/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/blockd.h" #include "config/aom_config.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_codec.h" #include "aom/aom_encoder.h" #if CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_MISMATCH_DEBUG #include "av1/common/av1_common_int.h" #include "av1/common/reconinter.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encode_strategy.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encoder_alloc.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/gop_structure.h" #include "av1/encoder/pass2_strategy.h" #include "av1/encoder/temporal_filter.h" #if CONFIG_THREE_PASS #include "av1/encoder/thirdpass.h" #endif // CONFIG_THREE_PASS #include "av1/encoder/tpl_model.h" #if CONFIG_TUNE_VMAF #include "av1/encoder/tune_vmaf.h" #endif #define TEMPORAL_FILTER_KEY_FRAME (CONFIG_REALTIME_ONLY ? 0 : 1) static INLINE void set_refresh_frame_flags( RefreshFrameInfo *const refresh_frame, bool refresh_gf, bool refresh_bwdref, bool refresh_arf) { refresh_frame->golden_frame = refresh_gf; refresh_frame->bwd_ref_frame = refresh_bwdref; refresh_frame->alt_ref_frame = refresh_arf; } void av1_configure_buffer_updates(AV1_COMP *const cpi, RefreshFrameInfo *const refresh_frame, const FRAME_UPDATE_TYPE type, const REFBUF_STATE refbuf_state, int force_refresh_all) { // NOTE(weitinglin): Should we define another function to take care of // cpi->rc.is_$Source_Type to make this function as it is in the comment? const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = &cpi->ext_flags.refresh_frame; cpi->rc.is_src_frame_alt_ref = 0; switch (type) { case KF_UPDATE: set_refresh_frame_flags(refresh_frame, true, true, true); break; case LF_UPDATE: set_refresh_frame_flags(refresh_frame, false, false, false); break; case GF_UPDATE: set_refresh_frame_flags(refresh_frame, true, false, false); break; case OVERLAY_UPDATE: if (refbuf_state == REFBUF_RESET) set_refresh_frame_flags(refresh_frame, true, true, true); else set_refresh_frame_flags(refresh_frame, true, false, false); cpi->rc.is_src_frame_alt_ref = 1; break; case ARF_UPDATE: // NOTE: BWDREF does not get updated along with ALTREF_FRAME. if (refbuf_state == REFBUF_RESET) set_refresh_frame_flags(refresh_frame, true, true, true); else set_refresh_frame_flags(refresh_frame, false, false, true); break; case INTNL_OVERLAY_UPDATE: set_refresh_frame_flags(refresh_frame, false, false, false); cpi->rc.is_src_frame_alt_ref = 1; break; case INTNL_ARF_UPDATE: set_refresh_frame_flags(refresh_frame, false, true, false); break; default: assert(0); break; } if (ext_refresh_frame_flags->update_pending && (!is_stat_generation_stage(cpi))) { set_refresh_frame_flags(refresh_frame, ext_refresh_frame_flags->golden_frame, ext_refresh_frame_flags->bwd_ref_frame, ext_refresh_frame_flags->alt_ref_frame); GF_GROUP *gf_group = &cpi->ppi->gf_group; if (ext_refresh_frame_flags->golden_frame) gf_group->update_type[cpi->gf_frame_index] = GF_UPDATE; if (ext_refresh_frame_flags->alt_ref_frame) gf_group->update_type[cpi->gf_frame_index] = ARF_UPDATE; if (ext_refresh_frame_flags->bwd_ref_frame) gf_group->update_type[cpi->gf_frame_index] = INTNL_ARF_UPDATE; } if (force_refresh_all) set_refresh_frame_flags(refresh_frame, true, true, true); } static void set_additional_frame_flags(const AV1_COMMON *const cm, unsigned int *const frame_flags) { if (frame_is_intra_only(cm)) { *frame_flags |= FRAMEFLAGS_INTRAONLY; } if (frame_is_sframe(cm)) { *frame_flags |= FRAMEFLAGS_SWITCH; } if (cm->features.error_resilient_mode) { *frame_flags |= FRAMEFLAGS_ERROR_RESILIENT; } } static void set_ext_overrides(AV1_COMMON *const cm, EncodeFrameParams *const frame_params, ExternalFlags *const ext_flags) { // Overrides the defaults with the externally supplied values with // av1_update_reference() and av1_update_entropy() calls // Note: The overrides are valid only for the next frame passed // to av1_encode_lowlevel() if (ext_flags->use_s_frame) { frame_params->frame_type = S_FRAME; } if (ext_flags->refresh_frame_context_pending) { cm->features.refresh_frame_context = ext_flags->refresh_frame_context; ext_flags->refresh_frame_context_pending = 0; } cm->features.allow_ref_frame_mvs = ext_flags->use_ref_frame_mvs; frame_params->error_resilient_mode = ext_flags->use_error_resilient; // A keyframe is already error resilient and keyframes with // error_resilient_mode interferes with the use of show_existing_frame // when forward reference keyframes are enabled. frame_params->error_resilient_mode &= frame_params->frame_type != KEY_FRAME; // For bitstream conformance, s-frames must be error-resilient frame_params->error_resilient_mode |= frame_params->frame_type == S_FRAME; } static int choose_primary_ref_frame( AV1_COMP *const cpi, const EncodeFrameParams *const frame_params) { const AV1_COMMON *const cm = &cpi->common; const int intra_only = frame_params->frame_type == KEY_FRAME || frame_params->frame_type == INTRA_ONLY_FRAME; if (intra_only || frame_params->error_resilient_mode || cpi->ext_flags.use_primary_ref_none) { return PRIMARY_REF_NONE; } #if !CONFIG_REALTIME_ONLY if (cpi->use_ducky_encode) { int wanted_fb = cpi->ppi->gf_group.primary_ref_idx[cpi->gf_frame_index]; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) return ref_frame - LAST_FRAME; } return PRIMARY_REF_NONE; } #endif // !CONFIG_REALTIME_ONLY // In large scale case, always use Last frame's frame contexts. // Note(yunqing): In other cases, primary_ref_frame is chosen based on // cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], which also controls // frame bit allocation. if (cm->tiles.large_scale) return (LAST_FRAME - LAST_FRAME); if (cpi->ppi->use_svc || cpi->ppi->rtc_ref.set_ref_frame_config) return av1_svc_primary_ref_frame(cpi); // Find the most recent reference frame with the same reference type as the // current frame const int current_ref_type = get_current_frame_ref_type(cpi); int wanted_fb = cpi->ppi->fb_of_context_type[current_ref_type]; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { GF_GROUP *const gf_group = &cpi->ppi->gf_group; if (gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { int frame_level = gf_group->frame_parallel_level[cpi->gf_frame_index]; // Book keep wanted_fb of frame_parallel_level 1 frame in an FP2 set. if (frame_level == 1) { cpi->wanted_fb = wanted_fb; } // Use the wanted_fb of level 1 frame in an FP2 for a level 2 frame in the // set. if (frame_level == 2 && gf_group->update_type[cpi->gf_frame_index - 1] == INTNL_ARF_UPDATE) { assert(gf_group->frame_parallel_level[cpi->gf_frame_index - 1] == 1); wanted_fb = cpi->wanted_fb; } } } #endif // CONFIG_FPMT_TEST int primary_ref_frame = PRIMARY_REF_NONE; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) { primary_ref_frame = ref_frame - LAST_FRAME; } } return primary_ref_frame; } static void adjust_frame_rate(AV1_COMP *cpi, int64_t ts_start, int64_t ts_end) { TimeStamps *time_stamps = &cpi->time_stamps; int64_t this_duration; int step = 0; // Clear down mmx registers if (cpi->ppi->use_svc && cpi->ppi->rtc_ref.set_ref_frame_config && cpi->svc.number_spatial_layers > 1) { // ts_start is the timestamp for the current frame and ts_end is the // expected next timestamp given the duration passed into codec_encode(). // See the setting in encoder_encode() in av1_cx_iface.c: // ts_start = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol), // ts_end = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol + // duration). So the difference ts_end - ts_start is the duration passed // in by the user. For spatial layers SVC set the framerate based directly // on the duration, and bypass the adjustments below. this_duration = ts_end - ts_start; if (this_duration > 0) { cpi->new_framerate = 10000000.0 / this_duration; av1_new_framerate(cpi, cpi->new_framerate); time_stamps->prev_ts_start = ts_start; time_stamps->prev_ts_end = ts_end; return; } } if (ts_start == time_stamps->first_ts_start) { this_duration = ts_end - ts_start; step = 1; } else { int64_t last_duration = time_stamps->prev_ts_end - time_stamps->prev_ts_start; this_duration = ts_end - time_stamps->prev_ts_end; // do a step update if the duration changes by 10% if (last_duration) step = (int)((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) { cpi->new_framerate = 10000000.0 / this_duration; av1_new_framerate(cpi, cpi->new_framerate); } else { // Average this frame's rate into the last second's average // frame rate. If we haven't seen 1 second yet, then average // over the whole interval seen. const double interval = AOMMIN((double)(ts_end - time_stamps->first_ts_start), 10000000.0); double avg_duration = 10000000.0 / cpi->framerate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; cpi->new_framerate = (10000000.0 / avg_duration); // For parallel frames update cpi->framerate with new_framerate // during av1_post_encode_updates() double framerate = (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) ? cpi->framerate : cpi->new_framerate; av1_new_framerate(cpi, framerate); } } time_stamps->prev_ts_start = ts_start; time_stamps->prev_ts_end = ts_end; } // Determine whether there is a forced keyframe pending in the lookahead buffer int is_forced_keyframe_pending(struct lookahead_ctx *lookahead, const int up_to_index, const COMPRESSOR_STAGE compressor_stage) { for (int i = 0; i <= up_to_index; i++) { const struct lookahead_entry *e = av1_lookahead_peek(lookahead, i, compressor_stage); if (e == NULL) { // We have reached the end of the lookahead buffer and not early-returned // so there isn't a forced key-frame pending. return -1; } else if (e->flags == AOM_EFLAG_FORCE_KF) { return i; } else { continue; } } return -1; // Never reached } // Check if we should encode an ARF or internal ARF. If not, try a LAST // Do some setup associated with the chosen source // temporal_filtered, flush, and frame_update_type are outputs. // Return the frame source, or NULL if we couldn't find one static struct lookahead_entry *choose_frame_source( AV1_COMP *const cpi, int *const flush, int *pop_lookahead, struct lookahead_entry **last_source, int *const show_frame) { AV1_COMMON *const cm = &cpi->common; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; struct lookahead_entry *source = NULL; // Source index in lookahead buffer. int src_index = gf_group->arf_src_offset[cpi->gf_frame_index]; // TODO(Aasaipriya): Forced key frames need to be fixed when rc_mode != AOM_Q if (src_index && (is_forced_keyframe_pending(cpi->ppi->lookahead, src_index, cpi->compressor_stage) != -1) && cpi->oxcf.rc_cfg.mode != AOM_Q && !is_stat_generation_stage(cpi)) { src_index = 0; *flush = 1; } // If the current frame is arf, then we should not pop from the lookahead // buffer. If the current frame is not arf, then pop it. This assumes the // first frame in the GF group is not arf. May need to change if it is not // true. *pop_lookahead = (src_index == 0); // If this is a key frame and keyframe filtering is enabled with overlay, // then do not pop. if (*pop_lookahead && cpi->oxcf.kf_cfg.enable_keyframe_filtering > 1 && gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE && !is_stat_generation_stage(cpi) && cpi->ppi->lookahead) { if (cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz && (*flush || cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz == cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].pop_sz)) { *pop_lookahead = 0; } } // LAP stage does not have ARFs or forward key-frames, // hence, always pop_lookahead here. if (is_stat_generation_stage(cpi)) { *pop_lookahead = 1; src_index = 0; } *show_frame = *pop_lookahead; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) { #else { #endif // CONFIG_FPMT_TEST // Future frame in parallel encode set if (gf_group->src_offset[cpi->gf_frame_index] != 0 && !is_stat_generation_stage(cpi)) src_index = gf_group->src_offset[cpi->gf_frame_index]; } if (*show_frame) { // show frame, pop from buffer // Get last frame source. if (cm->current_frame.frame_number > 0) { *last_source = av1_lookahead_peek(cpi->ppi->lookahead, src_index - 1, cpi->compressor_stage); } // Read in the source frame. source = av1_lookahead_peek(cpi->ppi->lookahead, src_index, cpi->compressor_stage); } else { // no show frames are arf frames source = av1_lookahead_peek(cpi->ppi->lookahead, src_index, cpi->compressor_stage); if (source != NULL) { cm->showable_frame = 1; } } return source; } // Don't allow a show_existing_frame to coincide with an error resilient or // S-Frame. An exception can be made in the case of a keyframe, since it does // not depend on any previous frames. static int allow_show_existing(const AV1_COMP *const cpi, unsigned int frame_flags) { if (cpi->common.current_frame.frame_number == 0) return 0; const struct lookahead_entry *lookahead_src = av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage); if (lookahead_src == NULL) return 1; const int is_error_resilient = cpi->oxcf.tool_cfg.error_resilient_mode || (lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT); const int is_s_frame = cpi->oxcf.kf_cfg.enable_sframe || (lookahead_src->flags & AOM_EFLAG_SET_S_FRAME); const int is_key_frame = (cpi->rc.frames_to_key == 0) || (frame_flags & FRAMEFLAGS_KEY); return !(is_error_resilient || is_s_frame) || is_key_frame; } // Update frame_flags to tell the encoder's caller what sort of frame was // encoded. static void update_frame_flags(const AV1_COMMON *const cm, const RefreshFrameInfo *const refresh_frame, unsigned int *frame_flags) { if (encode_show_existing_frame(cm)) { *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN; *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF; *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF; *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY; return; } if (refresh_frame->golden_frame) { *frame_flags |= FRAMEFLAGS_GOLDEN; } else { *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN; } if (refresh_frame->alt_ref_frame) { *frame_flags |= FRAMEFLAGS_ALTREF; } else { *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF; } if (refresh_frame->bwd_ref_frame) { *frame_flags |= FRAMEFLAGS_BWDREF; } else { *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF; } if (cm->current_frame.frame_type == KEY_FRAME) { *frame_flags |= FRAMEFLAGS_KEY; } else { *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY; } } #define DUMP_REF_FRAME_IMAGES 0 #if DUMP_REF_FRAME_IMAGES == 1 static int dump_one_image(AV1_COMMON *cm, const YV12_BUFFER_CONFIG *const ref_buf, char *file_name) { int h; FILE *f_ref = NULL; if (ref_buf == NULL) { printf("Frame data buffer is NULL.\n"); return AOM_CODEC_MEM_ERROR; } if ((f_ref = fopen(file_name, "wb")) == NULL) { printf("Unable to open file %s to write.\n", file_name); return AOM_CODEC_MEM_ERROR; } // --- Y --- for (h = 0; h < cm->height; ++h) { fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref); } // --- U --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), f_ref); } // --- V --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), f_ref); } fclose(f_ref); return AOM_CODEC_OK; } static void dump_ref_frame_images(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { char file_name[256] = ""; snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv", cm->current_frame.frame_number, ref_frame); dump_one_image(cm, get_ref_frame_yv12_buf(cpi, ref_frame), file_name); } } #endif // DUMP_REF_FRAME_IMAGES == 1 int av1_get_refresh_ref_frame_map(int refresh_frame_flags) { int ref_map_index; for (ref_map_index = 0; ref_map_index < REF_FRAMES; ++ref_map_index) if ((refresh_frame_flags >> ref_map_index) & 1) break; if (ref_map_index == REF_FRAMES) ref_map_index = INVALID_IDX; return ref_map_index; } static int get_free_ref_map_index(RefFrameMapPair ref_map_pairs[REF_FRAMES]) { for (int idx = 0; idx < REF_FRAMES; ++idx) if (ref_map_pairs[idx].disp_order == -1) return idx; return INVALID_IDX; } static int get_refresh_idx(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], int update_arf, GF_GROUP *gf_group, int gf_index, int enable_refresh_skip, int cur_frame_disp) { int arf_count = 0; int oldest_arf_order = INT32_MAX; int oldest_arf_idx = -1; int oldest_frame_order = INT32_MAX; int oldest_idx = -1; for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; if (ref_pair.disp_order == -1) continue; const int frame_order = ref_pair.disp_order; const int reference_frame_level = ref_pair.pyr_level; // Keep future frames and three closest previous frames in output order. if (frame_order > cur_frame_disp - 3) continue; if (enable_refresh_skip) { int skip_frame = 0; // Prevent refreshing a frame in gf_group->skip_frame_refresh. for (int i = 0; i < REF_FRAMES; i++) { int frame_to_skip = gf_group->skip_frame_refresh[gf_index][i]; if (frame_to_skip == INVALID_IDX) break; if (frame_order == frame_to_skip) { skip_frame = 1; break; } } if (skip_frame) continue; } // Keep track of the oldest level 1 frame if the current frame is also level // 1. if (reference_frame_level == 1) { // If there are more than 2 level 1 frames in the reference list, // discard the oldest. if (frame_order < oldest_arf_order) { oldest_arf_order = frame_order; oldest_arf_idx = map_idx; } arf_count++; continue; } // Update the overall oldest reference frame. if (frame_order < oldest_frame_order) { oldest_frame_order = frame_order; oldest_idx = map_idx; } } if (update_arf && arf_count > 2) return oldest_arf_idx; if (oldest_idx >= 0) return oldest_idx; if (oldest_arf_idx >= 0) return oldest_arf_idx; if (oldest_idx == -1) { assert(arf_count > 2 && enable_refresh_skip); return oldest_arf_idx; } assert(0 && "No valid refresh index found"); return -1; } // Computes the reference refresh index for INTNL_ARF_UPDATE frame. int av1_calc_refresh_idx_for_intnl_arf( AV1_COMP *cpi, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], int gf_index) { GF_GROUP *const gf_group = &cpi->ppi->gf_group; // Search for the open slot to store the current frame. int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs); // Use a free slot if available. if (free_fb_index != INVALID_IDX) { return free_fb_index; } else { int enable_refresh_skip = !is_one_pass_rt_params(cpi); int refresh_idx = get_refresh_idx(ref_frame_map_pairs, 0, gf_group, gf_index, enable_refresh_skip, gf_group->display_idx[gf_index]); return refresh_idx; } } int av1_get_refresh_frame_flags( const AV1_COMP *const cpi, const EncodeFrameParams *const frame_params, FRAME_UPDATE_TYPE frame_update_type, int gf_index, int cur_disp_order, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]) { const AV1_COMMON *const cm = &cpi->common; const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = &cpi->ext_flags.refresh_frame; GF_GROUP *gf_group = &cpi->ppi->gf_group; if (gf_group->refbuf_state[gf_index] == REFBUF_RESET) return SELECT_ALL_BUF_SLOTS; // TODO(jingning): Deprecate the following operations. // Switch frames and shown key-frames overwrite all reference slots if (frame_params->frame_type == S_FRAME) return SELECT_ALL_BUF_SLOTS; // show_existing_frames don't actually send refresh_frame_flags so set the // flags to 0 to keep things consistent. if (frame_params->show_existing_frame) return 0; const RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; if (is_frame_droppable(rtc_ref, ext_refresh_frame_flags)) return 0; #if !CONFIG_REALTIME_ONLY if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) { int new_fb_map_idx = cpi->ppi->gf_group.update_ref_idx[gf_index]; if (new_fb_map_idx == INVALID_IDX) return 0; return 1 << new_fb_map_idx; } #endif // !CONFIG_REALTIME_ONLY int refresh_mask = 0; if (ext_refresh_frame_flags->update_pending) { if (rtc_ref->set_ref_frame_config || use_rtc_reference_structure_one_layer(cpi)) { for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { int ref_frame_map_idx = rtc_ref->ref_idx[i]; refresh_mask |= rtc_ref->refresh[ref_frame_map_idx] << ref_frame_map_idx; } return refresh_mask; } // Unfortunately the encoder interface reflects the old refresh_*_frame // flags so we have to replicate the old refresh_frame_flags logic here in // order to preserve the behaviour of the flag overrides. int ref_frame_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->last_frame << ref_frame_map_idx; ref_frame_map_idx = get_ref_frame_map_idx(cm, EXTREF_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->bwd_ref_frame << ref_frame_map_idx; ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF2_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->alt2_ref_frame << ref_frame_map_idx; if (frame_update_type == OVERLAY_UPDATE) { ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->golden_frame << ref_frame_map_idx; } else { ref_frame_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->golden_frame << ref_frame_map_idx; ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME); if (ref_frame_map_idx != INVALID_IDX) refresh_mask |= ext_refresh_frame_flags->alt_ref_frame << ref_frame_map_idx; } return refresh_mask; } // Search for the open slot to store the current frame. int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs); // No refresh necessary for these frame types. if (frame_update_type == OVERLAY_UPDATE || frame_update_type == INTNL_OVERLAY_UPDATE) return refresh_mask; // If there is an open slot, refresh that one instead of replacing a // reference. if (free_fb_index != INVALID_IDX) { refresh_mask = 1 << free_fb_index; return refresh_mask; } const int enable_refresh_skip = !is_one_pass_rt_params(cpi); const int update_arf = frame_update_type == ARF_UPDATE; const int refresh_idx = get_refresh_idx(ref_frame_map_pairs, update_arf, &cpi->ppi->gf_group, gf_index, enable_refresh_skip, cur_disp_order); return 1 << refresh_idx; } #if !CONFIG_REALTIME_ONLY // Apply temporal filtering to source frames and encode the filtered frame. // If the current frame does not require filtering, this function is identical // to av1_encode() except that tpl is not performed. static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest, EncodeFrameInput *const frame_input, const EncodeFrameParams *const frame_params, EncodeFrameResults *const frame_results) { #if CONFIG_COLLECT_COMPONENT_TIMING if (cpi->oxcf.pass == 2) start_timing(cpi, denoise_and_encode_time); #endif const AV1EncoderConfig *const oxcf = &cpi->oxcf; AV1_COMMON *const cm = &cpi->common; GF_GROUP *const gf_group = &cpi->ppi->gf_group; FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); const int is_second_arf = av1_gop_is_second_arf(gf_group, cpi->gf_frame_index); // Decide whether to apply temporal filtering to the source frame. int apply_filtering = av1_is_temporal_filter_on(oxcf) && !is_stat_generation_stage(cpi); if (update_type != KF_UPDATE && update_type != ARF_UPDATE && !is_second_arf) { apply_filtering = 0; } if (apply_filtering) { if (frame_params->frame_type == KEY_FRAME) { // TODO(angiebird): Move the noise level check to av1_tf_info_filtering. // Decide whether it is allowed to perform key frame filtering int allow_kf_filtering = oxcf->kf_cfg.enable_keyframe_filtering && !frame_params->show_existing_frame && !is_lossless_requested(&oxcf->rc_cfg); if (allow_kf_filtering) { double y_noise_level = 0.0; av1_estimate_noise_level( frame_input->source, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y, cm->seq_params->bit_depth, NOISE_ESTIMATION_EDGE_THRESHOLD); apply_filtering = y_noise_level > 0; } else { apply_filtering = 0; } // If we are doing kf filtering, set up a few things. if (apply_filtering) { av1_setup_past_independence(cm); } } else if (is_second_arf) { apply_filtering = cpi->sf.hl_sf.second_alt_ref_filtering; } } #if CONFIG_COLLECT_COMPONENT_TIMING if (cpi->oxcf.pass == 2) start_timing(cpi, apply_filtering_time); #endif // Save the pointer to the original source image. YV12_BUFFER_CONFIG *source_buffer = frame_input->source; // apply filtering to frame if (apply_filtering) { int show_existing_alt_ref = 0; FRAME_DIFF frame_diff; int top_index = 0; int bottom_index = 0; const int q_index = av1_rc_pick_q_and_bounds( cpi, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height, cpi->gf_frame_index, &bottom_index, &top_index); // TODO(bohanli): figure out why we need frame_type in cm here. cm->current_frame.frame_type = frame_params->frame_type; if (update_type == KF_UPDATE || update_type == ARF_UPDATE) { YV12_BUFFER_CONFIG *tf_buf = av1_tf_info_get_filtered_buf( &cpi->ppi->tf_info, cpi->gf_frame_index, &frame_diff); if (tf_buf != NULL) { frame_input->source = tf_buf; show_existing_alt_ref = av1_check_show_filtered_frame( tf_buf, &frame_diff, q_index, cm->seq_params->bit_depth); if (show_existing_alt_ref) { cpi->common.showable_frame |= 1; } else { cpi->common.showable_frame = 0; } } if (gf_group->frame_type[cpi->gf_frame_index] != KEY_FRAME) { cpi->ppi->show_existing_alt_ref = show_existing_alt_ref; } } if (is_second_arf) { // Allocate the memory for tf_buf_second_arf buffer, only when it is // required. int ret = aom_realloc_frame_buffer( &cpi->ppi->tf_info.tf_buf_second_arf, oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL, cpi->alloc_pyramid, 0); if (ret) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate tf_buf_second_arf"); YV12_BUFFER_CONFIG *tf_buf_second_arf = &cpi->ppi->tf_info.tf_buf_second_arf; // We didn't apply temporal filtering for second arf ahead in // av1_tf_info_filtering(). const int arf_src_index = gf_group->arf_src_offset[cpi->gf_frame_index]; // Right now, we are still using tf_buf_second_arf due to // implementation complexity. // TODO(angiebird): Reuse tf_info->tf_buf here. av1_temporal_filter(cpi, arf_src_index, cpi->gf_frame_index, &frame_diff, tf_buf_second_arf); show_existing_alt_ref = av1_check_show_filtered_frame( tf_buf_second_arf, &frame_diff, q_index, cm->seq_params->bit_depth); if (show_existing_alt_ref) { aom_extend_frame_borders(tf_buf_second_arf, av1_num_planes(cm)); frame_input->source = tf_buf_second_arf; } // Currently INTNL_ARF_UPDATE only do show_existing. cpi->common.showable_frame |= 1; } // Copy source metadata to the temporal filtered frame if (source_buffer->metadata && aom_copy_metadata_to_frame_buffer(frame_input->source, source_buffer->metadata)) { aom_internal_error( cm->error, AOM_CODEC_MEM_ERROR, "Failed to copy source metadata to the temporal filtered frame"); } } #if CONFIG_COLLECT_COMPONENT_TIMING if (cpi->oxcf.pass == 2) end_timing(cpi, apply_filtering_time); #endif int set_mv_params = frame_params->frame_type == KEY_FRAME || update_type == ARF_UPDATE || update_type == GF_UPDATE; cm->show_frame = frame_params->show_frame; cm->current_frame.frame_type = frame_params->frame_type; // TODO(bohanli): Why is this? what part of it is necessary? av1_set_frame_size(cpi, cm->width, cm->height); if (set_mv_params) av1_set_mv_search_params(cpi); #if CONFIG_RD_COMMAND if (frame_params->frame_type == KEY_FRAME) { char filepath[] = "rd_command.txt"; av1_read_rd_command(filepath, &cpi->rd_command); } #endif // CONFIG_RD_COMMAND if (cpi->gf_frame_index == 0 && !is_stat_generation_stage(cpi)) { // perform tpl after filtering int allow_tpl = oxcf->gf_cfg.lag_in_frames > 1 && oxcf->algo_cfg.enable_tpl_model; if (gf_group->size > MAX_LENGTH_TPL_FRAME_STATS) { allow_tpl = 0; } if (frame_params->frame_type != KEY_FRAME) { // In rare case, it's possible to have non ARF/GF update_type here. // We should set allow_tpl to zero in the situation allow_tpl = allow_tpl && (update_type == ARF_UPDATE || update_type == GF_UPDATE || (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL)); } if (allow_tpl) { if (!cpi->skip_tpl_setup_stats) { av1_tpl_preload_rc_estimate(cpi, frame_params); av1_tpl_setup_stats(cpi, 0, frame_params); #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS assert(cpi->gf_frame_index == 0); av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data, gf_group, cm->seq_params->bit_depth); #endif } } else { av1_init_tpl_stats(&cpi->ppi->tpl_data); } #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS if (cpi->oxcf.pass == AOM_RC_SECOND_PASS && cpi->second_pass_log_stream != NULL) { TPL_INFO *tpl_info; AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info))); av1_pack_tpl_info(tpl_info, gf_group, &cpi->ppi->tpl_data); av1_write_tpl_info(tpl_info, cpi->second_pass_log_stream, cpi->common.error); aom_free(tpl_info); } #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS } if (av1_encode(cpi, dest, frame_input, frame_params, frame_results) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } // Set frame_input source to true source for psnr calculation. if (apply_filtering && is_psnr_calc_enabled(cpi)) { cpi->source = av1_realloc_and_scale_if_required( cm, source_buffer, &cpi->scaled_source, cm->features.interp_filter, 0, false, true, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); cpi->unscaled_source = source_buffer; } #if CONFIG_COLLECT_COMPONENT_TIMING if (cpi->oxcf.pass == 2) end_timing(cpi, denoise_and_encode_time); #endif return AOM_CODEC_OK; } #endif // !CONFIG_REALTIME_ONLY /*!\cond */ // Struct to keep track of relevant reference frame data. typedef struct { int map_idx; int disp_order; int pyr_level; int used; } RefBufMapData; /*!\endcond */ // Comparison function to sort reference frames in ascending display order. static int compare_map_idx_pair_asc(const void *a, const void *b) { if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) { return 0; } else if (((const RefBufMapData *)a)->disp_order > ((const RefBufMapData *)b)->disp_order) { return 1; } else { return -1; } } // Checks to see if a particular reference frame is already in the reference // frame map. static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) { for (int i = 0; i < n_frames; i++) { if (disp_order == map[i].disp_order) return 1; } return 0; } // Add a reference buffer index to a named reference slot. static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx, int frame) { remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx; ref->used = 1; } // Threshold dictating when we are allowed to start considering // leaving lowest level frames unmapped. #define LOW_LEVEL_FRAMES_TR 5 // Find which reference buffer should be left out of the named mapping. // This is because there are 8 reference buffers and only 7 named slots. static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs, int n_min_level_refs, int min_level, int cur_frame_disp) { int max_dist = 0; int unmapped_idx = -1; if (n_bufs <= ALTREF_FRAME) return; for (int i = 0; i < n_bufs; i++) { if (buffer_map[i].used) continue; if (buffer_map[i].pyr_level != min_level || n_min_level_refs >= LOW_LEVEL_FRAMES_TR) { int dist = abs(cur_frame_disp - buffer_map[i].disp_order); if (dist > max_dist) { max_dist = dist; unmapped_idx = i; } } } assert(unmapped_idx >= 0 && "Unmapped reference not found"); buffer_map[unmapped_idx].used = 1; } void av1_get_ref_frames(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], int cur_frame_disp, const AV1_COMP *cpi, int gf_index, int is_parallel_encode, int remapped_ref_idx[REF_FRAMES]) { int buf_map_idx = 0; // Initialize reference frame mappings. for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX; #if !CONFIG_REALTIME_ONLY if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) { for (int rf = LAST_FRAME; rf < REF_FRAMES; ++rf) { if (cpi->ppi->gf_group.ref_frame_list[gf_index][rf] != INVALID_IDX) { remapped_ref_idx[rf - LAST_FRAME] = cpi->ppi->gf_group.ref_frame_list[gf_index][rf]; } } int valid_rf_idx = 0; static const int ref_frame_type_order[REF_FRAMES - LAST_FRAME] = { GOLDEN_FRAME, ALTREF_FRAME, LAST_FRAME, BWDREF_FRAME, ALTREF2_FRAME, LAST2_FRAME, LAST3_FRAME }; for (int i = 0; i < REF_FRAMES - LAST_FRAME; i++) { int rf = ref_frame_type_order[i]; if (remapped_ref_idx[rf - LAST_FRAME] != INVALID_IDX) { valid_rf_idx = remapped_ref_idx[rf - LAST_FRAME]; break; } } for (int i = 0; i < REF_FRAMES; ++i) { if (remapped_ref_idx[i] == INVALID_IDX) { remapped_ref_idx[i] = valid_rf_idx; } } return; } #endif // !CONFIG_REALTIME_ONLY RefBufMapData buffer_map[REF_FRAMES]; int n_bufs = 0; memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0])); int min_level = MAX_ARF_LAYERS; int max_level = 0; GF_GROUP *gf_group = &cpi->ppi->gf_group; int skip_ref_unmapping = 0; int is_one_pass_rt = is_one_pass_rt_params(cpi); // Go through current reference buffers and store display order, pyr level, // and map index. for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { // Get reference frame buffer. RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; if (ref_pair.disp_order == -1) continue; const int frame_order = ref_pair.disp_order; // Avoid duplicates. if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue; const int reference_frame_level = ref_pair.pyr_level; // Keep track of the lowest and highest levels that currently exist. if (reference_frame_level < min_level) min_level = reference_frame_level; if (reference_frame_level > max_level) max_level = reference_frame_level; buffer_map[n_bufs].map_idx = map_idx; buffer_map[n_bufs].disp_order = frame_order; buffer_map[n_bufs].pyr_level = reference_frame_level; buffer_map[n_bufs].used = 0; n_bufs++; } // Sort frames in ascending display order. qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc); int n_min_level_refs = 0; int closest_past_ref = -1; int golden_idx = -1; int altref_idx = -1; // Find the GOLDEN_FRAME and BWDREF_FRAME. // Also collect various stats about the reference frames for the remaining // mappings. for (int i = n_bufs - 1; i >= 0; i--) { if (buffer_map[i].pyr_level == min_level) { // Keep track of the number of lowest level frames. n_min_level_refs++; if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 && remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) { // Save index for GOLDEN. golden_idx = i; } else if (buffer_map[i].disp_order > cur_frame_disp && altref_idx == -1 && remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) { // Save index for ALTREF. altref_idx = i; } } else if (buffer_map[i].disp_order == cur_frame_disp) { // Map the BWDREF_FRAME if this is the show_existing_frame. add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME); } // During parallel encodes of lower layer frames, exclude the first frame // (frame_parallel_level 1) from being used for the reference assignment of // the second frame (frame_parallel_level 2). if (!is_one_pass_rt && gf_group->frame_parallel_level[gf_index] == 2 && gf_group->frame_parallel_level[gf_index - 1] == 1 && gf_group->update_type[gf_index - 1] == INTNL_ARF_UPDATE) { assert(gf_group->update_type[gf_index] == INTNL_ARF_UPDATE); #if CONFIG_FPMT_TEST is_parallel_encode = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) ? is_parallel_encode : 0; #endif // CONFIG_FPMT_TEST // If parallel cpis are active, use ref_idx_to_skip, else, use display // index. assert(IMPLIES(is_parallel_encode, cpi->ref_idx_to_skip != INVALID_IDX)); assert(IMPLIES(!is_parallel_encode, gf_group->skip_frame_as_ref[gf_index] != INVALID_IDX)); buffer_map[i].used = is_parallel_encode ? (buffer_map[i].map_idx == cpi->ref_idx_to_skip) : (buffer_map[i].disp_order == gf_group->skip_frame_as_ref[gf_index]); // In case a ref frame is excluded from being used during assignment, // skip the call to set_unmapped_ref(). Applicable in steady state. if (buffer_map[i].used) skip_ref_unmapping = 1; } // Keep track of where the frames change from being past frames to future // frames. if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0) closest_past_ref = i; } // Do not map GOLDEN and ALTREF based on their pyramid level if all reference // frames have the same level. if (n_min_level_refs <= n_bufs) { // Map the GOLDEN_FRAME. if (golden_idx > -1) add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME); // Map the ALTREF_FRAME. if (altref_idx > -1) add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME); } // Find the buffer to be excluded from the mapping. if (!skip_ref_unmapping) set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level, cur_frame_disp); // Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME. for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) { // Continue if the current ref slot is already full. if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; // Find the next unmapped reference buffer // in decreasing ouptut order relative to current picture. int next_buf_max = 0; int next_disp_order = INT_MIN; for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { if (!buffer_map[buf_map_idx].used && buffer_map[buf_map_idx].disp_order < cur_frame_disp && buffer_map[buf_map_idx].disp_order > next_disp_order) { next_disp_order = buffer_map[buf_map_idx].disp_order; next_buf_max = buf_map_idx; } } buf_map_idx = next_buf_max; if (buf_map_idx < 0) break; if (buffer_map[buf_map_idx].used) break; add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); } // Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME. for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) { // Continue if the current ref slot is already full. if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; // Find the next unmapped reference buffer // in increasing ouptut order relative to current picture. int next_buf_max = 0; int next_disp_order = INT_MAX; for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { if (!buffer_map[buf_map_idx].used && buffer_map[buf_map_idx].disp_order > cur_frame_disp && buffer_map[buf_map_idx].disp_order < next_disp_order) { next_disp_order = buffer_map[buf_map_idx].disp_order; next_buf_max = buf_map_idx; } } buf_map_idx = next_buf_max; if (buf_map_idx < 0) break; if (buffer_map[buf_map_idx].used) break; add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); } // Place remaining past frames. buf_map_idx = closest_past_ref; for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) { // Continue if the current ref slot is already full. if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; // Find the next unmapped reference buffer. for (; buf_map_idx >= 0; buf_map_idx--) { if (!buffer_map[buf_map_idx].used) break; } if (buf_map_idx < 0) break; if (buffer_map[buf_map_idx].used) break; add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); } // Place remaining future frames. buf_map_idx = n_bufs - 1; for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) { // Continue if the current ref slot is already full. if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; // Find the next unmapped reference buffer. for (; buf_map_idx > closest_past_ref; buf_map_idx--) { if (!buffer_map[buf_map_idx].used) break; } if (buf_map_idx < 0) break; if (buffer_map[buf_map_idx].used) break; add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); } // Fill any slots that are empty (should only happen for the first 7 frames). for (int i = 0; i < REF_FRAMES; ++i) if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0; } int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size, uint8_t *const dest, unsigned int *frame_flags, int64_t *const time_stamp, int64_t *const time_end, const aom_rational64_t *const timestamp_ratio, int *const pop_lookahead, int flush) { AV1EncoderConfig *const oxcf = &cpi->oxcf; AV1_COMMON *const cm = &cpi->common; GF_GROUP *gf_group = &cpi->ppi->gf_group; ExternalFlags *const ext_flags = &cpi->ext_flags; GFConfig *const gf_cfg = &oxcf->gf_cfg; EncodeFrameInput frame_input; EncodeFrameParams frame_params; EncodeFrameResults frame_results; memset(&frame_input, 0, sizeof(frame_input)); memset(&frame_params, 0, sizeof(frame_params)); memset(&frame_results, 0, sizeof(frame_results)); #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS VBR_RATECTRL_INFO *vbr_rc_info = &cpi->vbr_rc_info; if (oxcf->pass == AOM_RC_THIRD_PASS && vbr_rc_info->ready == 0) { THIRD_PASS_FRAME_INFO frame_info[MAX_THIRD_PASS_BUF]; av1_open_second_pass_log(cpi, 1); FILE *second_pass_log_stream = cpi->second_pass_log_stream; fseek(second_pass_log_stream, 0, SEEK_END); size_t file_size = ftell(second_pass_log_stream); rewind(second_pass_log_stream); size_t read_size = 0; while (read_size < file_size) { THIRD_PASS_GOP_INFO gop_info; struct aom_internal_error_info *error = cpi->common.error; // Read in GOP information from the second pass file. av1_read_second_pass_gop_info(second_pass_log_stream, &gop_info, error); TPL_INFO *tpl_info; AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info))); av1_read_tpl_info(tpl_info, second_pass_log_stream, error); // Read in per-frame info from second-pass encoding av1_read_second_pass_per_frame_info(second_pass_log_stream, frame_info, gop_info.num_frames, error); av1_vbr_rc_append_tpl_info(vbr_rc_info, tpl_info); read_size = ftell(second_pass_log_stream); aom_free(tpl_info); } av1_close_second_pass_log(cpi); if (cpi->oxcf.rc_cfg.mode == AOM_Q) { vbr_rc_info->base_q_index = cpi->oxcf.rc_cfg.cq_level; av1_vbr_rc_compute_q_indices( vbr_rc_info->base_q_index, vbr_rc_info->total_frame_count, vbr_rc_info->qstep_ratio_list, cm->seq_params->bit_depth, vbr_rc_info->q_index_list); } else { vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q( vbr_rc_info->total_bit_budget, cm->seq_params->bit_depth, vbr_rc_info->scale_factors, vbr_rc_info->total_frame_count, vbr_rc_info->update_type_list, vbr_rc_info->qstep_ratio_list, vbr_rc_info->txfm_stats_list, vbr_rc_info->q_index_list, NULL); } vbr_rc_info->ready = 1; #if CONFIG_RATECTRL_LOG rc_log_record_chunk_info(&cpi->rc_log, vbr_rc_info->base_q_index, vbr_rc_info->total_frame_count); #endif // CONFIG_RATECTRL_LOG } #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS // Check if we need to stuff more src frames if (flush == 0) { int srcbuf_size = av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage); int pop_size = av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage); // Continue buffering look ahead buffer. if (srcbuf_size < pop_size) return -1; } if (!av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage)) { #if !CONFIG_REALTIME_ONLY if (flush && oxcf->pass == AOM_RC_FIRST_PASS && !cpi->ppi->twopass.first_pass_done) { av1_end_first_pass(cpi); /* get last stats packet */ cpi->ppi->twopass.first_pass_done = 1; } #endif return -1; } // TODO(sarahparker) finish bit allocation for one pass pyramid if (has_no_stats_stage(cpi)) { gf_cfg->gf_max_pyr_height = AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS); gf_cfg->gf_min_pyr_height = AOMMIN(gf_cfg->gf_min_pyr_height, gf_cfg->gf_max_pyr_height); } // Allocation of mi buffers. alloc_mb_mode_info_buffers(cpi); cpi->skip_tpl_setup_stats = 0; #if !CONFIG_REALTIME_ONLY if (oxcf->pass != AOM_RC_FIRST_PASS) { TplParams *const tpl_data = &cpi->ppi->tpl_data; if (tpl_data->tpl_stats_pool[0] == NULL) { av1_setup_tpl_buffers(cpi->ppi, &cm->mi_params, oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, 0, oxcf->gf_cfg.lag_in_frames); } } cpi->twopass_frame.this_frame = NULL; const int use_one_pass_rt_params = is_one_pass_rt_params(cpi); if (!use_one_pass_rt_params && !is_stat_generation_stage(cpi)) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_get_second_pass_params_time); #endif // Initialise frame_level_rate_correction_factors with value previous // to the parallel frames. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { for (int i = 0; i < RATE_FACTOR_LEVELS; i++) { cpi->rc.frame_level_rate_correction_factors[i] = #if CONFIG_FPMT_TEST (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? cpi->ppi->p_rc.temp_rate_correction_factors[i] : #endif // CONFIG_FPMT_TEST cpi->ppi->p_rc.rate_correction_factors[i]; } } // copy mv_stats from ppi to frame_level cpi. cpi->mv_stats = cpi->ppi->mv_stats; av1_get_second_pass_params(cpi, &frame_params, *frame_flags); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_get_second_pass_params_time); #endif } #endif if (!is_stat_generation_stage(cpi)) { // TODO(jingning): fwd key frame always uses show existing frame? if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE && gf_group->refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { frame_params.show_existing_frame = 1; } else { frame_params.show_existing_frame = (cpi->ppi->show_existing_alt_ref && gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) || gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE; } frame_params.show_existing_frame &= allow_show_existing(cpi, *frame_flags); // Special handling to reset 'show_existing_frame' in case of dropped // frames. if (oxcf->rc_cfg.drop_frames_water_mark && (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE || gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE)) { // During the encode of an OVERLAY_UPDATE/INTNL_OVERLAY_UPDATE frame, loop // over the gf group to check if the corresponding // ARF_UPDATE/INTNL_ARF_UPDATE frame was dropped. int cur_disp_idx = gf_group->display_idx[cpi->gf_frame_index]; for (int idx = 0; idx < cpi->gf_frame_index; idx++) { if (cur_disp_idx == gf_group->display_idx[idx]) { assert(IMPLIES( gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE, gf_group->update_type[idx] == ARF_UPDATE)); assert(IMPLIES(gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE, gf_group->update_type[idx] == INTNL_ARF_UPDATE)); // Reset show_existing_frame and set cpi->is_dropped_frame to true if // the frame was dropped during its first encode. if (gf_group->is_frame_dropped[idx]) { frame_params.show_existing_frame = 0; assert(!cpi->is_dropped_frame); cpi->is_dropped_frame = true; } break; } } } // Reset show_existing_alt_ref decision to 0 after it is used. if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { cpi->ppi->show_existing_alt_ref = 0; } } else { frame_params.show_existing_frame = 0; } struct lookahead_entry *source = NULL; struct lookahead_entry *last_source = NULL; if (frame_params.show_existing_frame) { source = av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage); *pop_lookahead = 1; frame_params.show_frame = 1; } else { source = choose_frame_source(cpi, &flush, pop_lookahead, &last_source, &frame_params.show_frame); } if (source == NULL) { // If no source was found, we can't encode a frame. #if !CONFIG_REALTIME_ONLY if (flush && oxcf->pass == AOM_RC_FIRST_PASS && !cpi->ppi->twopass.first_pass_done) { av1_end_first_pass(cpi); /* get last stats packet */ cpi->ppi->twopass.first_pass_done = 1; } #endif return -1; } // reset src_offset to allow actual encode call for this frame to get its // source. gf_group->src_offset[cpi->gf_frame_index] = 0; // Source may be changed if temporal filtered later. frame_input.source = &source->img; if ((cpi->ppi->use_svc || cpi->rc.prev_frame_is_dropped) && last_source != NULL) av1_svc_set_last_source(cpi, &frame_input, &last_source->img); else frame_input.last_source = last_source != NULL ? &last_source->img : NULL; frame_input.ts_duration = source->ts_end - source->ts_start; // Save unfiltered source. It is used in av1_get_second_pass_params(). cpi->unfiltered_source = frame_input.source; *time_stamp = source->ts_start; *time_end = source->ts_end; if (source->ts_start < cpi->time_stamps.first_ts_start) { cpi->time_stamps.first_ts_start = source->ts_start; cpi->time_stamps.prev_ts_end = source->ts_start; } av1_apply_encoding_flags(cpi, source->flags); *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { cpi->framerate = cpi->temp_framerate; } } #endif // CONFIG_FPMT_TEST // Shown frames and arf-overlay frames need frame-rate considering if (frame_params.show_frame) adjust_frame_rate(cpi, source->ts_start, source->ts_end); if (!frame_params.show_existing_frame) { if (cpi->film_grain_table) { cm->cur_frame->film_grain_params_present = aom_film_grain_table_lookup( cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */, &cm->film_grain_params); } else { cm->cur_frame->film_grain_params_present = cm->seq_params->film_grain_params_present; } // only one operating point supported now const int64_t pts64 = ticks_to_timebase_units(timestamp_ratio, *time_stamp); if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR; cm->frame_presentation_time = (uint32_t)pts64; } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_get_one_pass_rt_params_time); #endif #if CONFIG_REALTIME_ONLY av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input, *frame_flags); if (use_rtc_reference_structure_one_layer(cpi)) av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0); #else if (use_one_pass_rt_params) { av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input, *frame_flags); if (use_rtc_reference_structure_one_layer(cpi)) av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0); } #endif #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_get_one_pass_rt_params_time); #endif FRAME_UPDATE_TYPE frame_update_type = get_frame_update_type(gf_group, cpi->gf_frame_index); if (frame_params.show_existing_frame && frame_params.frame_type != KEY_FRAME) { // Force show-existing frames to be INTER, except forward keyframes frame_params.frame_type = INTER_FRAME; } // Per-frame encode speed. In theory this can vary, but things may have // been written assuming speed-level will not change within a sequence, so // this parameter should be used with caution. frame_params.speed = oxcf->speed; #if !CONFIG_REALTIME_ONLY // Set forced key frames when necessary. For two-pass encoding / lap mode, // this is already handled by av1_get_second_pass_params. However when no // stats are available, we still need to check if the new frame is a keyframe. // For one pass rt, this is already checked in av1_get_one_pass_rt_params. if (!use_one_pass_rt_params && (is_stat_generation_stage(cpi) || has_no_stats_stage(cpi))) { // Current frame is coded as a key-frame for any of the following cases: // 1) First frame of a video // 2) For all-intra frame encoding // 3) When a key-frame is forced const int kf_requested = (cm->current_frame.frame_number == 0 || oxcf->kf_cfg.key_freq_max == 0 || (*frame_flags & FRAMEFLAGS_KEY)); if (kf_requested && frame_update_type != OVERLAY_UPDATE && frame_update_type != INTNL_OVERLAY_UPDATE) { frame_params.frame_type = KEY_FRAME; } else if (is_stat_generation_stage(cpi)) { // For stats generation, set the frame type to inter here. frame_params.frame_type = INTER_FRAME; } } #endif // Work out some encoding parameters specific to the pass: if (has_no_stats_stage(cpi) && oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) { av1_cyclic_refresh_update_parameters(cpi); } else if (is_stat_generation_stage(cpi)) { cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(&oxcf->rc_cfg); } else if (is_stat_consumption_stage(cpi)) { #if CONFIG_MISMATCH_DEBUG mismatch_move_frame_idx_w(); #endif #if TXCOEFF_COST_TIMER cm->txcoeff_cost_timer = 0; cm->txcoeff_cost_count = 0; #endif } if (!is_stat_generation_stage(cpi)) set_ext_overrides(cm, &frame_params, ext_flags); // Shown keyframes and S frames refresh all reference buffers const int force_refresh_all = ((frame_params.frame_type == KEY_FRAME && frame_params.show_frame) || frame_params.frame_type == S_FRAME) && !frame_params.show_existing_frame; av1_configure_buffer_updates( cpi, &frame_params.refresh_frame, frame_update_type, gf_group->refbuf_state[cpi->gf_frame_index], force_refresh_all); if (!is_stat_generation_stage(cpi)) { const YV12_BUFFER_CONFIG *ref_frame_buf[INTER_REFS_PER_FRAME]; RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; init_ref_map_pair(cpi, ref_frame_map_pairs); const int order_offset = gf_group->arf_src_offset[cpi->gf_frame_index]; const int cur_frame_disp = cpi->common.current_frame.frame_number + order_offset; int get_ref_frames = 0; #if CONFIG_FPMT_TEST get_ref_frames = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0; #endif // CONFIG_FPMT_TEST if (get_ref_frames || gf_group->frame_parallel_level[cpi->gf_frame_index] == 0) { if (!ext_flags->refresh_frame.update_pending) { av1_get_ref_frames(ref_frame_map_pairs, cur_frame_disp, cpi, cpi->gf_frame_index, 1, cm->remapped_ref_idx); } else if (cpi->ppi->rtc_ref.set_ref_frame_config || use_rtc_reference_structure_one_layer(cpi)) { for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) cm->remapped_ref_idx[i] = cpi->ppi->rtc_ref.ref_idx[i]; } } // Get the reference frames bool has_ref_frames = false; for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { const RefCntBuffer *ref_frame = get_ref_frame_buf(cm, ref_frame_priority_order[i]); ref_frame_buf[i] = ref_frame != NULL ? &ref_frame->buf : NULL; if (ref_frame != NULL) has_ref_frames = true; } if (!has_ref_frames && (frame_params.frame_type == INTER_FRAME || frame_params.frame_type == S_FRAME)) { return AOM_CODEC_ERROR; } // Work out which reference frame slots may be used. frame_params.ref_frame_flags = get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi), ref_frame_buf, ext_flags->ref_frame_flags); // Set primary_ref_frame of non-reference frames as PRIMARY_REF_NONE. if (cpi->ppi->gf_group.is_frame_non_ref[cpi->gf_frame_index]) { frame_params.primary_ref_frame = PRIMARY_REF_NONE; } else { frame_params.primary_ref_frame = choose_primary_ref_frame(cpi, &frame_params); } frame_params.order_offset = gf_group->arf_src_offset[cpi->gf_frame_index]; // Call av1_get_refresh_frame_flags() if refresh index not available. if (!cpi->refresh_idx_available) { frame_params.refresh_frame_flags = av1_get_refresh_frame_flags( cpi, &frame_params, frame_update_type, cpi->gf_frame_index, cur_frame_disp, ref_frame_map_pairs); } else { assert(cpi->ref_refresh_index != INVALID_IDX); frame_params.refresh_frame_flags = (1 << cpi->ref_refresh_index); } // Make the frames marked as is_frame_non_ref to non-reference frames. if (gf_group->is_frame_non_ref[cpi->gf_frame_index]) frame_params.refresh_frame_flags = 0; frame_params.existing_fb_idx_to_show = INVALID_IDX; // Find the frame buffer to show based on display order. if (frame_params.show_existing_frame) { for (int frame = 0; frame < REF_FRAMES; frame++) { const RefCntBuffer *const buf = cm->ref_frame_map[frame]; if (buf == NULL) continue; const int frame_order = (int)buf->display_order_hint; if (frame_order == cur_frame_disp) frame_params.existing_fb_idx_to_show = frame; } } } // The way frame_params->remapped_ref_idx is setup is a placeholder. // Currently, reference buffer assignment is done by update_ref_frame_map() // which is called by high-level strategy AFTER encoding a frame. It // modifies cm->remapped_ref_idx. If you want to use an alternative method // to determine reference buffer assignment, just put your assignments into // frame_params->remapped_ref_idx here and they will be used when encoding // this frame. If frame_params->remapped_ref_idx is setup independently of // cm->remapped_ref_idx then update_ref_frame_map() will have no effect. memcpy(frame_params.remapped_ref_idx, cm->remapped_ref_idx, REF_FRAMES * sizeof(*cm->remapped_ref_idx)); cpi->td.mb.rdmult_delta_qindex = cpi->td.mb.delta_qindex = 0; if (!frame_params.show_existing_frame) { cm->quant_params.using_qmatrix = oxcf->q_cfg.using_qm; } const int is_intra_frame = frame_params.frame_type == KEY_FRAME || frame_params.frame_type == INTRA_ONLY_FRAME; FeatureFlags *const features = &cm->features; if (!is_stat_generation_stage(cpi) && (oxcf->pass == AOM_RC_ONE_PASS || oxcf->pass >= AOM_RC_SECOND_PASS) && is_intra_frame) { av1_set_screen_content_options(cpi, features); } #if CONFIG_REALTIME_ONLY if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } #else if (has_no_stats_stage(cpi) && oxcf->mode == REALTIME && gf_cfg->lag_in_frames == 0) { if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } } else if (denoise_and_encode(cpi, dest, &frame_input, &frame_params, &frame_results) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } #endif // CONFIG_REALTIME_ONLY // This is used in rtc temporal filter case. Use true source in the PSNR // calculation. if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) { assert(cpi->orig_source.buffer_alloc_sz > 0); cpi->source = &cpi->orig_source; } if (!is_stat_generation_stage(cpi)) { // First pass doesn't modify reference buffer assignment or produce frame // flags update_frame_flags(&cpi->common, &cpi->refresh_frame, frame_flags); set_additional_frame_flags(cm, frame_flags); } #if !CONFIG_REALTIME_ONLY #if TXCOEFF_COST_TIMER if (!is_stat_generation_stage(cpi)) { cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer; fprintf(stderr, "\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld " "in us\n", cm->txcoeff_cost_count, cm->txcoeff_cost_timer, cm->cum_txcoeff_cost_timer); } #endif #endif // !CONFIG_REALTIME_ONLY #if CONFIG_TUNE_VMAF if (!is_stat_generation_stage(cpi) && (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) { av1_update_vmaf_curve(cpi); } #endif // Unpack frame_results: *size = frame_results.size; // Leave a signal for a higher level caller about if this frame is droppable if (*size > 0) { cpi->droppable = is_frame_droppable(&cpi->ppi->rtc_ref, &ext_flags->refresh_frame); } // For SVC, or when frame-dropper is enabled: // keep track of the (unscaled) source corresponding to the refresh of LAST // reference (base temporal layer - TL0). Copy only for the // top spatial enhancement layer so all spatial layers of the next // superframe have last_source to be aligned with previous TL0 superframe. // Avoid cases where resolution changes for unscaled source (top spatial // layer). Only needs to be done for frame that are encoded (size > 0). if (*size > 0 && (cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 && cpi->svc.temporal_layer_id == 0 && cpi->unscaled_source->y_width == cpi->svc.source_last_TL0.y_width && cpi->unscaled_source->y_height == cpi->svc.source_last_TL0.y_height) { aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); } return AOM_CODEC_OK; }