int ref_frame, ref_idx; for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) { ref_idx = get_ref_frame_map_idx(cm, ref_frame); assert(ref_idx != INVALID_IDX); const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx]; if (buf->film_grain_params_present && aom_check_grain_params_equiv(pars, &buf->film_grain_params)) { break; } } assert(ref_frame < REF_FRAMES); aom_wb_write_literal(wb, ref_idx, 3); return; } // Scaling functions parameters aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14 for (int i = 0; i < pars->num_y_points; i++) { aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); } if (!cm->seq_params->monochrome) { aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); } else { assert(!pars->chroma_scaling_from_luma); } if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma || ((cm->seq_params->subsampling_x == 1) && (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) { assert(pars->num_cb_points == 0 && pars->num_cr_points == 0); } else { aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10 for (int i = 0; i < pars->num_cb_points; i++) { aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); } aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10 for (int i = 0; i < pars->num_cr_points; i++) { aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); } } aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value // AR coefficients // Only sent if the corresponsing scaling function has // more than 0 points aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); int num_pos_chroma = num_pos_luma; if (pars->num_y_points > 0) ++num_pos_chroma; if (pars->num_y_points) for (int i = 0; i < num_pos_luma; i++) aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); if (pars->num_cb_points || pars->chroma_scaling_from_luma) for (int i = 0; i < num_pos_chroma; i++) aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); if (pars->num_cr_points || pars->chroma_scaling_from_luma) for (int i = 0; i < num_pos_chroma; i++) aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value aom_wb_write_literal(wb, pars->grain_scale_shift, 2); if (pars->num_cb_points) { aom_wb_write_literal(wb, pars->cb_mult, 8); aom_wb_write_literal(wb, pars->cb_luma_mult, 8); aom_wb_write_literal(wb, pars->cb_offset, 9); } if (pars->num_cr_points) { aom_wb_write_literal(wb, pars->cr_mult, 8); aom_wb_write_literal(wb, pars->cr_luma_mult, 8); aom_wb_write_literal(wb, pars->cr_offset, 9); } aom_wb_write_bit(wb, pars->overlap_flag); aom_wb_write_bit(wb, pars->clip_to_restricted_range); } static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { (void)seq_params; (void)wb; assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); assert(seq_params->sb_size == BLOCK_128X128 || seq_params->sb_size == BLOCK_64X64); aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); } static AOM_INLINE void write_sequence_header( const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4); aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4); aom_wb_write_literal(wb, seq_params->max_frame_width - 1, seq_params->num_bits_width); aom_wb_write_literal(wb, seq_params->max_frame_height - 1, seq_params->num_bits_height); if (!seq_params->reduced_still_picture_hdr) { aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); if (seq_params->frame_id_numbers_present_flag) { // We must always have delta_frame_id_length < frame_id_length, // in order for a frame to be referenced with a unique delta. // Avoid wasting bits by using a coding that enforces this restriction. aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); aom_wb_write_literal( wb, seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, 3); } } write_sb_size(seq_params, wb); aom_wb_write_bit(wb, seq_params->enable_filter_intra); aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); if (!seq_params->reduced_still_picture_hdr) { aom_wb_write_bit(wb, seq_params->enable_interintra_compound); aom_wb_write_bit(wb, seq_params->enable_masked_compound); aom_wb_write_bit(wb, seq_params->enable_warped_motion); aom_wb_write_bit(wb, seq_params->enable_dual_filter); aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint); if (seq_params->order_hint_info.enable_order_hint) { aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp); aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs); } if (seq_params->force_screen_content_tools == 2) { aom_wb_write_bit(wb, 1); } else { aom_wb_write_bit(wb, 0); aom_wb_write_bit(wb, seq_params->force_screen_content_tools); } if (seq_params->force_screen_content_tools > 0) { if (seq_params->force_integer_mv == 2) { aom_wb_write_bit(wb, 1); } else { aom_wb_write_bit(wb, 0); aom_wb_write_bit(wb, seq_params->force_integer_mv); } } else { assert(seq_params->force_integer_mv == 2); } if (seq_params->order_hint_info.enable_order_hint) aom_wb_write_literal( wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3); } aom_wb_write_bit(wb, seq_params->enable_superres); aom_wb_write_bit(wb, seq_params->enable_cdef); aom_wb_write_bit(wb, seq_params->enable_restoration); } static AOM_INLINE void write_global_motion_params( const WarpedMotionParams *params, const WarpedMotionParams *ref_params, struct aom_write_bit_buffer *wb, int allow_hp) { const TransformationType type = params->wmtype; // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION // type models. Check here that we don't accidentally pick one somehow. // See comments in gm_get_motion_vector() for details on the bug we're // working around here assert(type != TRANSLATION); aom_wb_write_bit(wb, type != IDENTITY); if (type != IDENTITY) { aom_wb_write_bit(wb, type == ROTZOOM); if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); } if (type >= ROTZOOM) { aom_wb_write_signed_primitive_refsubexpfin( wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); aom_wb_write_signed_primitive_refsubexpfin( wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); } if (type >= AFFINE) { aom_wb_write_signed_primitive_refsubexpfin( wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); aom_wb_write_signed_primitive_refsubexpfin( wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); } if (type >= TRANSLATION) { const int trans_bits = (type == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp : GM_ABS_TRANS_BITS; const int trans_prec_diff = (type == TRANSLATION) ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp : GM_TRANS_PREC_DIFF; aom_wb_write_signed_primitive_refsubexpfin( wb, (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_params->wmmat[0] >> trans_prec_diff), (params->wmmat[0] >> trans_prec_diff)); aom_wb_write_signed_primitive_refsubexpfin( wb, (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_params->wmmat[1] >> trans_prec_diff), (params->wmmat[1] >> trans_prec_diff)); } } static AOM_INLINE void write_global_motion(AV1_COMP *cpi, struct aom_write_bit_buffer *wb) { AV1_COMMON *const cm = &cpi->common; int frame; for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { const WarpedMotionParams *ref_params = cm->prev_frame ? &cm->prev_frame->global_motion[frame] : &default_warp_params; write_global_motion_params(&cm->global_motion[frame], ref_params, wb, cm->features.allow_high_precision_mv); // TODO(sarahparker, debargha): The logic in the commented out code below // does not work currently and causes mismatches when resize is on. // Fix it before turning the optimization back on. /* YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame); if (cpi->source->y_crop_width == ref_buf->y_crop_width && cpi->source->y_crop_height == ref_buf->y_crop_height) { write_global_motion_params(&cm->global_motion[frame], &cm->prev_frame->global_motion[frame], wb, cm->features.allow_high_precision_mv); } else { assert(cm->global_motion[frame].wmtype == IDENTITY && "Invalid warp type for frames of different resolutions"); } */ /* printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", cm->current_frame.frame_number, cm->show_frame, frame, cm->global_motion[frame].wmmat[0], cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], cm->global_motion[frame].wmmat[3]); */ } } static int check_frame_refs_short_signaling(AV1_COMMON *const cm, bool enable_ref_short_signaling) { // In rtc case when res < 360p and speed >= 9, we turn on // frame_refs_short_signaling if it won't break the decoder. if (enable_ref_short_signaling) { const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME); const int base = 1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1); const int order_hint_group_cur = cm->current_frame.display_order_hint / base; const int order_hint_group_gld = cm->ref_frame_map[gld_map_idx]->display_order_hint / base; const int relative_dist = cm->current_frame.order_hint - cm->ref_frame_map[gld_map_idx]->order_hint; // If current frame and GOLDEN frame are in the same order_hint group, and // they are not far apart (i.e., > 64 frames), then return 1. if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 && relative_dist <= 64) { return 1; } return 0; } // Check whether all references are distinct frames. const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL }; int num_refs = 0; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); if (buf != NULL) { int seen = 0; for (int i = 0; i < num_refs; i++) { if (seen_bufs[i] == buf) { seen = 1; break; } } if (!seen) seen_bufs[num_refs++] = buf; } } // We only turn on frame_refs_short_signaling when all references are // distinct. if (num_refs < INTER_REFS_PER_FRAME) { // It indicates that there exist more than one reference frame pointing to // the same reference buffer, i.e. two or more references are duplicate. return 0; } // Check whether the encoder side ref frame choices are aligned with that to // be derived at the decoder side. int remapped_ref_idx_decoder[REF_FRAMES]; const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME); const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME); // Set up the frame refs mapping indexes according to the // frame_refs_short_signaling policy. av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx); // We only turn on frame_refs_short_signaling when the encoder side decision // on ref frames is identical to that at the decoder side. int frame_refs_short_signaling = 1; for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) { // Compare the buffer index between two reference frames indexed // respectively by the encoder and the decoder side decisions. RefCntBuffer *ref_frame_buf_new = NULL; if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) { ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]]; } if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) { frame_refs_short_signaling = 0; break; } } #if 0 // For debug printf("\nFrame=%d: \n", cm->current_frame.frame_number); printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling); for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { printf("enc_ref(map_idx=%d)=%d, vs. " "dec_ref(map_idx=%d)=%d\n", get_ref_frame_map_idx(cm, ref_frame), ref_frame, cm->remapped_ref_idx[ref_frame - LAST_FRAME], ref_frame); } #endif // 0 return frame_refs_short_signaling; } // New function based on HLS R18 static AOM_INLINE void write_uncompressed_header_obu( AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb, struct aom_write_bit_buffer *wb) { AV1_COMMON *const cm = &cpi->common; const SequenceHeader *const seq_params = cm->seq_params; const CommonQuantParams *quant_params = &cm->quant_params; CurrentFrame *const current_frame = &cm->current_frame; FeatureFlags *const features = &cm->features; if (!cpi->sf.rt_sf.enable_ref_short_signaling || !seq_params->order_hint_info.enable_order_hint || seq_params->order_hint_info.enable_ref_frame_mvs) { current_frame->frame_refs_short_signaling = 0; } else { current_frame->frame_refs_short_signaling = 1; } if (seq_params->still_picture) { assert(cm->show_existing_frame == 0); assert(cm->show_frame == 1); assert(current_frame->frame_type == KEY_FRAME); } if (!seq_params->reduced_still_picture_hdr) { if (encode_show_existing_frame(cm)) { aom_wb_write_bit(wb, 1); // show_existing_frame aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); if (seq_params->decoder_model_info_present_flag && seq_params->timing_info.equal_picture_interval == 0) { write_tu_pts_info(cm, wb); } if (seq_params->frame_id_numbers_present_flag) { int frame_id_len = seq_params->frame_id_length; int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; aom_wb_write_literal(wb, display_frame_id, frame_id_len); } return; } else { aom_wb_write_bit(wb, 0); // show_existing_frame } aom_wb_write_literal(wb, current_frame->frame_type, 2); aom_wb_write_bit(wb, cm->show_frame); if (cm->show_frame) { if (seq_params->decoder_model_info_present_flag && seq_params->timing_info.equal_picture_interval == 0) write_tu_pts_info(cm, wb); } else { aom_wb_write_bit(wb, cm->showable_frame); } if (frame_is_sframe(cm)) { assert(features->error_resilient_mode); } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) { aom_wb_write_bit(wb, features->error_resilient_mode); } } aom_wb_write_bit(wb, features->disable_cdf_update); if (seq_params->force_screen_content_tools == 2) { aom_wb_write_bit(wb, features->allow_screen_content_tools); } else { assert(features->allow_screen_content_tools == seq_params->force_screen_content_tools); } if (features->allow_screen_content_tools) { if (seq_params->force_integer_mv == 2) { aom_wb_write_bit(wb, features->cur_frame_force_integer_mv); } else { assert(features->cur_frame_force_integer_mv == seq_params->force_integer_mv); } } else { assert(features->cur_frame_force_integer_mv == 0); } int frame_size_override_flag = 0; if (seq_params->reduced_still_picture_hdr) { assert(cm->superres_upscaled_width == seq_params->max_frame_width && cm->superres_upscaled_height == seq_params->max_frame_height); } else { if (seq_params->frame_id_numbers_present_flag) { int frame_id_len = seq_params->frame_id_length; aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); } if (cm->superres_upscaled_width > seq_params->max_frame_width || cm->superres_upscaled_height > seq_params->max_frame_height) { aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Frame dimensions are larger than the maximum values"); } frame_size_override_flag = frame_is_sframe(cm) ? 1 : (cm->superres_upscaled_width != seq_params->max_frame_width || cm->superres_upscaled_height != seq_params->max_frame_height); if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); if (seq_params->order_hint_info.enable_order_hint) aom_wb_write_literal( wb, current_frame->order_hint, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS); } } if (seq_params->decoder_model_info_present_flag) { aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present); if (cpi->ppi->buffer_removal_time_present) { for (int op_num = 0; op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { if (seq_params->op_params[op_num].decoder_model_param_present_flag) { if (seq_params->operating_point_idc[op_num] == 0 || ((seq_params->operating_point_idc[op_num] >> cm->temporal_layer_id) & 0x1 && (seq_params->operating_point_idc[op_num] >> (cm->spatial_layer_id + 8)) & 0x1)) { aom_wb_write_unsigned_literal( wb, cm->buffer_removal_times[op_num], seq_params->decoder_model_info.buffer_removal_time_length); cm->buffer_removal_times[op_num]++; if (cm->buffer_removal_times[op_num] == 0) { aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, "buffer_removal_time overflowed"); } } } } } } // Shown keyframes and switch-frames automatically refreshes all reference // frames. For all other frame types, we need to write refresh_frame_flags. if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) || current_frame->frame_type == INTER_FRAME || current_frame->frame_type == INTRA_ONLY_FRAME) aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES); if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) { // Write all ref frame order hints if error_resilient_mode == 1 if (features->error_resilient_mode && seq_params->order_hint_info.enable_order_hint) { for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { aom_wb_write_literal( wb, cm->ref_frame_map[ref_idx]->order_hint, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); } } } if (current_frame->frame_type == KEY_FRAME) { write_frame_size(cm, frame_size_override_flag, wb); assert(!av1_superres_scaled(cm) || !features->allow_intrabc); if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) aom_wb_write_bit(wb, features->allow_intrabc); } else { if (current_frame->frame_type == INTRA_ONLY_FRAME) { write_frame_size(cm, frame_size_override_flag, wb); assert(!av1_superres_scaled(cm) || !features->allow_intrabc); if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) aom_wb_write_bit(wb, features->allow_intrabc); } else if (current_frame->frame_type == INTER_FRAME || frame_is_sframe(cm)) { MV_REFERENCE_FRAME ref_frame; // NOTE: Error resilient mode turns off frame_refs_short_signaling // automatically. #define FRAME_REFS_SHORT_SIGNALING 0 #if FRAME_REFS_SHORT_SIGNALING current_frame->frame_refs_short_signaling = seq_params->order_hint_info.enable_order_hint; #endif // FRAME_REFS_SHORT_SIGNALING if (current_frame->frame_refs_short_signaling) { // In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true, // we turn on frame_refs_short_signaling when the current frame and // golden frame are in the same order_hint group, and their relative // distance is <= 64 (in order to be decodable). // For other cases, an example solution for encoder-side // implementation on frame_refs_short_signaling is also provided in // this function, where frame_refs_short_signaling is only turned on // when the encoder side decision on ref frames is identical to that // at the decoder side. current_frame->frame_refs_short_signaling = check_frame_refs_short_signaling( cm, cpi->sf.rt_sf.enable_ref_short_signaling); } if (seq_params->order_hint_info.enable_order_hint) aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling); if (current_frame->frame_refs_short_signaling) { const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME); aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2); const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME); aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2); } for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX); if (!current_frame->frame_refs_short_signaling) aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame), REF_FRAMES_LOG2); if (seq_params->frame_id_numbers_present_flag) { int i = get_ref_frame_map_idx(cm, ref_frame); int frame_id_len = seq_params->frame_id_length; int diff_len = seq_params->delta_frame_id_length; int delta_frame_id_minus_1 = ((cm->current_frame_id - cm->ref_frame_id[i] + (1 << frame_id_len)) % (1 << frame_id_len)) - 1; if (delta_frame_id_minus_1 < 0 || delta_frame_id_minus_1 >= (1 << diff_len)) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid delta_frame_id_minus_1"); } aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); } } if (!features->error_resilient_mode && frame_size_override_flag) { write_frame_size_with_refs(cm, wb); } else { write_frame_size(cm, frame_size_override_flag, wb); } if (!features->cur_frame_force_integer_mv) aom_wb_write_bit(wb, features->allow_high_precision_mv); write_frame_interp_filter(features->interp_filter, wb); aom_wb_write_bit(wb, features->switchable_motion_mode); if (frame_might_allow_ref_frame_mvs(cm)) { aom_wb_write_bit(wb, features->allow_ref_frame_mvs); } else { assert(features->allow_ref_frame_mvs == 0); } } } const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && !(features->disable_cdf_update); if (cm->tiles.large_scale) assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); if (might_bwd_adapt) { aom_wb_write_bit( wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); } write_tile_info(cm, saved_wb, wb); encode_quantization(quant_params, av1_num_planes(cm), cm->seq_params->separate_uv_delta_q, wb); encode_segmentation(cm, wb); const DeltaQInfo *const delta_q_info = &cm->delta_q_info; if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0); if (quant_params->base_qindex > 0) { aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag); if (delta_q_info->delta_q_present_flag) { aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2); xd->current_base_qindex = quant_params->base_qindex; if (features->allow_intrabc) assert(delta_q_info->delta_lf_present_flag == 0); else aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag); if (delta_q_info->delta_lf_present_flag) { aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2); aom_wb_write_bit(wb, delta_q_info->delta_lf_multi); av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); } } } if (features->all_lossless) { assert(!av1_superres_scaled(cm)); } else { if (!features->coded_lossless) { encode_loopfilter(cm, wb); encode_cdef(cm, wb); } encode_restoration_mode(cm, wb); } // Write TX mode if (features->coded_lossless) assert(features->tx_mode == ONLY_4X4); else aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT); if (!frame_is_intra_only(cm)) { const int use_hybrid_pred = current_frame->reference_mode == REFERENCE_MODE_SELECT; aom_wb_write_bit(wb, use_hybrid_pred); } if (current_frame->skip_mode_info.skip_mode_allowed) aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag); if (frame_might_allow_warped_motion(cm)) aom_wb_write_bit(wb, features->allow_warped_motion); else assert(!features->allow_warped_motion); aom_wb_write_bit(wb, features->reduced_tx_set_used); if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); if (seq_params->film_grain_params_present && (cm->show_frame || cm->showable_frame)) write_film_grain_params(cpi, wb); if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb); } static int choose_size_bytes(uint32_t size, int spare_msbs) { // Choose the number of bytes required to represent size, without // using the 'spare_msbs' number of most significant bits. // Make sure we will fit in 4 bytes to start with.. if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; // Normalise to 32 bits size <<= spare_msbs; if (size >> 24 != 0) return 4; else if (size >> 16 != 0) return 3; else if (size >> 8 != 0) return 2; else return 1; } static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { switch (sz) { case 1: dst[0] = (uint8_t)(val & 0xff); break; case 2: mem_put_le16(dst, val); break; case 3: mem_put_le24(dst, val); break; case 4: mem_put_le32(dst, val); break; default: assert(0 && "Invalid size"); break; } } static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst, const uint32_t data_size, const uint32_t max_tile_size, const uint32_t max_tile_col_size, int *const tile_size_bytes, int *const tile_col_size_bytes) { // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) int tsb; int tcsb; if (tiles->large_scale) { // The top bit in the tile size field indicates tile copy mode, so we // have 1 less bit to code the tile size tsb = choose_size_bytes(max_tile_size, 1); tcsb = choose_size_bytes(max_tile_col_size, 0); } else { tsb = choose_size_bytes(max_tile_size, 0); tcsb = 4; // This is ignored (void)max_tile_col_size; } assert(tsb > 0); assert(tcsb > 0); *tile_size_bytes = tsb; *tile_col_size_bytes = tcsb; if (tsb == 4 && tcsb == 4) return data_size; uint32_t wpos = 0; uint32_t rpos = 0; if (tiles->large_scale) { int tile_row; int tile_col; for (tile_col = 0; tile_col < tiles->cols; tile_col++) { // All but the last column has a column header if (tile_col < tiles->cols - 1) { uint32_t tile_col_size = mem_get_le32(dst + rpos); rpos += 4; // Adjust the tile column size by the number of bytes removed // from the tile size fields. tile_col_size -= (4 - tsb) * tiles->rows; mem_put_varsize(dst + wpos, tcsb, tile_col_size); wpos += tcsb; } for (tile_row = 0; tile_row < tiles->rows; tile_row++) { // All, including the last row has a header uint32_t tile_header = mem_get_le32(dst + rpos); rpos += 4; // If this is a copy tile, we need to shift the MSB to the // top bit of the new width, and there is no data to copy. if (tile_header >> 31 != 0) { if (tsb < 4) tile_header >>= 32 - 8 * tsb; mem_put_varsize(dst + wpos, tsb, tile_header); wpos += tsb; } else { mem_put_varsize(dst + wpos, tsb, tile_header); wpos += tsb; tile_header += AV1_MIN_TILE_SIZE_BYTES; memmove(dst + wpos, dst + rpos, tile_header); rpos += tile_header; wpos += tile_header; } } } assert(rpos > wpos); assert(rpos == data_size); return wpos; } const int n_tiles = tiles->cols * tiles->rows; int n; for (n = 0; n < n_tiles; n++) { int tile_size; if (n == n_tiles - 1) { tile_size = data_size - rpos; } else { tile_size = mem_get_le32(dst + rpos); rpos += 4; mem_put_varsize(dst + wpos, tsb, tile_size); tile_size += AV1_MIN_TILE_SIZE_BYTES; wpos += tsb; } memmove(dst + wpos, dst + rpos, tile_size); rpos += tile_size; wpos += tile_size; } assert(rpos > wpos); assert(rpos == data_size); return wpos; } uint32_t av1_write_obu_header(AV1LevelParams *const level_params, int *frame_header_count, OBU_TYPE obu_type, int obu_extension, uint8_t *const dst) { if (level_params->keep_level_stats && (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER)) ++(*frame_header_count); struct aom_write_bit_buffer wb = { dst, 0 }; uint32_t size = 0; aom_wb_write_literal(&wb, 0, 1); // forbidden bit. aom_wb_write_literal(&wb, (int)obu_type, 4); aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); aom_wb_write_literal(&wb, 1, 1); // obu_has_size_field aom_wb_write_literal(&wb, 0, 1); // reserved if (obu_extension) { aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); } size = aom_wb_bytes_written(&wb); return size; } int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size, uint8_t *dest) { const size_t offset = obu_header_size; size_t coded_obu_size = 0; const uint32_t obu_size = (uint32_t)obu_payload_size; assert(obu_size == obu_payload_size); if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, &coded_obu_size) != 0) { return AOM_CODEC_ERROR; } return AOM_CODEC_OK; } static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size, uint8_t *data) { const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); const size_t move_dst_offset = length_field_size + obu_header_size; const size_t move_src_offset = obu_header_size; const size_t move_size = obu_payload_size; memmove(data + move_dst_offset, data + move_src_offset, move_size); return length_field_size; } static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) { if (aom_wb_is_byte_aligned(wb)) { aom_wb_write_literal(wb, 0x80, 8); } else { // assumes that the other bits are already 0s aom_wb_write_bit(wb, 1); } } static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx, struct aom_write_bit_buffer *wb) { assert(is_valid_seq_level_idx(seq_level_idx)); aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); } uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params, uint8_t *const dst) { struct aom_write_bit_buffer wb = { dst, 0 }; uint32_t size = 0; write_profile(seq_params->profile, &wb); // Still picture or not aom_wb_write_bit(&wb, seq_params->still_picture); assert(IMPLIES(!seq_params->still_picture, !seq_params->reduced_still_picture_hdr)); // whether to use reduced still picture header aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr); if (seq_params->reduced_still_picture_hdr) { assert(seq_params->timing_info_present == 0); assert(seq_params->decoder_model_info_present_flag == 0); assert(seq_params->display_model_info_present_flag == 0); write_bitstream_level(seq_params->seq_level_idx[0], &wb); } else { aom_wb_write_bit( &wb, seq_params->timing_info_present); // timing info present flag if (seq_params->timing_info_present) { // timing_info write_timing_info_header(&seq_params->timing_info, &wb); aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag); if (seq_params->decoder_model_info_present_flag) { write_decoder_model_info(&seq_params->decoder_model_info, &wb); } } aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag); aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1, OP_POINTS_CNT_MINUS_1_BITS); int i; for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { aom_wb_write_literal(&wb, seq_params->operating_point_idc[i], OP_POINTS_IDC_BITS); write_bitstream_level(seq_params->seq_level_idx[i], &wb); if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) aom_wb_write_bit(&wb, seq_params->tier[i]); if (seq_params->decoder_model_info_present_flag) { aom_wb_write_bit( &wb, seq_params->op_params[i].decoder_model_param_present_flag); if (seq_params->op_params[i].decoder_model_param_present_flag) { write_dec_model_op_parameters( &seq_params->op_params[i], seq_params->decoder_model_info .encoder_decoder_buffer_delay_length, &wb); } } if (seq_params->display_model_info_present_flag) { aom_wb_write_bit( &wb, seq_params->op_params[i].display_model_param_present_flag); if (seq_params->op_params[i].display_model_param_present_flag) { assert(seq_params->op_params[i].initial_display_delay >= 1); assert(seq_params->op_params[i].initial_display_delay <= 10); aom_wb_write_literal( &wb, seq_params->op_params[i].initial_display_delay - 1, 4); } } } } write_sequence_header(seq_params, &wb); write_color_config(seq_params, &wb); aom_wb_write_bit(&wb, seq_params->film_grain_params_present); add_trailing_bits(&wb); size = aom_wb_bytes_written(&wb); return size; } static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb, uint8_t *const dst, int append_trailing_bits) { struct aom_write_bit_buffer wb = { dst, 0 }; write_uncompressed_header_obu(cpi, xd, saved_wb, &wb); if (append_trailing_bits) add_trailing_bits(&wb); return aom_wb_bytes_written(&wb); } static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile, int end_tile, int tiles_log2, int tile_start_and_end_present_flag) { struct aom_write_bit_buffer wb = { dst, 0 }; uint32_t size = 0; if (!tiles_log2) return size; aom_wb_write_bit(&wb, tile_start_and_end_present_flag); if (tile_start_and_end_present_flag) { aom_wb_write_literal(&wb, start_tile, tiles_log2); aom_wb_write_literal(&wb, end_tile, tiles_log2); } size = aom_wb_bytes_written(&wb); return size; } extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size, const char *filename); typedef struct { uint32_t tg_hdr_size; uint32_t frame_header_size; } LargeTileFrameOBU; // Initialize OBU header for large scale tile case. static uint32_t init_large_scale_tile_obu_header( AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *lst_obu) { AV1LevelParams *const level_params = &cpi->ppi->level_params; CurrentFrame *const current_frame = &cpi->common.current_frame; // For large_scale_tile case, we always have only one tile group, so it can // be written as an OBU_FRAME. const OBU_TYPE obu_type = OBU_FRAME; lst_obu->tg_hdr_size = av1_write_obu_header( level_params, &cpi->frame_header_count, obu_type, 0, *data); *data += lst_obu->tg_hdr_size; const uint32_t frame_header_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0); *data += frame_header_size; lst_obu->frame_header_size = frame_header_size; // (yunqing) This test ensures the correctness of large scale tile coding. if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) { char fn[20] = "./fh"; fn[4] = current_frame->frame_number / 100 + '0'; fn[5] = (current_frame->frame_number % 100) / 10 + '0'; fn[6] = (current_frame->frame_number % 10) + '0'; fn[7] = '\0'; av1_print_uncompressed_frame_header(*data - frame_header_size, frame_header_size, fn); } return frame_header_size; } // Write total buffer size and related information into the OBU header for large // scale tile case. static void write_large_scale_tile_obu_size( const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data, struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu, int have_tiles, uint32_t *total_size, int max_tile_size, int max_tile_col_size) { int tile_size_bytes = 0; int tile_col_size_bytes = 0; if (have_tiles) { *total_size = remux_tiles( tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size, max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes); *total_size += lst_obu->frame_header_size; } // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write // current tile group size before tile data(include tile column header). // Tile group size doesn't include the bytes storing tg size. *total_size += lst_obu->tg_hdr_size; const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size; const size_t length_field_size = obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst); if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) != AOM_CODEC_OK) assert(0); *total_size += (uint32_t)length_field_size; saved_wb->bit_buffer += length_field_size; // Now fill in the gaps in the uncompressed header. if (have_tiles) { assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); } } // Store information on each large scale tile in the OBU header. static void write_large_scale_tile_obu( AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu, int *const largest_tile_id, uint32_t *total_size, const int have_tiles, unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) { AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS]; const int tile_cols = tiles->cols; const int tile_rows = tiles->rows; unsigned int tile_size = 0; av1_reset_pack_bs_thread_data(&cpi->td); for (int tile_col = 0; tile_col < tile_cols; tile_col++) { TileInfo tile_info; const int is_last_col = (tile_col == tile_cols - 1); const uint32_t col_offset = *total_size; av1_tile_set_col(&tile_info, cm, tile_col); // The last column does not have a column header if (!is_last_col) *total_size += 4; for (int tile_row = 0; tile_row < tile_rows; tile_row++) { TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; const int data_offset = have_tiles ? 4 : 0; const int tile_idx = tile_row * tile_cols + tile_col; TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; av1_tile_set_row(&tile_info, cm, tile_row); aom_writer mode_bc; buf->data = dst + *total_size + lst_obu->tg_hdr_size; // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, // even for the last one, unless no tiling is used at all. *total_size += data_offset; cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; mode_bc.allow_update_cdf = !tiles->large_scale; mode_bc.allow_update_cdf = mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; aom_start_encode(&mode_bc, buf->data + data_offset); write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col); if (aom_stop_encode(&mode_bc) < 0) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes"); } tile_size = mode_bc.pos; buf->size = tile_size; // Record the maximum tile size we see, so we can compact headers later. if (tile_size > *max_tile_size) { *max_tile_size = tile_size; *largest_tile_id = tile_cols * tile_row + tile_col; } if (have_tiles) { // tile header: size of this tile, or copy offset uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; const int tile_copy_mode = ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; // If tile_copy_mode = 1, check if this tile is a copy tile. // Very low chances to have copy tiles on the key frames, so don't // search on key frames to reduce unnecessary search. if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) { const int identical_tile_offset = find_identical_tile(tile_row, tile_col, tile_buffers); // Indicate a copy-tile by setting the most significant bit. // The row-offset to copy from is stored in the highest byte. // remux_tiles will move these around later if (identical_tile_offset > 0) { tile_size = 0; tile_header = identical_tile_offset | 0x80; tile_header <<= 24; } } mem_put_le32(buf->data, (MEM_VALUE_T)tile_header); } *total_size += tile_size; } if (!is_last_col) { uint32_t col_size = *total_size - col_offset - 4; mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size); // Record the maximum tile column size we see. *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size); } } av1_accumulate_pack_bs_thread_data(cpi, &cpi->td); } // Packs information in the obu header for large scale tiles. static INLINE uint32_t pack_large_scale_tiles_in_tg_obus( AV1_COMP *const cpi, uint8_t *const dst, struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) { AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; uint32_t total_size = 0; unsigned int max_tile_size = 0; unsigned int max_tile_col_size = 0; const int have_tiles = tiles->cols * tiles->rows > 1; uint8_t *data = dst; LargeTileFrameOBU lst_obu; total_size += init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu); write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size, have_tiles, &max_tile_size, &max_tile_col_size); write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu, have_tiles, &total_size, max_tile_size, max_tile_col_size); return total_size; } // Writes obu, tile group and uncompressed headers to bitstream. void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd, PackBSParams *const pack_bs_params, const int tile_idx) { AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size; const int tg_size = (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg; // Write Tile group, frame and OBU header // A new tile group begins at this tile. Write the obu header and // tile group header const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP; *curr_tg_hdr_size = av1_write_obu_header( &cpi->ppi->level_params, &cpi->frame_header_count, obu_type, pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr); pack_bs_params->obu_header_size = *curr_tg_hdr_size; if (cpi->num_tg == 1) *curr_tg_hdr_size += write_frame_header_obu( cpi, xd, pack_bs_params->saved_wb, pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0); *curr_tg_hdr_size += write_tile_group_header( pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx, AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1), (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1); *pack_bs_params->total_size += *curr_tg_hdr_size; } // Pack tile data in the bitstream with tile_group, frame // and OBU header. void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td, PackBSParams *const pack_bs_params) { aom_writer mode_bc; AV1_COMMON *const cm = &cpi->common; int tile_row = pack_bs_params->tile_row; int tile_col = pack_bs_params->tile_col; uint32_t *const total_size = pack_bs_params->total_size; TileInfo tile_info; av1_tile_set_col(&tile_info, cm, tile_col); av1_tile_set_row(&tile_info, cm, tile_row); mode_bc.allow_update_cdf = 1; mode_bc.allow_update_cdf = mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; unsigned int tile_size; const int num_planes = av1_num_planes(cm); av1_reset_loop_restoration(&td->mb.e_mbd, num_planes); pack_bs_params->buf.data = pack_bs_params->dst + *total_size; // The last tile of the tile group does not have a header. if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4; // Pack tile data aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size); write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col); if (aom_stop_encode(&mode_bc) < 0) { aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR, "Error writing modes"); } tile_size = mode_bc.pos; assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); pack_bs_params->buf.size = tile_size; // Write tile size if (!pack_bs_params->is_last_tile_in_tg) { // size of this tile mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES); } } void av1_write_last_tile_info( AV1_COMP *const cpi, const FrameHeaderInfo *fh_info, struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size, uint8_t *curr_tg_start, uint32_t *const total_size, uint8_t **tile_data_start, int *const largest_tile_id, int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) { // write current tile group size const uint32_t obu_payload_size = (uint32_t)(*curr_tg_data_size) - obu_header_size; const size_t length_field_size = obu_memmove(obu_header_size, obu_payload_size, curr_tg_start); if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, curr_tg_start) != AOM_CODEC_OK) { assert(0); } *curr_tg_data_size += (int)length_field_size; *total_size += (uint32_t)length_field_size; *tile_data_start += length_field_size; if (cpi->num_tg == 1) { // if this tg is combined with the frame header then update saved // frame header base offset according to length field size saved_wb->bit_buffer += length_field_size; } if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) { // Make room for a duplicate Frame Header OBU. memmove(curr_tg_start + fh_info->total_length, curr_tg_start, *curr_tg_data_size); // Insert a copy of the Frame Header OBU. memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length); // Force context update tile to be the first tile in error // resilient mode as the duplicate frame headers will have // context_update_tile_id set to 0 *largest_tile_id = 0; // Rewrite the OBU header to change the OBU type to Redundant Frame // Header. av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count, OBU_REDUNDANT_FRAME_HEADER, obu_extn_header, &curr_tg_start[fh_info->obu_header_byte_offset]); *curr_tg_data_size += (int)(fh_info->total_length); *total_size += (uint32_t)(fh_info->total_length); } *is_first_tg = 0; } void av1_reset_pack_bs_thread_data(ThreadData *const td) { td->coefficient_size = 0; td->max_mv_magnitude = 0; av1_zero(td->interp_filter_selected); } void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi, ThreadData const *td) { int do_max_mv_magnitude_update = 1; cpi->rc.coefficient_size += td->coefficient_size; // Disable max_mv_magnitude update for parallel frames based on update flag. if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0; if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update) cpi->mv_search_params.max_mv_magnitude = AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude); for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++) cpi->common.cur_frame->interp_filter_selected[filter] += td->interp_filter_selected[filter]; } // Store information related to each default tile in the OBU header. static void write_tile_obu( AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size, struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header, const FrameHeaderInfo *fh_info, int *const largest_tile_id, unsigned int *max_tile_size, uint32_t *const obu_header_size, uint8_t **tile_data_start) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; const CommonTileParams *const tiles = &cm->tiles; const int tile_cols = tiles->cols; const int tile_rows = tiles->rows; // Fixed size tile groups for the moment const int num_tg_hdrs = cpi->num_tg; const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; int tile_count = 0; size_t curr_tg_data_size = 0; uint8_t *tile_data_curr = dst; int new_tg = 1; int is_first_tg = 1; av1_reset_pack_bs_thread_data(&cpi->td); for (int tile_row = 0; tile_row < tile_rows; tile_row++) { for (int tile_col = 0; tile_col < tile_cols; tile_col++) { const int tile_idx = tile_row * tile_cols + tile_col; TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; int is_last_tile_in_tg = 0; if (new_tg) { tile_data_curr = dst + *total_size; tile_count = 0; } tile_count++; if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) is_last_tile_in_tg = 1; xd->tile_ctx = &this_tile->tctx; // PackBSParams stores all parameters required to pack tile and header // info. PackBSParams pack_bs_params; pack_bs_params.dst = dst; pack_bs_params.curr_tg_hdr_size = 0; pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg; pack_bs_params.new_tg = new_tg; pack_bs_params.obu_extn_header = obu_extn_header; pack_bs_params.obu_header_size = 0; pack_bs_params.saved_wb = saved_wb; pack_bs_params.tile_col = tile_col; pack_bs_params.tile_row = tile_row; pack_bs_params.tile_data_curr = tile_data_curr; pack_bs_params.total_size = total_size; if (new_tg) av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx); av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params); if (new_tg) { curr_tg_data_size = pack_bs_params.curr_tg_hdr_size; *tile_data_start += pack_bs_params.curr_tg_hdr_size; *obu_header_size = pack_bs_params.obu_header_size; new_tg = 0; } if (is_last_tile_in_tg) new_tg = 1; curr_tg_data_size += (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4)); if (pack_bs_params.buf.size > *max_tile_size) { *largest_tile_id = tile_idx; *max_tile_size = (unsigned int)pack_bs_params.buf.size; } if (is_last_tile_in_tg) av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size, tile_data_curr, total_size, tile_data_start, largest_tile_id, &is_first_tg, *obu_header_size, obu_extn_header); *total_size += (uint32_t)pack_bs_params.buf.size; } } av1_accumulate_pack_bs_thread_data(cpi, &cpi->td); } // Write total buffer size and related information into the OBU header for // default tile case. static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst, struct aom_write_bit_buffer *saved_wb, int largest_tile_id, uint32_t *const total_size, unsigned int max_tile_size, uint32_t obu_header_size, uint8_t *tile_data_start) { const CommonTileParams *const tiles = &cpi->common.tiles; // Fill in context_update_tile_id indicating the tile to use for the // cdf update. The encoder currently sets it to the largest tile // (but is up to the encoder) aom_wb_overwrite_literal(saved_wb, largest_tile_id, (tiles->log2_cols + tiles->log2_rows)); // If more than one tile group. tile_size_bytes takes the default value 4 // and does not need to be set. For a single tile group it is set in the // section below. if (cpi->num_tg != 1) return; int tile_size_bytes = 4, unused; const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); const uint32_t tile_data_size = *total_size - tile_data_offset; *total_size = remux_tiles(tiles, tile_data_start, tile_data_size, max_tile_size, 0, &tile_size_bytes, &unused); *total_size += tile_data_offset; assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); // Update the OBU length if remux_tiles() reduced the size. uint64_t payload_size; size_t length_field_size; int res = aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size, &payload_size, &length_field_size); assert(res == 0); (void)res; const uint64_t new_payload_size = *total_size - obu_header_size - length_field_size; if (new_payload_size != payload_size) { size_t new_length_field_size; res = aom_uleb_encode(new_payload_size, length_field_size, dst + obu_header_size, &new_length_field_size); assert(res == 0); if (new_length_field_size < length_field_size) { const size_t src_offset = obu_header_size + length_field_size; const size_t dst_offset = obu_header_size + new_length_field_size; memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); *total_size -= (int)(length_field_size - new_length_field_size); } } } // As per the experiments, single-thread bitstream packing is better for // frames with a smaller bitstream size. This behavior is due to setup time // overhead of multithread function would be more than that of time required // to pack the smaller bitstream of such frames. This function computes the // number of required number of workers based on setup time overhead and job // dispatch time overhead for given tiles and available workers. static int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles, int avail_workers, bool pack_bs_mt_enabled) { if (!pack_bs_mt_enabled) return 1; uint64_t frame_abs_sum_level = 0; for (int idx = 0; idx < num_tiles; idx++) frame_abs_sum_level += tile_data[idx].abs_sum_level; int ideal_num_workers = 1; const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST; float max_sum = 0.0; for (int num_workers = avail_workers; num_workers > 1; num_workers--) { const float fas_per_worker_const = ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level; const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST; const float this_sum = fas_per_worker_const - setup_time_const - job_disp_time_const / num_workers; if (this_sum > max_sum) { max_sum = this_sum; ideal_num_workers = num_workers; } } return ideal_num_workers; } static INLINE uint32_t pack_tiles_in_tg_obus( AV1_COMP *const cpi, uint8_t *const dst, struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header, const FrameHeaderInfo *fh_info, int *const largest_tile_id) { const CommonTileParams *const tiles = &cpi->common.tiles; uint32_t total_size = 0; unsigned int max_tile_size = 0; uint32_t obu_header_size = 0; uint8_t *tile_data_start = dst; const int tile_cols = tiles->cols; const int tile_rows = tiles->rows; const int num_tiles = tile_rows * tile_cols; const int num_workers = calc_pack_bs_mt_workers( cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS], cpi->mt_info.pack_bs_mt_enabled); if (num_workers > 1) { av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header, fh_info, largest_tile_id, &max_tile_size, &obu_header_size, &tile_data_start, num_workers); } else { write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header, fh_info, largest_tile_id, &max_tile_size, &obu_header_size, &tile_data_start); } if (num_tiles > 1) write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size, max_tile_size, obu_header_size, tile_data_start); return total_size; } static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header, const FrameHeaderInfo *fh_info, int *const largest_tile_id) { AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; *largest_tile_id = 0; // Select the coding strategy (temporal or spatial) if (cm->seg.enabled && cm->seg.update_map) { if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { cm->seg.temporal_update = 0; } else { cm->seg.temporal_update = 1; if (cpi->td.rd_counts.seg_tmp_pred_cost[0] < cpi->td.rd_counts.seg_tmp_pred_cost[1]) cm->seg.temporal_update = 0; } } if (tiles->large_scale) return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb, largest_tile_id); return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header, fh_info, largest_tile_id); } static size_t av1_write_metadata_obu(const aom_metadata_t *metadata, uint8_t *const dst) { size_t coded_metadata_size = 0; const uint64_t metadata_type = (uint64_t)metadata->type; if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst, &coded_metadata_size) != 0) { return 0; } memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz); // Add trailing bits. dst[coded_metadata_size + metadata->sz] = 0x80; return (uint32_t)(coded_metadata_size + metadata->sz + 1); } static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) { if (!cpi->source) return 0; AV1_COMMON *const cm = &cpi->common; aom_metadata_array_t *arr = cpi->source->metadata; if (!arr) return 0; size_t obu_header_size = 0; size_t obu_payload_size = 0; size_t total_bytes_written = 0; size_t length_field_size = 0; for (size_t i = 0; i < arr->sz; i++) { aom_metadata_t *current_metadata = arr->metadata_array[i]; if (current_metadata && current_metadata->payload) { if ((cm->current_frame.frame_type == KEY_FRAME && current_metadata->insert_flag == AOM_MIF_KEY_FRAME) || (cm->current_frame.frame_type != KEY_FRAME && current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) || current_metadata->insert_flag == AOM_MIF_ANY_FRAME) { obu_header_size = av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count, OBU_METADATA, 0, dst); obu_payload_size = av1_write_metadata_obu(current_metadata, dst + obu_header_size); length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst); if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) == AOM_CODEC_OK) { const size_t obu_size = obu_header_size + obu_payload_size; dst += obu_size + length_field_size; total_bytes_written += obu_size + length_field_size; } else { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Error writing metadata OBU size"); } } } } return total_bytes_written; } int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size, int *const largest_tile_id) { uint8_t *data = dst; uint32_t data_size; AV1_COMMON *const cm = &cpi->common; AV1LevelParams *const level_params = &cpi->ppi->level_params; uint32_t obu_header_size = 0; uint32_t obu_payload_size = 0; FrameHeaderInfo fh_info = { NULL, 0, 0 }; const uint8_t obu_extension_header = cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; // If no non-zero delta_q has been used, reset delta_q_present_flag if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { cm->delta_q_info.delta_q_present_flag = 0; } #if CONFIG_BITSTREAM_DEBUG bitstream_queue_reset_write(); #endif cpi->frame_header_count = 0; // The TD is now written outside the frame encode loop // write sequence header obu at each key frame or intra_only frame, // preceded by 4-byte size if (cm->current_frame.frame_type == INTRA_ONLY_FRAME || cm->current_frame.frame_type == KEY_FRAME) { obu_header_size = av1_write_obu_header( level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data); obu_payload_size = av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size); const size_t length_field_size = obu_memmove(obu_header_size, obu_payload_size, data); if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } data += obu_header_size + obu_payload_size + length_field_size; } // write metadata obus before the frame obu that has the show_frame flag set if (cm->show_frame) data += av1_write_metadata_array(cpi, data); const int write_frame_header = (cpi->num_tg > 1 || encode_show_existing_frame(cm)); struct aom_write_bit_buffer saved_wb = { NULL, 0 }; size_t length_field = 0; if (write_frame_header) { // Write Frame Header OBU. fh_info.frame_header = data; obu_header_size = av1_write_obu_header(level_params, &cpi->frame_header_count, OBU_FRAME_HEADER, obu_extension_header, data); obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb, data + obu_header_size, 1); length_field = obu_memmove(obu_header_size, obu_payload_size, data); if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } fh_info.obu_header_byte_offset = 0; fh_info.total_length = obu_header_size + obu_payload_size + length_field; data += fh_info.total_length; } if (encode_show_existing_frame(cm)) { data_size = 0; } else { // Since length_field is determined adaptively after frame header // encoding, saved_wb must be adjusted accordingly. if (saved_wb.bit_buffer != NULL) { saved_wb.bit_buffer += length_field; } // Each tile group obu will be preceded by 4-byte size of the tile group // obu data_size = write_tiles_in_tg_obus( cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id); } data += data_size; *size = data - dst; return AOM_CODEC_OK; }