/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/context_tree.h" #include "av1/encoder/encoder.h" #include "av1/encoder/rd.h" #include void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx, PICK_MODE_CONTEXT *src_ctx) { dst_ctx->mic = src_ctx->mic; dst_ctx->mbmi_ext_best = src_ctx->mbmi_ext_best; dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk; dst_ctx->skippable = src_ctx->skippable; #if CONFIG_INTERNAL_STATS dst_ctx->best_mode_index = src_ctx->best_mode_index; #endif // CONFIG_INTERNAL_STATS memcpy(dst_ctx->blk_skip, src_ctx->blk_skip, sizeof(uint8_t) * src_ctx->num_4x4_blk); av1_copy_array(dst_ctx->tx_type_map, src_ctx->tx_type_map, src_ctx->num_4x4_blk); dst_ctx->rd_stats = src_ctx->rd_stats; dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready; } void av1_setup_shared_coeff_buffer(const SequenceHeader *const seq_params, PC_TREE_SHARED_BUFFERS *shared_bufs, struct aom_internal_error_info *error) { const int num_planes = seq_params->monochrome ? 1 : MAX_MB_PLANE; const int max_sb_square_y = 1 << num_pels_log2_lookup[seq_params->sb_size]; const int max_sb_square_uv = max_sb_square_y >> (seq_params->subsampling_x + seq_params->subsampling_y); for (int i = 0; i < num_planes; i++) { const int max_num_pix = (i == AOM_PLANE_Y) ? max_sb_square_y : max_sb_square_uv; AOM_CHECK_MEM_ERROR(error, shared_bufs->coeff_buf[i], aom_memalign(32, max_num_pix * sizeof(tran_low_t))); AOM_CHECK_MEM_ERROR(error, shared_bufs->qcoeff_buf[i], aom_memalign(32, max_num_pix * sizeof(tran_low_t))); AOM_CHECK_MEM_ERROR(error, shared_bufs->dqcoeff_buf[i], aom_memalign(32, max_num_pix * sizeof(tran_low_t))); } } void av1_free_shared_coeff_buffer(PC_TREE_SHARED_BUFFERS *shared_bufs) { for (int i = 0; i < 3; i++) { aom_free(shared_bufs->coeff_buf[i]); aom_free(shared_bufs->qcoeff_buf[i]); aom_free(shared_bufs->dqcoeff_buf[i]); shared_bufs->coeff_buf[i] = NULL; shared_bufs->qcoeff_buf[i] = NULL; shared_bufs->dqcoeff_buf[i] = NULL; } } PICK_MODE_CONTEXT *av1_alloc_pmc(const struct AV1_COMP *const cpi, BLOCK_SIZE bsize, PC_TREE_SHARED_BUFFERS *shared_bufs) { PICK_MODE_CONTEXT *volatile ctx = NULL; const AV1_COMMON *const cm = &cpi->common; struct aom_internal_error_info error; if (setjmp(error.jmp)) { av1_free_pmc(ctx, av1_num_planes(cm)); return NULL; } error.setjmp = 1; AOM_CHECK_MEM_ERROR(&error, ctx, aom_calloc(1, sizeof(*ctx))); ctx->rd_mode_is_ready = 0; const int num_planes = av1_num_planes(cm); const int num_pix = block_size_wide[bsize] * block_size_high[bsize]; const int num_blk = num_pix / 16; AOM_CHECK_MEM_ERROR(&error, ctx->blk_skip, aom_calloc(num_blk, sizeof(*ctx->blk_skip))); AOM_CHECK_MEM_ERROR(&error, ctx->tx_type_map, aom_calloc(num_blk, sizeof(*ctx->tx_type_map))); ctx->num_4x4_blk = num_blk; for (int i = 0; i < num_planes; ++i) { ctx->coeff[i] = shared_bufs->coeff_buf[i]; ctx->qcoeff[i] = shared_bufs->qcoeff_buf[i]; ctx->dqcoeff[i] = shared_bufs->dqcoeff_buf[i]; AOM_CHECK_MEM_ERROR(&error, ctx->eobs[i], aom_memalign(32, num_blk * sizeof(*ctx->eobs[i]))); AOM_CHECK_MEM_ERROR( &error, ctx->txb_entropy_ctx[i], aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i]))); } if (num_pix <= MAX_PALETTE_SQUARE) { for (int i = 0; i < 2; ++i) { if (cm->features.allow_screen_content_tools) { AOM_CHECK_MEM_ERROR( &error, ctx->color_index_map[i], aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i]))); } else { ctx->color_index_map[i] = NULL; } } } av1_invalid_rd_stats(&ctx->rd_stats); return ctx; } void av1_reset_pmc(PICK_MODE_CONTEXT *ctx) { av1_zero_array(ctx->blk_skip, ctx->num_4x4_blk); av1_zero_array(ctx->tx_type_map, ctx->num_4x4_blk); av1_invalid_rd_stats(&ctx->rd_stats); } void av1_free_pmc(PICK_MODE_CONTEXT *ctx, int num_planes) { if (ctx == NULL) return; aom_free(ctx->blk_skip); ctx->blk_skip = NULL; aom_free(ctx->tx_type_map); for (int i = 0; i < num_planes; ++i) { ctx->coeff[i] = NULL; ctx->qcoeff[i] = NULL; ctx->dqcoeff[i] = NULL; aom_free(ctx->eobs[i]); ctx->eobs[i] = NULL; aom_free(ctx->txb_entropy_ctx[i]); ctx->txb_entropy_ctx[i] = NULL; } for (int i = 0; i < 2; ++i) { if (ctx->color_index_map[i]) { aom_free(ctx->color_index_map[i]); ctx->color_index_map[i] = NULL; } } aom_free(ctx); } PC_TREE *av1_alloc_pc_tree_node(BLOCK_SIZE bsize) { PC_TREE *pc_tree = aom_calloc(1, sizeof(*pc_tree)); if (pc_tree == NULL) return NULL; pc_tree->partitioning = PARTITION_NONE; pc_tree->block_size = bsize; return pc_tree; } #define FREE_PMC_NODE(CTX) \ do { \ av1_free_pmc(CTX, num_planes); \ CTX = NULL; \ } while (0) void av1_free_pc_tree_recursive(PC_TREE *pc_tree, int num_planes, int keep_best, int keep_none, PARTITION_SEARCH_TYPE partition_search_type) { if (pc_tree == NULL) return; // Avoid freeing of extended partitions as they are not supported when // partition_search_type is VAR_BASED_PARTITION. if (partition_search_type == VAR_BASED_PARTITION && !keep_best && !keep_none) { FREE_PMC_NODE(pc_tree->none); for (int i = 0; i < 2; ++i) { FREE_PMC_NODE(pc_tree->horizontal[i]); FREE_PMC_NODE(pc_tree->vertical[i]); } #if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY for (int i = 0; i < 3; ++i) { assert(pc_tree->horizontala[i] == NULL); assert(pc_tree->horizontalb[i] == NULL); assert(pc_tree->verticala[i] == NULL); assert(pc_tree->verticalb[i] == NULL); } for (int i = 0; i < 4; ++i) { assert(pc_tree->horizontal4[i] == NULL); assert(pc_tree->vertical4[i] == NULL); } #endif for (int i = 0; i < 4; ++i) { if (pc_tree->split[i] != NULL) { av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0, partition_search_type); pc_tree->split[i] = NULL; } } aom_free(pc_tree); return; } const PARTITION_TYPE partition = pc_tree->partitioning; if (!keep_none && (!keep_best || (partition != PARTITION_NONE))) FREE_PMC_NODE(pc_tree->none); for (int i = 0; i < 2; ++i) { if (!keep_best || (partition != PARTITION_HORZ)) FREE_PMC_NODE(pc_tree->horizontal[i]); if (!keep_best || (partition != PARTITION_VERT)) FREE_PMC_NODE(pc_tree->vertical[i]); } #if !CONFIG_REALTIME_ONLY for (int i = 0; i < 3; ++i) { if (!keep_best || (partition != PARTITION_HORZ_A)) FREE_PMC_NODE(pc_tree->horizontala[i]); if (!keep_best || (partition != PARTITION_HORZ_B)) FREE_PMC_NODE(pc_tree->horizontalb[i]); if (!keep_best || (partition != PARTITION_VERT_A)) FREE_PMC_NODE(pc_tree->verticala[i]); if (!keep_best || (partition != PARTITION_VERT_B)) FREE_PMC_NODE(pc_tree->verticalb[i]); } for (int i = 0; i < 4; ++i) { if (!keep_best || (partition != PARTITION_HORZ_4)) FREE_PMC_NODE(pc_tree->horizontal4[i]); if (!keep_best || (partition != PARTITION_VERT_4)) FREE_PMC_NODE(pc_tree->vertical4[i]); } #endif if (!keep_best || (partition != PARTITION_SPLIT)) { for (int i = 0; i < 4; ++i) { if (pc_tree->split[i] != NULL) { av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0, partition_search_type); pc_tree->split[i] = NULL; } } } if (!keep_best && !keep_none) aom_free(pc_tree); } int av1_setup_sms_tree(AV1_COMP *const cpi, ThreadData *td) { // The structure 'sms_tree' is used to store the simple motion search data for // partition pruning in inter frames. Hence, the memory allocations and // initializations related to it are avoided for allintra encoding mode. if (cpi->oxcf.kf_cfg.key_freq_max == 0) return 0; AV1_COMMON *const cm = &cpi->common; const int stat_generation_stage = is_stat_generation_stage(cpi); const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128; const int tree_nodes = av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage); int sms_tree_index = 0; SIMPLE_MOTION_DATA_TREE *this_sms; int square_index = 1; int nodes; aom_free(td->sms_tree); td->sms_tree = (SIMPLE_MOTION_DATA_TREE *)aom_calloc(tree_nodes, sizeof(*td->sms_tree)); if (!td->sms_tree) return -1; this_sms = &td->sms_tree[0]; if (!stat_generation_stage) { const int leaf_factor = is_sb_size_128 ? 4 : 1; const int leaf_nodes = 256 * leaf_factor; // Sets up all the leaf nodes in the tree. for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) { SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index]; tree->block_size = square[0]; } // Each node has 4 leaf nodes, fill each block_size level of the tree // from leafs to the root. for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { for (int i = 0; i < nodes; ++i) { SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index]; tree->block_size = square[square_index]; for (int j = 0; j < 4; j++) tree->split[j] = this_sms++; ++sms_tree_index; } ++square_index; } } else { // Allocation for firstpass/LAP stage // TODO(Mufaddal): refactor square_index to use a common block_size macro // from firstpass.c SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index]; square_index = 2; tree->block_size = square[square_index]; } // Set up the root node for the largest superblock size td->sms_root = &td->sms_tree[tree_nodes - 1]; return 0; } void av1_free_sms_tree(ThreadData *td) { aom_free(td->sms_tree); td->sms_tree = NULL; }