/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "av1/common/av1_common_int.h" #include "av1/encoder/cnn.h" #define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi)-1) : (a))) typedef struct { const float **input; int in_width; int in_height; int in_stride; const CNN_LAYER_CONFIG *layer_config; float **output; int out_stride; int start_idx; int th_step; } CONVOLVE_OPS; static INLINE float softsign(float x) { return x / (fabsf(x) + 1.0f); } static INLINE float relu(float x) { return (x < 0) ? 0 : x; } typedef struct { int allocsize; int channels; int width, height, stride; float *buf[CNN_MAX_CHANNELS]; } TENSOR; static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); } static void free_tensor(TENSOR *tensor) { if (tensor->allocsize) { aom_free(tensor->buf[0]); tensor->buf[0] = NULL; tensor->allocsize = 0; } } static bool realloc_tensor(TENSOR *tensor, int channels, int width, int height) { const int newallocsize = channels * width * height; if (tensor->allocsize < newallocsize) { free_tensor(tensor); tensor->buf[0] = (float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize); if (!tensor->buf[0]) return false; tensor->allocsize = newallocsize; } tensor->width = width; tensor->height = height; tensor->stride = width; tensor->channels = channels; for (int c = 1; c < channels; ++c) tensor->buf[c] = &tensor->buf[0][c * width * height]; return true; } static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset, TENSOR *dst) { assert(src->width == dst->width); assert(src->height == dst->height); assert(copy_channels <= src->channels); if (src->stride == dst->width && dst->stride == dst->width) { for (int c = 0; c < copy_channels; ++c) { memcpy(dst->buf[dst_offset + c], src->buf[c], sizeof(*dst->buf[0]) * src->width * src->height); } } else { for (int c = 0; c < copy_channels; ++c) { for (int r = 0; r < dst->height; ++r) { memcpy(&dst->buf[dst_offset + c][r * dst->stride], &src->buf[c][r * src->stride], dst->width * sizeof(*dst->buf[c])); } } } } static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS], int channels, int width, int height, int stride) { tensor->allocsize = 0; tensor->channels = channels; tensor->width = width; tensor->height = height; tensor->stride = stride; if (buf) { for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c]; } else { for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL; } } static void swap_tensor(TENSOR *t1, TENSOR *t2) { TENSOR t = *t1; *t1 = *t2; *t2 = t; } // The concatenated tensor goes into dst with first the channels in // original dst followed by the channels in the src static bool concat_tensor(const TENSOR *src, TENSOR *dst) { assert(src->width == dst->width); assert(src->height == dst->height); const int dst_channels = dst->channels; const int channels = dst->channels + src->channels; const int newallocsize = channels * dst->width * dst->height; if (dst->allocsize < newallocsize) { TENSOR t; init_tensor(&t); // allocate new buffers and copy first the dst channels if (!realloc_tensor(&t, channels, dst->width, dst->height)) return false; copy_tensor(dst, dst->channels, 0, &t); // Swap the tensors and free the old buffers swap_tensor(dst, &t); free_tensor(&t); } for (int c = 1; c < channels; ++c) dst->buf[c] = &dst->buf[0][c * dst->width * dst->height]; // Copy the channels in src after the first dst_channels channels. copy_tensor(src, src->channels, dst_channels, dst); return true; } #ifndef NDEBUG static int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) { return (t1->width == t2->width && t1->height == t2->height); } static int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) { return (t1->channels == t2->channels && t1->width == t2->width && t1->height == t2->height); } #endif // NDEBUG void av1_find_cnn_layer_output_size(int in_width, int in_height, const CNN_LAYER_CONFIG *layer_config, int *out_width, int *out_height) { assert(layer_config->skip_width > 0); assert(layer_config->skip_height > 0); if (!layer_config->deconvolve) { switch (layer_config->pad) { case PADDING_SAME_ZERO: case PADDING_SAME_REPLICATE: *out_width = (in_width + layer_config->skip_width - 1) / layer_config->skip_width; *out_height = (in_height + layer_config->skip_height - 1) / layer_config->skip_height; break; case PADDING_VALID: *out_width = (in_width - layer_config->filter_width + layer_config->skip_width) / layer_config->skip_width; *out_height = (in_height - layer_config->filter_height + layer_config->skip_height) / layer_config->skip_height; break; default: assert(0 && "Unknown padding type"); } } else { switch (layer_config->pad) { case PADDING_SAME_ZERO: case PADDING_SAME_REPLICATE: *out_width = in_width * layer_config->skip_width; *out_height = in_height * layer_config->skip_height; break; case PADDING_VALID: *out_width = (in_width - 1) * layer_config->skip_width + layer_config->filter_width; *out_height = (in_height - 1) * layer_config->skip_height + layer_config->filter_height; break; default: assert(0 && "Unknown padding type"); } } } static void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config, int channels_per_branch[]) { int branch = layer_config->branch; const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->input_to_branches & (1 << b)) && b != branch) { if (layer_config->branch_copy_type == BRANCH_INPUT) { channels_per_branch[b] = layer_config->in_channels; } else if (layer_config->branch_copy_type == BRANCH_OUTPUT) { channels_per_branch[b] = layer_config->out_channels; } else if (layer_config->branch_copy_type == BRANCH_COMBINED) { channels_per_branch[b] = layer_config->out_channels; for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { assert(channels_per_branch[c] > 0); channels_per_branch[b] += channels_per_branch[c]; } } } } } channels_per_branch[branch] = layer_config->out_channels; for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { assert(channels_per_branch[c] > 0); channels_per_branch[branch] += channels_per_branch[c]; } } } #if CONFIG_DEBUG static INLINE int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) { const int num_layers = cnn_config->num_layers; const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config; for (int idx = 0; idx < num_layers; idx++) { if (layer_configs[idx].output_num != -1) { return 1; } } return 0; } #endif void av1_find_cnn_output_size(int in_width, int in_height, const CNN_CONFIG *cnn_config, int *out_width, int *out_height, int *out_channels) { int channels_per_branch[CNN_MAX_BRANCHES] = { 0 }; int i_width[CNN_MAX_BRANCHES] = { 0 }; int i_height[CNN_MAX_BRANCHES] = { 0 }; i_width[0] = in_width + cnn_config->ext_width * 2; i_height[0] = in_height + cnn_config->ext_height * 2; #if CONFIG_DEBUG assert(cnn_has_at_least_one_output(cnn_config)); #endif for (int i = 0; i < cnn_config->num_layers; ++i) { const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i]; const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; const int branch = layer_config->branch; int o_width = 0, o_height = 0; if (layer_config->branch_copy_type == BRANCH_INPUT) { for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->input_to_branches & (1 << b)) && b != branch) { assert(i_width[branch] > 0 && i_height[branch] > 0); i_width[b] = i_width[branch]; i_height[b] = i_height[branch]; } } } av1_find_cnn_layer_output_size(i_width[branch], i_height[branch], layer_config, &o_width, &o_height); i_width[branch] = o_width; i_height[branch] = o_height; if (layer_config->branch_copy_type == BRANCH_OUTPUT) { for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->input_to_branches & (1 << b)) && b != branch) { i_width[b] = o_width; i_height[b] = o_height; } } } find_cnn_out_channels(layer_config, channels_per_branch); const int output_num = layer_config->output_num; if (output_num != -1) { // Current layer is an output layer out_width[output_num] = o_width; out_height[output_num] = o_height; out_channels[output_num] = channels_per_branch[layer_config->branch]; } } } static INLINE int get_start_shift_convolve(int width, int filt_width, int stride) { const int mod = (width % stride); const int filt_off = (filt_width - 1) / 2; const int dif = (mod ? mod - 1 : stride - 1); return AOMMIN((dif + (filt_width % 2)) / 2, filt_off); } void av1_cnn_add_c(float **output, int channels, int width, int height, int stride, const float **add) { for (int c = 0; c < channels; ++c) { for (int i = 0; i < height; ++i) for (int j = 0; j < width; ++j) output[c][i * stride + j] += add[c][i * stride + j]; } } void av1_cnn_activate_c(float **output, int channels, int width, int height, int stride, ACTIVATION layer_activation) { if (layer_activation == RELU) { for (int c = 0; c < channels; ++c) { for (int i = 0; i < height; ++i) for (int j = 0; j < width; ++j) output[c][i * stride + j] = relu(output[c][i * stride + j]); } } else if (layer_activation == SOFTSIGN) { for (int c = 0; c < channels; ++c) { for (int i = 0; i < height; ++i) for (int j = 0; j < width; ++j) output[c][i * stride + j] = softsign(output[c][i * stride + j]); } } else if (layer_activation == SIGMOID) { assert(0 && "Sigmoid has not been supported in CNN."); // TO DO } else if (layer_activation != NONE) { assert(0 && "Unknown activation type"); } } static bool copy_active_tensor_to_branches(const TENSOR *layer_active_tensor, const CNN_LAYER_CONFIG *layer_config, int branch, TENSOR branch_output[]) { const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->input_to_branches & (1 << b)) && b != branch) { // Copy layer's active tensor to output tensor of branch b if set in // mask. The output becomes the input of the first layer of the branch // because the layer of the branch is not the first layer. int copy_channels = branch_config->channels_to_copy > 0 ? branch_config->channels_to_copy : layer_active_tensor->channels; if (!realloc_tensor(&branch_output[b], copy_channels, layer_active_tensor->width, layer_active_tensor->height)) { return false; } copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]); } } return true; } // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height // greater than 1 and padding equal to PADDING_SAME_ZERO. static void convolve_maxpool_padding_zero( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, const int cstep, const int filter_width_half, const int filter_height_half) { for (int i = 0; i < layer_config->out_channels; ++i) { for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); ++hh) { for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); ++ww) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int ii = hh + l - filter_height_half; for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int jj = ww + m - filter_width_half; if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) continue; sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } const float a = sum; if (h == hh && w == ww) output[i][u * out_stride + v] = a; else output[i][u * out_stride + v] = AOMMAX(output[i][u * out_stride + v], a); } } } } } } // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height // greater than 1 and padding equal to PADDING_SAME_REPLICATE. static void convolve_maxpool_padding_replicate( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, const int cstep, const int filter_width_half, const int filter_height_half) { for (int i = 0; i < layer_config->out_channels; ++i) { for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); ++hh) { for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); ++ww) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int ii = CLAMPINDEX(hh + l - filter_height_half, in_height); for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int jj = CLAMPINDEX(ww + m - filter_width_half, in_width); assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } const float a = sum; if (h == hh && w == ww) output[i][u * out_stride + v] = a; else output[i][u * out_stride + v] = AOMMAX(output[i][u * out_stride + v], a); } } } } } } // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height // greater than 1 and padding equal to PADDING_VALID. static void convolve_maxpool_padding_valid( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, const int cstep) { for (int i = 0; i < layer_config->out_channels; ++i) { for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; h += layer_config->skip_height, ++u) { for (int w = 0, v = 0; w < in_width - layer_config->filter_width + 1; w += layer_config->skip_width, ++v) { for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); ++hh) { for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); ++ww) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int ii = hh + l; for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int jj = ww + m; assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } const float a = sum; if (h == hh && w == ww) output[i][u * out_stride + v] = a; else output[i][u * out_stride + v] = AOMMAX(output[i][u * out_stride + v], a); } } } } } } // CNNConvolve specific to maxpool set as 0 with filter_height and filter_width // equal to 1. static void convolve_element_wise(const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, int start_idx, int step) { const int start_h = get_start_shift_convolve( in_height, layer_config->filter_height, layer_config->skip_height); const int start_w = get_start_shift_convolve(in_width, layer_config->filter_width, layer_config->skip_width) + start_idx * layer_config->skip_width; const int out_w_step = AOMMAX(step, 1); const int in_w_step = layer_config->skip_width * out_w_step; for (int i = 0; i < layer_config->out_channels; ++i) { for (int h = start_h, u = 0; h < in_height; h += layer_config->skip_height, ++u) { const int in_h = h * in_stride; const int out_h = u * out_stride + start_idx; for (int w = start_w, out_index = out_h; w < in_width; w += in_w_step, out_index += out_w_step) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { sum += layer_config->weights[k * layer_config->out_channels + i] * input[k][in_h + w]; } output[i][out_index] = sum; } } } } // CNNConvolve specific to maxpool set as 0 and padding equal to // PADDING_SAME_ZERO. static void convolve_no_maxpool_padding_zero( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, int start_idx, const int cstep, const int filter_width_half, const int filter_height_half, const int ii_shift, const int jj_shift, const int channel_step) { const int start_h = get_start_shift_convolve( in_height, layer_config->filter_height, layer_config->skip_height); const int start_w = get_start_shift_convolve( in_width, layer_config->filter_width, layer_config->skip_width); const int end_ii_shift = filter_height_half + 1; const int end_jj_shift = filter_width_half + 1; // *_filter_margin stores the number of pixels along a dimension in the // intersection of the complement of the image in the extended image // and the filter. const int top_filter_margin = layer_config->filter_width * ii_shift; const int right_filter_margin = end_jj_shift - in_width; for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { for (int h = start_h, u = 0; h < in_height; h += layer_config->skip_height, ++u) { const int out_h = u * out_stride; const int top_cstep = AOMMAX(0, top_filter_margin - h * layer_config->filter_width) * cstep + i; const int start_ii = AOMMAX(0, h - ii_shift); const int end_ii = AOMMIN(in_height, h + end_ii_shift); for (int w = start_w, out_index = out_h; w < in_width; w += layer_config->skip_width, ++out_index) { const int left_cstep = AOMMAX(0, jj_shift - w) * cstep; const int right_cstep = AOMMAX(0, right_filter_margin + w) * cstep; const int start_jj = AOMMAX(0, w - jj_shift); const int end_jj = AOMMIN(in_width, w + end_jj_shift); float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + top_cstep; for (int ii = start_ii; ii < end_ii; ++ii) { off += left_cstep; for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) { sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } off += right_cstep; } } output[i][out_index] = sum; } } } } // CNNConvolve specific to maxpool set as 0 and padding equal to // PADDING_SAME_REPLICATE. static void convolve_no_maxpool_padding_replicate( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, int start_idx, const int cstep, const int ii_shift, const int jj_shift, const int channel_step) { // h and w are shifted to an offset coordinate system to reduce in-loop // computation. const int start_h = get_start_shift_convolve(in_height, layer_config->filter_height, layer_config->skip_height) - ii_shift; const int start_w = get_start_shift_convolve(in_width, layer_config->filter_width, layer_config->skip_width) - jj_shift; const int end_h = in_height - ii_shift; const int end_w = in_width - jj_shift; for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { for (int h = start_h, u = 0; h < end_h; h += layer_config->skip_height, ++u) { const int out_h = u * out_stride; const int upper_ii_index = layer_config->filter_height + h; for (int w = start_w, out_index = out_h; w < end_w; w += layer_config->skip_width, ++out_index) { const int upper_jj_index = layer_config->filter_width + w; float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int ii = h; ii < upper_ii_index; ++ii) { const int clamped_ii = CLAMPINDEX(ii, in_height); for (int jj = w; jj < upper_jj_index; ++jj) { const int clamped_jj = CLAMPINDEX(jj, in_width); assert(clamped_ii >= 0 && clamped_ii < in_height && clamped_jj >= 0 && clamped_jj < in_width); sum += layer_config->weights[off] * input[k][clamped_ii * in_stride + clamped_jj]; off += cstep; } } } output[i][out_index] = sum; } } } } // CNNConvolve specific to maxpool set as 0 and padding equal to // PADDING_VALID. void av1_cnn_convolve_no_maxpool_padding_valid_c( const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride, int start_idx, int cstep, int channel_step) { assert((layer_config->skip_height == 1 && layer_config->skip_width == 1) || !layer_config->maxpool); assert(layer_config->filter_height > 1 || layer_config->filter_width > 1); assert(layer_config->pad == PADDING_VALID); for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; h += layer_config->skip_height, ++u) { const int out_h = u * out_stride; const int upper_ii_index = layer_config->filter_height + h; for (int w = 0, out_index = out_h; w < in_width - layer_config->filter_width + 1; w += layer_config->skip_width, ++out_index) { const int upper_jj_index = layer_config->filter_width + w; float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int ii = h; ii < upper_ii_index; ++ii) { for (int jj = w; jj < upper_jj_index; ++jj) { assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; off += cstep; } } } output[i][out_index] = sum; } } } } static void av1_cnn_convolve(const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride, int start_idx, int step) { assert(!layer_config->deconvolve); const int cstep = layer_config->in_channels * layer_config->out_channels; const int filter_height_half = layer_config->filter_height >> 1; const int filter_width_half = layer_config->filter_width >> 1; const int channel_step = AOMMAX(step, 1); if (layer_config->maxpool && (layer_config->skip_height > 1 || layer_config->skip_width > 1)) { switch (layer_config->pad) { case PADDING_SAME_ZERO: convolve_maxpool_padding_zero(input, in_width, in_height, in_stride, layer_config, output, out_stride, cstep, filter_width_half, filter_height_half); break; case PADDING_SAME_REPLICATE: convolve_maxpool_padding_replicate( input, in_width, in_height, in_stride, layer_config, output, out_stride, cstep, filter_width_half, filter_height_half); break; case PADDING_VALID: convolve_maxpool_padding_valid(input, in_width, in_height, in_stride, layer_config, output, out_stride, cstep); break; default: assert(0 && "Unknown padding type"); } } else { // Results in element-wise matrix multiplication. if (layer_config->filter_height == 1 && layer_config->filter_width == 1) { convolve_element_wise(input, in_width, in_height, in_stride, layer_config, output, out_stride, start_idx, step); return; } const int ii_shift = filter_height_half - (layer_config->filter_height - 1) % 2; const int jj_shift = filter_width_half - (layer_config->filter_width - 1) % 2; switch (layer_config->pad) { case PADDING_SAME_ZERO: convolve_no_maxpool_padding_zero( input, in_width, in_height, in_stride, layer_config, output, out_stride, start_idx, cstep, filter_width_half, filter_height_half, ii_shift, jj_shift, channel_step); break; case PADDING_SAME_REPLICATE: convolve_no_maxpool_padding_replicate( input, in_width, in_height, in_stride, layer_config, output, out_stride, start_idx, cstep, ii_shift, jj_shift, channel_step); break; case PADDING_VALID: av1_cnn_convolve_no_maxpool_padding_valid( input, in_width, in_height, in_stride, layer_config, output, out_stride, start_idx, cstep, channel_step); break; default: assert(0 && "Unknown padding type"); } } } static int convolve_layer(void *arg1, void *arg2) { const CONVOLVE_OPS *convolve_ops = arg1; (void)arg2; av1_cnn_convolve( convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height, convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output, convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step); return 1; } static void convolve_layer_mt(const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *layer_config, const CNN_THREAD_DATA *thread_data, float **output, int out_stride) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int num_workers = thread_data->num_workers; assert(thread_data->workers); CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS]; for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { AVxWorker *const worker = &thread_data->workers[th]; winterface->reset(worker); CONVOLVE_OPS convolve_op = { input, in_width, in_height, in_stride, layer_config, output, out_stride, th, num_workers }; convolve_ops[th] = convolve_op; worker->hook = convolve_layer; worker->data1 = &(convolve_ops[th]); worker->data2 = NULL; // Start convolving. if (th == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait until all workers have finished. for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { winterface->sync(&thread_data->workers[th]); } } static INLINE int get_start_shift_deconvolve(int filt_width, int stride) { const int dif = AOMMAX(filt_width - stride, 0); return dif / 2; } void av1_cnn_batchnorm_c(float **image, int channels, int width, int height, int stride, const float *gamma, const float *beta, const float *mean, const float *std) { assert(gamma && beta && beta && std && "batchnorm has null parameter!"); for (int ch = 0; ch < channels; ch++) { const float ch_gamma = gamma[ch]; const float ch_beta = beta[ch]; const float ch_mean = mean[ch]; const float ch_std = std[ch]; float *image_row = image[ch]; for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { image_row[col] = ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta; } image_row += stride; } } } void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height, int in_stride, const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride) { assert(layer_config->deconvolve); const int cstep = layer_config->in_channels * layer_config->out_channels; int out_width = 0; int out_height = 0; av1_find_cnn_layer_output_size(in_width, in_height, layer_config, &out_width, &out_height); switch (layer_config->pad) { case PADDING_SAME_ZERO: for (int i = 0; i < layer_config->out_channels; ++i) { for (int u = 0; u < out_height; ++u) { for (int v = 0; v < out_width; ++v) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int h = u - l + get_start_shift_deconvolve(layer_config->filter_height, layer_config->skip_height); for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int w = v - m + get_start_shift_deconvolve(layer_config->filter_width, layer_config->skip_width); if ((h % layer_config->skip_height) != 0 || (w % layer_config->skip_width) != 0) continue; const int ii = h / layer_config->skip_height; const int jj = w / layer_config->skip_width; if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) continue; sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } output[i][u * out_stride + v] = sum; } } } break; case PADDING_SAME_REPLICATE: for (int i = 0; i < layer_config->out_channels; ++i) { for (int u = 0; u < out_height; ++u) { for (int v = 0; v < out_width; ++v) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int h = u - l + get_start_shift_deconvolve(layer_config->filter_height, layer_config->skip_height); for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int w = v - m + get_start_shift_deconvolve(layer_config->filter_width, layer_config->skip_width); if ((h % layer_config->skip_height) != 0 || (w % layer_config->skip_width) != 0) continue; const int ii = CLAMPINDEX(h / layer_config->skip_height, in_height); const int jj = CLAMPINDEX(w / layer_config->skip_width, in_width); assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } output[i][u * out_stride + v] = sum; } } } break; case PADDING_VALID: for (int i = 0; i < layer_config->out_channels; ++i) { for (int u = 0; u < out_height; ++u) { for (int v = 0; v < out_width; ++v) { float sum = layer_config->bias[i]; for (int k = 0; k < layer_config->in_channels; ++k) { int off = k * layer_config->out_channels + i; for (int l = 0; l < layer_config->filter_height; ++l) { const int h = u - l; for (int m = 0; m < layer_config->filter_width; ++m, off += cstep) { const int w = v - m; if ((h % layer_config->skip_height) != 0 || (w % layer_config->skip_width) != 0) continue; const int ii = h / layer_config->skip_height; const int jj = w / layer_config->skip_width; if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) continue; sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; } } } output[i][u * out_stride + v] = sum; } } } break; default: assert(0 && "Unknown padding type"); } } bool av1_cnn_predict_c(const float **input, int in_width, int in_height, int in_stride, const CNN_CONFIG *cnn_config, const CNN_THREAD_DATA *thread_data, CNN_MULTI_OUT *output_struct) { bool success = false; TENSOR tensor1[CNN_MAX_BRANCHES] = { { 0 } }; TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } }; float **output[CNN_MAX_BRANCHES]; const int *out_chs = output_struct->output_channels; output[0] = output_struct->output_buffer; for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) { output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1]; } int i_width = in_width; int i_height = in_height; int o_width = 0, o_height = 0; for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { init_tensor(&tensor1[b]); init_tensor(&tensor2[b]); } const int *out_stride = output_struct->output_strides; for (int layer = 0; layer < cnn_config->num_layers; ++layer) { const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer]; const int branch = layer_config->branch; const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; // Allocate input tensor if (layer == 0) { // First layer assert(branch == 0); // First layer must be primary branch assign_tensor(&tensor1[branch], (float **)input, layer_config->in_channels, in_width, in_height, in_stride); } else { // Non-first layer // Swap tensor1 and tensor2 swap_tensor(&tensor1[branch], &tensor2[branch]); i_width = tensor1[branch].width; i_height = tensor1[branch].height; } // Allocate output tensor av1_find_cnn_layer_output_size(i_width, i_height, layer_config, &o_width, &o_height); const int output_num = layer_config->output_num; if (output_num == -1) { // Non-output layer if (!realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width, o_height)) { goto Error; } } else { // Output layer free_tensor(&tensor2[branch]); assign_tensor(&tensor2[branch], output[output_num], layer_config->out_channels, o_width, o_height, out_stride[output_num]); } // If we are combining branches make sure that the branch to combine // is different from the current branch. assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC, !(branch_config->branches_to_combine & (1 << branch)))); if (layer_config->branch_copy_type == BRANCH_INPUT) { if (!copy_active_tensor_to_branches(&tensor1[branch], layer_config, branch, tensor2)) { goto Error; } } // Check consistency of input and output channels assert(tensor1[branch].channels == layer_config->in_channels); assert(tensor2[branch].channels == layer_config->out_channels); // Convolve/Deconvolve if (!cnn_config->layer_config[layer].deconvolve) { if (thread_data->num_workers > 1) { convolve_layer_mt((const float **)tensor1[branch].buf, tensor1[branch].width, tensor1[branch].height, tensor1[branch].stride, layer_config, thread_data, tensor2[branch].buf, tensor2[branch].stride); } else { av1_cnn_convolve((const float **)tensor1[branch].buf, tensor1[branch].width, tensor1[branch].height, tensor1[branch].stride, layer_config, tensor2[branch].buf, tensor2[branch].stride, 0, 1); } } else { av1_cnn_deconvolve((const float **)tensor1[branch].buf, tensor1[branch].width, tensor1[branch].height, tensor1[branch].stride, layer_config, tensor2[branch].buf, tensor2[branch].stride); } if (layer_config->branch_copy_type == BRANCH_OUTPUT) { if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch, tensor2)) { goto Error; } } // Add tensors from other branches if needed if (layer_config->branch_combine_type == BRANCH_ADD) { for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch])); av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, tensor2[branch].height, tensor2[branch].stride, (const float **)tensor2[b].buf); } } } // Non-linearity av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, tensor2[branch].height, tensor2[branch].stride, layer_config->activation); if (layer_config->bn_params.bn_gamma) { av1_cnn_batchnorm( tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, tensor2[branch].height, tensor2[branch].stride, layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta, layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std); } // Concatenate tensors if (layer_config->branch_combine_type == BRANCH_CAT) { if (output_num == -1) { // Non-output layer for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); assert(tensor2[b].channels > 0); if (!concat_tensor(&tensor2[b], &tensor2[branch])) goto Error; } } } else { // Output layer const int existing_channels = tensor2[branch].channels; int num_chs = existing_channels; for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); // Needed only to assign the new channel buffers num_chs += tensor2[b].channels; } } assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width, o_height, out_stride[output_num]); num_chs = existing_channels; for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); // Needed only to assign the new channel buffers copy_tensor(&tensor2[b], tensor2[b].channels, num_chs, &tensor2[branch]); num_chs += tensor2[b].channels; } } } } if (layer_config->branch_copy_type == BRANCH_COMBINED) { if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch, tensor2)) { goto Error; } } } success = true; Error: for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { free_tensor(&tensor1[b]); free_tensor(&tensor2[b]); } return success; } // Assume output already has proper allocation // Assume input image buffers all have same resolution and strides bool av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height, int stride, const CNN_CONFIG *cnn_config, const CNN_THREAD_DATA *thread_data, CNN_MULTI_OUT *output) { const float max_val = 255.0; const int in_width = width + 2 * cnn_config->ext_width; const int in_height = height + 2 * cnn_config->ext_height; const int in_channels = cnn_config->layer_config[0].in_channels; float *inputs[CNN_MAX_CHANNELS]; float *input_ = (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); if (!input_) return false; const int in_stride = in_width; for (int c = 0; c < in_channels; ++c) { inputs[c] = input_ + c * in_stride * in_height; float *input = inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; if (cnn_config->strict_bounds) { for (int i = 0; i < height; ++i) for (int j = 0; j < width; ++j) input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; // extend left and right for (int i = 0; i < height; ++i) { for (int j = -cnn_config->ext_width; j < 0; ++j) input[i * in_stride + j] = input[i * in_stride]; for (int j = width; j < width + cnn_config->ext_width; ++j) input[i * in_stride + j] = input[i * in_stride + width - 1]; } // extend top and bottom for (int i = -cnn_config->ext_height; i < 0; ++i) memcpy(&input[i * in_stride - cnn_config->ext_width], &input[-cnn_config->ext_width], in_width * sizeof(*input)); for (int i = height; i < height + cnn_config->ext_height; ++i) memcpy(&input[i * in_stride - cnn_config->ext_width], &input[(height - 1) * in_stride - cnn_config->ext_width], in_width * sizeof(*input)); } else { for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; ++i) for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; ++j) input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; } } bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, in_stride, cnn_config, thread_data, output); aom_free(input_); return success; } // Assume output already has proper allocation // Assume input image buffers all have same resolution and strides bool av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height, int stride, const CNN_CONFIG *cnn_config, const CNN_THREAD_DATA *thread_data, int bit_depth, CNN_MULTI_OUT *output) { const float max_val = (float)((1 << bit_depth) - 1); const int in_width = width + 2 * cnn_config->ext_width; const int in_height = height + 2 * cnn_config->ext_height; const int in_channels = cnn_config->layer_config[0].in_channels; float *inputs[CNN_MAX_CHANNELS]; float *input_ = (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); if (!input_) return false; const int in_stride = in_width; for (int c = 0; c < in_channels; ++c) { inputs[c] = input_ + c * in_stride * in_height; float *input = inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; if (cnn_config->strict_bounds) { for (int i = 0; i < height; ++i) for (int j = 0; j < width; ++j) input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; // extend left and right for (int i = 0; i < height; ++i) { for (int j = -cnn_config->ext_width; j < 0; ++j) input[i * in_stride + j] = input[i * in_stride]; for (int j = width; j < width + cnn_config->ext_width; ++j) input[i * in_stride + j] = input[i * in_stride + width - 1]; } // extend top and bottom for (int i = -cnn_config->ext_height; i < 0; ++i) memcpy(&input[i * in_stride - cnn_config->ext_width], &input[-cnn_config->ext_width], in_width * sizeof(*input)); for (int i = height; i < height + cnn_config->ext_height; ++i) memcpy(&input[i * in_stride - cnn_config->ext_width], &input[(height - 1) * in_stride - cnn_config->ext_width], in_width * sizeof(*input)); } else { for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; ++i) for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; ++j) input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; } } bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, in_stride, cnn_config, thread_data, output); aom_free(input_); return success; }