/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/av1_rtcd.h" #include "av1/encoder/dwt.h" // Note: block length must be even for this implementation static void analysis_53_row(int length, tran_low_t *x, tran_low_t *lowpass, tran_low_t *highpass) { int n; tran_low_t r, *a, *b; n = length >> 1; b = highpass; a = lowpass; while (--n) { *a++ = (r = *x++) * 2; *b++ = *x - ((r + x[1] + 1) >> 1); x++; } *a = (r = *x++) * 2; *b = *x - r; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ += (r + (*b) + 1) >> 1; r = *b++; } } static void analysis_53_col(int length, tran_low_t *x, tran_low_t *lowpass, tran_low_t *highpass) { int n; tran_low_t r, *a, *b; n = length >> 1; b = highpass; a = lowpass; while (--n) { *a++ = (r = *x++); *b++ = (((*x) * 2) - (r + x[1]) + 2) >> 2; x++; } *a = (r = *x++); *b = (*x - r + 1) >> 1; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ += (r + (*b) + 1) >> 1; r = *b++; } } static void dyadic_analyze_53_uint8_input(int levels, int width, int height, const uint8_t *x, int pitch_x, tran_low_t *c, int pitch_c, int dwt_scale_bits, int hbd) { int lv, i, j, nh, nw, hh = height, hw = width; tran_low_t buffer[2 * DWT_MAX_LENGTH]; if (hbd) { const uint16_t *x16 = CONVERT_TO_SHORTPTR(x); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { c[i * pitch_c + j] = x16[i * pitch_x + j] << dwt_scale_bits; } } } else { for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { c[i * pitch_c + j] = x[i * pitch_x + j] << dwt_scale_bits; } } } for (lv = 0; lv < levels; lv++) { nh = hh; hh = (hh + 1) >> 1; nw = hw; hw = (hw + 1) >> 1; if ((nh < 2) || (nw < 2)) return; for (i = 0; i < nh; i++) { memcpy(buffer, &c[i * pitch_c], nw * sizeof(tran_low_t)); analysis_53_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw); } for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i + nh] = c[i * pitch_c + j]; analysis_53_col(nh, buffer + nh, buffer, buffer + hh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i]; } } } void av1_fdwt8x8_uint8_input_c(const uint8_t *input, tran_low_t *output, int stride, int hbd) { dyadic_analyze_53_uint8_input(4, 8, 8, input, stride, output, 8, 2, hbd); } static int haar_ac_sad(const tran_low_t *output, int bw, int bh, int stride) { int acsad = 0; for (int r = 0; r < bh; ++r) for (int c = 0; c < bw; ++c) { if (r >= bh / 2 || c >= bw / 2) acsad += abs(output[r * stride + c]); } return acsad; } static int haar_ac_sad_8x8_uint8_input(const uint8_t *input, int stride, int hbd) { tran_low_t output[64]; av1_fdwt8x8_uint8_input_c(input, output, stride, hbd); return haar_ac_sad(output, 8, 8, 8); } int64_t av1_haar_ac_sad_mxn_uint8_input(const uint8_t *input, int stride, int hbd, int num_8x8_rows, int num_8x8_cols) { int64_t wavelet_energy = 0; for (int r8 = 0; r8 < num_8x8_rows; ++r8) { for (int c8 = 0; c8 < num_8x8_cols; ++c8) { wavelet_energy += haar_ac_sad_8x8_uint8_input( input + c8 * 8 + r8 * 8 * stride, stride, hbd); } } return wavelet_energy; }