/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/common_data.h" #include "av1/common/quant_common.h" #include "av1/common/reconintra.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/rdopt.h" void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult) { const AV1_COMMON *const cm = &cpi->common; const BLOCK_SIZE bsize_base = BLOCK_16X16; const int num_mi_w = mi_size_wide[bsize_base]; const int num_mi_h = mi_size_high[bsize_base]; const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; int row, col; double num_of_mi = 0.0; double geom_mean_of_scale = 1.0; // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least // BLOCK_8X8. // // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would // iterate 256 times. Considering the maximum value of // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()), // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX // (maximum value a double data type can hold). If bsize_base is modified to // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow. assert(bsize_base >= BLOCK_8X8); assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM); for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col / num_mi_h; col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0); geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index]; num_of_mi += 1.0; } } geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi)); *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); *rdmult = AOMMAX(*rdmult, 0); av1_set_error_per_bit(errorperbit, *rdmult); } #if CONFIG_SALIENCY_MAP void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi, int *errorperbit, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult) { const AV1_COMMON *const cm = &cpi->common; const int num_mi_w = mi_size_wide[bsize]; const int num_mi_h = mi_size_high[bsize]; const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; *rdmult = (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w)]); *rdmult = AOMMAX(*rdmult, 0); av1_set_error_per_bit(errorperbit, *rdmult); } #endif // TODO(angiebird): Move these function to tpl_model.c #if !CONFIG_REALTIME_ONLY // Return the end column for the current superblock, in unit of TPL blocks. static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col, int num_mi_w) { // Find the start column of this superblock. const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2) << cm->seq_params->mib_size_log2; // Same but in superres upscaled dimension. const int sb_mi_col_start_sr = coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator); // Width of this superblock in mi units. const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size]; // Same but in superres upscaled dimension. const int sb_mi_width_sr = coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator); // Superblock end in mi units. const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr; // Superblock end in TPL units. return (sb_mi_end + num_mi_w - 1) / num_mi_w; } int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col) { const AV1_COMMON *const cm = &cpi->common; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; int deltaq_rdmult = set_rdmult(cpi, x, -1); if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult; if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; if (x->rb == 0) return deltaq_rdmult; TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; int tpl_stride = tpl_frame->stride; double intra_cost_base = 0; double mc_dep_cost_base = 0; double cbcmp_base = 0; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; for (int row = mi_row; row < mi_row + mi_high; row += step) { for (int col = mi_col; col < mi_col + mi_wide; col += step) { if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) continue; TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; double cbcmp = (double)this_stats->srcrf_dist; int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); intra_cost_base += log(dist_scaled) * cbcmp; mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp; cbcmp_base += cbcmp; } } if (cbcmp_base == 0) return deltaq_rdmult; double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base); deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb)); return AOMMAX(deltaq_rdmult, 1); } int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int orig_rdmult) { const AV1_COMMON *const cm = &cpi->common; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; const int deltaq_rdmult = set_rdmult(cpi, x, -1); if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return deltaq_rdmult; if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int block_mi_width_sr = coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator); const BLOCK_SIZE bsize_base = BLOCK_16X16; const int num_mi_w = mi_size_wide[bsize_base]; const int num_mi_h = mi_size_high[bsize_base]; const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; // This is required because the end col of superblock may be off by 1 in case // of superres. const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w); int row, col; double base_block_count = 0.0; double geom_mean_of_scale = 0.0; for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col_sr / num_mi_h; col < num_cols && col < mi_col_sr / num_mi_h + num_bcols && col < sb_bcol_end; ++col) { const int index = row * num_cols + col; geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]); base_block_count += 1.0; } } geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count); int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5); rdmult = AOMMAX(rdmult, 0); av1_set_error_per_bit(&x->errorperbit, rdmult); #if !CONFIG_RD_COMMAND if (bsize == cm->seq_params->sb_size) { const int rdmult_sb = set_rdmult(cpi, x, -1); assert(rdmult_sb == rdmult); (void)rdmult_sb; } #endif // !CONFIG_RD_COMMAND return rdmult; } #endif // !CONFIG_REALTIME_ONLY static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts, const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi) { int dir; for (dir = 0; dir < 2; ++dir) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); // Only allow the 3 valid SWITCHABLE_FILTERS. assert(filter < SWITCHABLE_FILTERS); ++counts->switchable_interp[ctx][filter]; } } // This function will copy the best reference mode information from // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( MB_MODE_INFO_EXT *mbmi_ext, const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) { memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, sizeof(mbmi_ext->global_mvs)); } void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, const PICK_MODE_CONTEXT *const ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { int i, x_idx, y; const AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const MB_MODE_INFO *const mi = &ctx->mic; MB_MODE_INFO *const mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; assert(bsize < BLOCK_SIZES_ALL); const int bw = mi_size_wide[mi->bsize]; const int bh = mi_size_high[mi->bsize]; const int mis = mi_params->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; TxfmSearchInfo *txfm_info = &x->txfm_search_info; assert(mi->bsize == bsize); *mi_addr = *mi; copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best, av1_ref_frame_type(ctx->mic.ref_frame)); memcpy(txfm_info->blk_skip, ctx->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; xd->tx_type_map = ctx->tx_type_map; xd->tx_type_map_stride = mi_size_wide[bsize]; // If not dry_run, copy the transform type data into the frame level buffer. // Encoder will fetch tx types when writing bitstream. if (!dry_run) { const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx; const int mi_stride = mi_params->mi_stride; for (int blk_row = 0; blk_row < bh; ++blk_row) { av1_copy_array(tx_type_map + blk_row * mi_stride, xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); } xd->tx_type_map = tx_type_map; xd->tx_type_map_stride = mi_stride; } // If segmentation in use if (seg->enabled) { // For in frame complexity AQ copy the segment id from the segment map. if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) { const uint8_t *const map = seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; mi_addr->segment_id = map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; } // Else for cyclic refresh mode update the segment map, set the segment id // and then update the quantizer. if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE && !cpi->rc.rtc_external_ratectrl) { av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize, ctx->rd_stats.rate, ctx->rd_stats.dist, txfm_info->skip_txfm, dry_run); } if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) mi_addr->uv_mode = UV_DC_PRED; if (!dry_run && !mi_addr->skip_txfm) { int cdf_num; const uint8_t spatial_pred = av1_get_spatial_seg_pred( cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4); const uint8_t coded_id = av1_neg_interleave( mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1); int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id]; td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost; const int pred_segment_id = cm->last_frame_seg_map ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, mi_col) : 0; const int use_tmp_pred = pred_segment_id == mi_addr->segment_id; const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd); td->rd_counts.seg_tmp_pred_cost[1] += x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred]; if (!use_tmp_pred) { td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost; } } } // Count zero motion vector. if (!dry_run && !frame_is_intra_only(cm)) { const MV mv = mi->mv[0].as_mv; if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME && abs(mv.row) < 8 && abs(mv.col) < 8) { const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); // Accumulate low_content_frame. for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1; } } for (i = 0; i < num_planes; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; p[i].dqcoeff = ctx->dqcoeff[i]; p[i].eobs = ctx->eobs[i]; p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; } for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; // Restore the coding context of the MB to that that was in place // when the mode was picked for it const int cols = AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width); const int rows = AOMMIN( (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height); for (y = 0; y < rows; y++) { for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr; } if (cpi->oxcf.q_cfg.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0); if (dry_run) return; #if CONFIG_INTERNAL_STATS { unsigned int *const mode_chosen_counts = (unsigned int *)cpi->mode_chosen_counts; // Cast const away. if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D113_PRED /*D113_PRED*/, THR_D157_PRED /*D157_PRED*/, THR_D203_PRED /*D203_PRED*/, THR_D67_PRED /*D67_PRED*/, THR_SMOOTH, /*SMOOTH_PRED*/ THR_SMOOTH_V, /*SMOOTH_V_PRED*/ THR_SMOOTH_H, /*SMOOTH_H_PRED*/ THR_PAETH /*PAETH_PRED*/, }; ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; } else { // Note how often each mode chosen as best ++mode_chosen_counts[ctx->best_mode_index]; } } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) { // When the frame interp filter is SWITCHABLE, several cases that always // use the default type (EIGHTTAP_REGULAR) are described in // av1_is_interp_needed(). Here, we should keep the counts for all // applicable blocks, so the frame filter resetting decision in // fix_interp_filter() is made correctly. update_filter_type_count(td->counts, xd, mi_addr); } } const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col); const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row); if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); } void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, PREDICTION_MODE mode, int16_t mode_context) { (void)counts; int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; if (mode == NEWMV) { #if CONFIG_ENTROPY_STATS ++counts->newmv_mode[mode_ctx][0]; #endif update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); return; } #if CONFIG_ENTROPY_STATS ++counts->newmv_mode[mode_ctx][1]; #endif update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mode == GLOBALMV) { #if CONFIG_ENTROPY_STATS ++counts->zeromv_mode[mode_ctx][0]; #endif update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); return; } #if CONFIG_ENTROPY_STATS ++counts->zeromv_mode[mode_ctx][1]; #endif update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; #if CONFIG_ENTROPY_STATS ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; #endif update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); } static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, FRAME_COUNTS *counts) { FRAME_CONTEXT *fc = xd->tile_ctx; const BLOCK_SIZE bsize = mbmi->bsize; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); (void)counts; if (mbmi->mode == DC_PRED) { const int n = pmi->palette_size[0]; const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); #if CONFIG_ENTROPY_STATS ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; #endif update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], n > 0, 2); if (n > 0) { #if CONFIG_ENTROPY_STATS ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; #endif update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], n - PALETTE_MIN_SIZE, PALETTE_SIZES); } } if (mbmi->uv_mode == UV_DC_PRED) { const int n = pmi->palette_size[1]; const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); #if CONFIG_ENTROPY_STATS ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; #endif update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); if (n > 0) { #if CONFIG_ENTROPY_STATS ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; #endif update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], n - PALETTE_MIN_SIZE, PALETTE_SIZES); } } } void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, const MB_MODE_INFO *above_mi, const MB_MODE_INFO *left_mi, const int intraonly) { FRAME_CONTEXT *fc = xd->tile_ctx; const PREDICTION_MODE y_mode = mbmi->mode; (void)counts; const BLOCK_SIZE bsize = mbmi->bsize; if (intraonly) { #if CONFIG_ENTROPY_STATS const PREDICTION_MODE above = av1_above_block_mode(above_mi); const PREDICTION_MODE left = av1_left_block_mode(left_mi); const int above_ctx = intra_mode_context[above]; const int left_ctx = intra_mode_context[left]; ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; #endif // CONFIG_ENTROPY_STATS update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); } else { #if CONFIG_ENTROPY_STATS ++counts->y_mode[size_group_lookup[bsize]][y_mode]; #endif // CONFIG_ENTROPY_STATS update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); } if (av1_filter_intra_allowed(cm, mbmi)) { const int use_filter_intra_mode = mbmi->filter_intra_mode_info.use_filter_intra; #if CONFIG_ENTROPY_STATS ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode]; if (use_filter_intra_mode) { ++counts ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; } #endif // CONFIG_ENTROPY_STATS update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2); if (use_filter_intra_mode) { update_cdf(fc->filter_intra_mode_cdf, mbmi->filter_intra_mode_info.filter_intra_mode, FILTER_INTRA_MODES); } } if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { #if CONFIG_ENTROPY_STATS ++counts->angle_delta[mbmi->mode - V_PRED] [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; #endif update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, 2 * MAX_ANGLE_DELTA + 1); } if (!xd->is_chroma_ref) return; const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); #if CONFIG_ENTROPY_STATS ++counts->uv_mode[cfl_allowed][y_mode][uv_mode]; #endif // CONFIG_ENTROPY_STATS update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, UV_INTRA_MODES - !cfl_allowed); if (uv_mode == UV_CFL_PRED) { const int8_t joint_sign = mbmi->cfl_alpha_signs; const uint8_t idx = mbmi->cfl_alpha_idx; #if CONFIG_ENTROPY_STATS ++counts->cfl_sign[joint_sign]; #endif update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; #if CONFIG_ENTROPY_STATS ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; #endif update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); } if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; #if CONFIG_ENTROPY_STATS ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; #endif update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); } } const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode); if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) { #if CONFIG_ENTROPY_STATS ++counts->angle_delta[intra_mode - V_PRED] [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; #endif update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED], mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, 2 * MAX_ANGLE_DELTA + 1); } if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { update_palette_cdf(xd, mbmi, counts); } } void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes) { MACROBLOCKD *xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = mi_size_wide[bsize]; const int num_4x4_blocks_high = mi_size_high[bsize]; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; for (p = 0; p < num_planes; p++) { int tx_col = mi_col; int tx_row = mi_row & MAX_MIB_MASK; memcpy( xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), ctx->a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), ctx->l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(xd->above_partition_context + mi_col, ctx->sa, sizeof(*xd->above_partition_context) * mi_width); memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl, sizeof(xd->left_partition_context[0]) * mi_height); xd->above_txfm_context = ctx->p_ta; xd->left_txfm_context = ctx->p_tl; memcpy(xd->above_txfm_context, ctx->ta, sizeof(*xd->above_txfm_context) * mi_width); memcpy(xd->left_txfm_context, ctx->tl, sizeof(*xd->left_txfm_context) * mi_height); } void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes) { const MACROBLOCKD *xd = &x->e_mbd; int p; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < num_planes; ++p) { int tx_col = mi_col; int tx_row = mi_row & MAX_MIB_MASK; memcpy( ctx->a + mi_width * p, xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); memcpy(ctx->l + mi_height * p, xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); } memcpy(ctx->sa, xd->above_partition_context + mi_col, sizeof(*xd->above_partition_context) * mi_width); memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK), sizeof(xd->left_partition_context[0]) * mi_height); memcpy(ctx->ta, xd->above_txfm_context, sizeof(*xd->above_txfm_context) * mi_width); memcpy(ctx->tl, xd->left_txfm_context, sizeof(*xd->left_txfm_context) * mi_height); ctx->p_ta = xd->above_txfm_context; ctx->p_tl = xd->left_txfm_context; } static void set_partial_sb_partition(const AV1_COMMON *const cm, MB_MODE_INFO *mi, int bh_in, int bw_in, int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize, MB_MODE_INFO **mib) { int bh = bh_in; int r, c; for (r = 0; r < cm->seq_params->mib_size; r += bh) { int bw = bw_in; for (c = 0; c < cm->seq_params->mib_size; c += bw) { const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); mib[grid_index] = mi + mi_index; mib[grid_index]->bsize = find_partition_size( bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); } } } // This function attempts to set all mode info entries in a given superblock // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, MB_MODE_INFO **mib, int mi_row, int mi_col, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int mi_rows_remaining = tile->mi_row_end - mi_row; const int mi_cols_remaining = tile->mi_col_end - mi_col; MB_MODE_INFO *const mi_upper_left = mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); int bh = mi_size_high[bsize]; int bw = mi_size_wide[bsize]; assert(bsize >= mi_params->mi_alloc_bsize && "Attempted to use bsize < mi_params->mi_alloc_bsize"); assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); // Apply the requested partition size to the SB if it is all "in image" if ((mi_cols_remaining >= cm->seq_params->mib_size) && (mi_rows_remaining >= cm->seq_params->mib_size)) { for (int block_row = 0; block_row < cm->seq_params->mib_size; block_row += bh) { for (int block_col = 0; block_col < cm->seq_params->mib_size; block_col += bw) { const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); mib[grid_index] = mi_upper_left + mi_index; mib[grid_index]->bsize = bsize; } } } else { // Else this is a partial SB. set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, mi_cols_remaining, bsize, mib); } } int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, BLOCK_SIZE bsize) { const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; assert(bsize >= BLOCK_8X8); const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int i = 0; i < 4; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; if ((mi_row + y_idx >= cm->mi_params.mi_rows) || (mi_col + x_idx >= cm->mi_params.mi_cols)) return 0; if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) != PARTITION_NONE && subsize != BLOCK_8X8) return 0; } return 1; } #if !CONFIG_REALTIME_ONLY int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int orig_rdmult) { AV1_COMMON *const cm = &cpi->common; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; int64_t intra_cost = 0; int64_t mc_dep_cost = 0; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; int tpl_stride = tpl_frame->stride; if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) { return orig_rdmult; } if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { return orig_rdmult; } #ifndef NDEBUG int mi_count = 0; #endif const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_col_end_sr = coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int step = 1 << block_mis_log2; const int row_step = step; const int col_step_sr = coded_to_superres_mi(step, cm->superres_scale_denominator); for (int row = mi_row; row < mi_row + mi_high; row += row_step) { for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); intra_cost += this_stats->recrf_dist << RDDIV_BITS; mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; #ifndef NDEBUG mi_count++; #endif } } assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); double beta = 1.0; if (mc_dep_cost > 0 && intra_cost > 0) { const double r0 = cpi->rd.r0; const double rk = (double)intra_cost / mc_dep_cost; beta = (r0 / rk); } int rdmult = av1_get_adaptive_rdmult(cpi, beta); rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); rdmult = AOMMAX(1, rdmult); return rdmult; } // Checks to see if a super block is on a horizontal image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { int top_edge = 0; int bottom_edge = cpi->common.mi_params.mi_rows; int is_active_h_edge = 0; // For two pass account for any formatting bars detected. if (is_stat_consumption_stage_twopass(cpi)) { const AV1_COMMON *const cm = &cpi->common; const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( &cpi->ppi->twopass, cm->current_frame.display_order_hint); if (this_frame_stats == NULL) return AOM_CODEC_ERROR; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. top_edge += (int)(this_frame_stats->inactive_zone_rows * 4); bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4); bottom_edge = AOMMAX(top_edge, bottom_edge); } if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { is_active_h_edge = 1; } return is_active_h_edge; } // Checks to see if a super block is on a vertical image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { int left_edge = 0; int right_edge = cpi->common.mi_params.mi_cols; int is_active_v_edge = 0; // For two pass account for any formatting bars detected. if (is_stat_consumption_stage_twopass(cpi)) { const AV1_COMMON *const cm = &cpi->common; const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( &cpi->ppi->twopass, cm->current_frame.display_order_hint); if (this_frame_stats == NULL) return AOM_CODEC_ERROR; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. left_edge += (int)(this_frame_stats->inactive_zone_cols * 4); right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4); right_edge = AOMMAX(left_edge, right_edge); } if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { is_active_v_edge = 1; } return is_active_v_edge; } void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, SuperBlockEnc *sb_enc) { sb_enc->tpl_data_count = 0; if (!cpi->oxcf.algo_cfg.enable_tpl_model) return; if (cpi->common.current_frame.frame_type == KEY_FRAME) return; const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE) return; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); AV1_COMMON *const cm = &cpi->common; const int gf_group_index = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; int tpl_stride = tpl_frame->stride; int mi_count = 0; int count = 0; const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_col_end_sr = coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); // mi_cols_sr is mi_cols at superres case. const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); // TPL store unit size is not the same as the motion estimation unit size. // Here always use motion estimation size to avoid getting repetitive inter/ // intra cost. const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); const int row_step = mi_size_high[tpl_bsize]; const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize], cm->superres_scale_denominator); // Stride is only based on SB size, and we fill in values for every 16x16 // block in a SB. sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr; for (int row = mi_row; row < mi_row + mi_high; row += row_step) { for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); // Handle partial SB, so that no invalid values are used later. if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { sb_enc->tpl_inter_cost[count] = INT64_MAX; sb_enc->tpl_intra_cost[count] = INT64_MAX; for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { sb_enc->tpl_mv[count][i].as_int = INVALID_MV; } count++; continue; } TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; sb_enc->tpl_inter_cost[count] = this_stats->inter_cost << TPL_DEP_COST_SCALE_LOG2; sb_enc->tpl_intra_cost[count] = this_stats->intra_cost << TPL_DEP_COST_SCALE_LOG2; memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); mi_count++; count++; } } assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); sb_enc->tpl_data_count = mi_count; } // analysis_type 0: Use mc_dep_cost and intra_cost // analysis_type 1: Use count of best inter predictor chosen // analysis_type 2: Use cost reduction from intra to inter for best inter // predictor chosen int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td, int64_t *delta_dist, BLOCK_SIZE bsize, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; double intra_cost = 0; double mc_dep_reg = 0; double mc_dep_cost = 0; double cbcmp_base = 1; double srcrf_dist = 0; double srcrf_sse = 0; double srcrf_rate = 0; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; const int base_qindex = cm->quant_params.base_qindex; if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; int tpl_stride = tpl_frame->stride; if (!tpl_frame->is_valid) return base_qindex; #ifndef NDEBUG int mi_count = 0; #endif const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_col_end_sr = coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int step = 1 << block_mis_log2; const int row_step = step; const int col_step_sr = coded_to_superres_mi(step, cm->superres_scale_denominator); for (int row = mi_row; row < mi_row + mi_high; row += row_step) { for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; double cbcmp = (double)this_stats->srcrf_dist; int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); intra_cost += log(dist_scaled) * cbcmp; mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp; mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp; srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS); srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS); srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2); #ifndef NDEBUG mi_count++; #endif cbcmp_base += cbcmp; } } assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); int offset = 0; double beta = 1.0; double rk; if (mc_dep_cost > 0 && intra_cost > 0) { const double r0 = cpi->rd.r0; rk = exp((intra_cost - mc_dep_cost) / cbcmp_base); td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base); beta = (r0 / rk); assert(beta > 0.0); } else { return base_qindex; } offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta); const DeltaQInfo *const delta_q_info = &cm->delta_q_info; offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); int qindex = cm->quant_params.base_qindex + offset; qindex = AOMMIN(qindex, MAXQ); qindex = AOMMAX(qindex, MINQ); int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth); int sbs_qstep = av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth); if (delta_dist) { double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0); double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep); sbs_dist = AOMMIN(sbs_dist, srcrf_sse); *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk); *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0); *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0); } return qindex; } #if !DISABLE_HDR_LUMA_DELTAQ // offset table defined in Table3 of T-REC-H.Sup15 document. static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567, 634, 701, 767, 834, 1024 }; static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1, -2, -3, -4, -5, -6 }; #endif int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; assert(cm->seq_params->bit_depth == AOM_BITS_10); #if DISABLE_HDR_LUMA_DELTAQ (void)x; (void)bsize; (void)mi_row; (void)mi_col; return cm->quant_params.base_qindex; #else // calculate pixel average const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col); // adjust offset based on average of the pixel block int offset = 0; for (int i = 0; i < HDR_QP_LEVELS; i++) { if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) { offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR); break; } } const DeltaQInfo *const delta_q_info = &cm->delta_q_info; offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); int qindex = cm->quant_params.base_qindex + offset; qindex = AOMMIN(qindex, MAXQ); qindex = AOMMAX(qindex, MINQ); return qindex; #endif } #endif // !CONFIG_REALTIME_ONLY void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, BLOCK_SIZE bsize) { if (sms_tree == NULL) return; sms_tree->partitioning = PARTITION_NONE; if (bsize >= BLOCK_8X8) { BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int idx = 0; idx < 4; ++idx) av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); } } // Record the ref frames that have been selected by square partition blocks. void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, BLOCK_SIZE bsize, int mib_size, int mi_row, int mi_col) { assert(mi_size_wide[bsize] == mi_size_high[bsize]); const int sb_size_mask = mib_size - 1; const int mi_row_in_sb = mi_row & sb_size_mask; const int mi_col_in_sb = mi_col & sb_size_mask; const int mi_size = mi_size_wide[bsize]; for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; } } } static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr, int num_cdfs, int cdf_stride, int nsymbs, int wt_left, int wt_tr) { for (int i = 0; i < num_cdfs; i++) { for (int j = 0; j <= nsymbs; j++) { cdf_ptr_left[i * cdf_stride + j] = (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + ((wt_left + wt_tr) / 2)) / (wt_left + wt_tr)); assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); } } } #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \ do { \ aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \ aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \ int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \ int num_cdfs = array_size / cdf_stride; \ avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ wt_left, wt_tr); \ } while (0) static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left, int wt_tr) { AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); for (int i = 0; i < 2; i++) { AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, MV_CLASSES); AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, nmv_tr->comps[i].class0_hp_cdf, 2); AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, CLASS0_SIZE); AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); } } // In case of row-based multi-threading of encoder, since we always // keep a top - right sync, we can average the top - right SB's CDFs and // the left SB's CDFs and use the same for current SB's encoding to // improve the performance. This function facilitates the averaging // of CDF and used only when row-mt is enabled in encoder. void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, int wt_left, int wt_tr) { AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, MASKED_COMPOUND_TYPES); AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, INTERINTRA_MODES); AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, PALETTE_SIZES); AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, PALETTE_SIZES); for (int j = 0; j < PALETTE_SIZES; j++) { int nsymbs = j + PALETTE_MIN_SIZE; AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], ctx_tr->palette_y_color_index_cdf[j], nsymbs, CDF_SIZE(PALETTE_COLORS)); AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], ctx_tr->palette_uv_color_index_cdf[j], nsymbs, CDF_SIZE(PALETTE_COLORS)); } AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2); AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, FILTER_INTRA_MODES); AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, RESTORE_SWITCHABLE_TYPES); AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); for (int i = 0; i < PARTITION_CONTEXTS; i++) { if (i < 4) { AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, CDF_SIZE(10)); } else if (i < 16) { AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); } else { AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, CDF_SIZE(10)); } } AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, SWITCHABLE_FILTERS); AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, 2 * MAX_ANGLE_DELTA + 1); AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, CDF_SIZE(MAX_TX_DEPTH + 1)); AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], MAX_TX_DEPTH + 1); AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], MAX_TX_DEPTH + 1); AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], MAX_TX_DEPTH + 1); AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); for (int i = 0; i < FRAME_LF_COUNT; i++) { AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], DELTA_LF_PROBS + 1); } AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, CDF_SIZE(TX_TYPES)); AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, CDF_SIZE(TX_TYPES)); AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, CDF_SIZE(TX_TYPES)); AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, CDF_SIZE(TX_TYPES)); AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, CDF_SIZE(TX_TYPES)); AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, CFL_ALPHABET_SIZE); } // Check neighbor blocks' motion information. static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride, const TileInfo *const tile_info, int mi_row, int mi_col) { int is_above_low_motion = 1; int is_left_low_motion = 1; const int thr = 24; // Check above block. if (mi_row > tile_info->mi_row_start) { const MB_MODE_INFO *above_mbmi = mi[-mi_stride]; const int_mv above_mv = above_mbmi->mv[0]; if (above_mbmi->mode >= INTRA_MODE_END && (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr)) is_above_low_motion = 0; } // Check left block. if (mi_col > tile_info->mi_col_start) { const MB_MODE_INFO *left_mbmi = mi[-1]; const int_mv left_mv = left_mbmi->mv[0]; if (left_mbmi->mode >= INTRA_MODE_END && (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr)) is_left_low_motion = 0; } return (is_above_low_motion && is_left_low_motion); } // Check this block's motion in a fast way. static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y, int src_ystride, const uint8_t *last_src_y, int last_src_ystride, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; const BLOCK_SIZE bsize = cm->seq_params->sb_size; unsigned int blk_sad = INT_MAX; if (cpi->src_sad_blk_64x64 != NULL) { const int sb_size_by_mb = (bsize == BLOCK_128X128) ? (cm->seq_params->mib_size >> 1) : cm->seq_params->mib_size; const int sb_cols = (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; const int sbi_col = mi_col / sb_size_by_mb; const int sbi_row = mi_row / sb_size_by_mb; blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; } else { blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); } // Search 4 1-away points. const uint8_t *const search_pos[4] = { last_src_y - last_src_ystride, last_src_y - 1, last_src_y + 1, last_src_y + last_src_ystride, }; unsigned int sad_arr[4]; cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos, last_src_ystride, sad_arr); blk_sad = (blk_sad * 5) >> 3; return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] && blk_sad < sad_arr[2] && blk_sad < sad_arr[3]); } // Grade the temporal variation of the source by comparing the current sb and // its collocated block in the last frame. void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, int mi_row, int mi_col) { if (cpi->last_source->y_width != cpi->source->y_width || cpi->last_source->y_height != cpi->source->y_height) return; #if CONFIG_AV1_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return; #endif unsigned int tmp_sse; unsigned int tmp_variance; const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size; uint8_t *src_y = cpi->source->y_buffer; const int src_ystride = cpi->source->y_stride; const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2); uint8_t *last_src_y = cpi->last_source->y_buffer; const int last_src_ystride = cpi->last_source->y_stride; const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2); uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64) uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64) 36000 }; // ~3*3*(64*64) uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64) if (cpi->sf.rt_sf.increase_source_sad_thresh) { avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1; avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1; avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1; } uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 src_y += src_offset; last_src_y += last_src_offset; tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, last_src_ystride, &tmp_sse); // rd thresholds if (tmp_sse < avg_source_sse_threshold_low[1]) x->content_state_sb.source_sad_rd = kLowSad; // nonrd thresholds if (tmp_sse == 0) { x->content_state_sb.source_sad_nonrd = kZeroSad; return; } if (tmp_sse < avg_source_sse_threshold_verylow) x->content_state_sb.source_sad_nonrd = kVeryLowSad; else if (tmp_sse < avg_source_sse_threshold_low[0]) x->content_state_sb.source_sad_nonrd = kLowSad; else if (tmp_sse > avg_source_sse_threshold_high) x->content_state_sb.source_sad_nonrd = kHighSad; // Detect large lighting change. // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh) x->content_state_sb.lighting_change = 1; if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1)) x->content_state_sb.low_sumdiff = 1; if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) && !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff) x->sb_force_fixed_part = 0; if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad || cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1) return; // In-place temporal filter. If psnr calculation is enabled, we store the // source for that. AV1_COMMON *const cm = &cpi->common; // Calculate n*mean^2 const unsigned int nmean2 = tmp_sse - tmp_variance; const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, cm->seq_params->bit_depth); const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME], 0, cm->seq_params->bit_depth); const unsigned int threshold = (cpi->sf.rt_sf.use_rtc_tf == 1) ? (clamp(avg_q_step, 250, 1000)) * ac_q_step : 250 * ac_q_step; // TODO(yunqing): use a weighted sum instead of averaging in filtering. if (tmp_variance <= threshold && nmean2 <= 15) { // Check neighbor blocks. If neighbor blocks aren't low-motion blocks, // skip temporal filtering for this block. MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); const TileInfo *const tile_info = &tile_data->tile_info; const int is_neighbor_blocks_low_motion = check_neighbor_blocks( mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col); if (!is_neighbor_blocks_low_motion) return; // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB // size. // Test several nearby points. If non-zero mv exists, don't do temporal // filtering. const int is_this_blk_low_motion = fast_detect_non_zero_motion( cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col); if (!is_this_blk_low_motion) return; const int shift_x[2] = { 0, cpi->source->subsampling_x }; const int shift_y[2] = { 0, cpi->source->subsampling_y }; const uint8_t h = block_size_high[bsize]; const uint8_t w = block_size_wide[bsize]; for (int plane = 0; plane < av1_num_planes(cm); ++plane) { uint8_t *src = cpi->source->buffers[plane]; const int src_stride = cpi->source->strides[plane != 0]; uint8_t *last_src = cpi->last_source->buffers[plane]; const int last_src_stride = cpi->last_source->strides[plane != 0]; src += src_stride * (mi_row << (2 - shift_y[plane != 0])) + (mi_col << (2 - shift_x[plane != 0])); last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) + (mi_col << (2 - shift_x[plane != 0])); for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) { for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) { src[j] = (last_src[j] + src[j]) >> 1; } src += src_stride; last_src += last_src_stride; } } } } // Memset the mbmis at the current superblock to 0 void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size, int mi_row, int mi_col) { // size of sb in unit of mi (BLOCK_4X4) const int sb_size_mi = mi_size_wide[sb_size]; const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; // size of sb in unit of allocated mi size const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && "mi is not allocated as a multiple of sb!"); assert(mi_params->mi_stride % sb_size_mi == 0 && "mi_grid_base is not allocated as a multiple of sb!"); const int mi_rows = mi_size_high[sb_size]; for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < mi_params->mi_stride); const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); const int alloc_mi_idx = get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); memset(&mi_params->mi_grid_base[mi_grid_idx], 0, sb_size_mi * sizeof(*mi_params->mi_grid_base)); memset(&mi_params->tx_type_map[mi_grid_idx], 0, sb_size_mi * sizeof(*mi_params->tx_type_map)); if (cur_mi_row % mi_alloc_size_1d == 0) { memset(&mi_params->mi_alloc[alloc_mi_idx], 0, sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); } } } void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, ThreadData *td, const TileDataEnc *tile_data, int mi_row, int mi_col) { MACROBLOCK *x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; const TileInfo *tile_info = &tile_data->tile_info; const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); sb_fp_stats->rd_count = td->rd_counts; sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; sb_fp_stats->fc = *td->counts; // Don't copy in row_mt case, otherwise run into data race. No behavior change // in row_mt case. if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, sizeof(sb_fp_stats->inter_mode_rd_models)); } memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, sizeof(sb_fp_stats->thresh_freq_fact)); const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); sb_fp_stats->current_qindex = cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; #if CONFIG_INTERNAL_STATS memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts, sizeof(sb_fp_stats->mode_chosen_counts)); #endif // CONFIG_INTERNAL_STATS } void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, int mi_col) { MACROBLOCK *x = &td->mb; const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); td->rd_counts = sb_fp_stats->rd_count; x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; *td->counts = sb_fp_stats->fc; if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, sizeof(sb_fp_stats->inter_mode_rd_models)); } memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, sizeof(sb_fp_stats->thresh_freq_fact)); const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = sb_fp_stats->current_qindex; #if CONFIG_INTERNAL_STATS memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts, sizeof(sb_fp_stats->mode_chosen_counts)); #endif // CONFIG_INTERNAL_STATS } /*! Checks whether to skip updating the entropy cost based on tile info. * * This function contains the common code used to skip the cost update of coeff, * mode, mv and dv symbols. */ static int skip_cost_update(const SequenceHeader *seq_params, const TileInfo *const tile_info, const int mi_row, const int mi_col, INTERNAL_COST_UPDATE_TYPE upd_level) { if (upd_level == INTERNAL_COST_UPD_SB) return 0; if (upd_level == INTERNAL_COST_UPD_OFF) return 1; // upd_level is at most as frequent as each sb_row in a tile. if (mi_col != tile_info->mi_col_start) return 1; if (upd_level == INTERNAL_COST_UPD_SBROW_SET) { const int mib_size_log2 = seq_params->mib_size_log2; const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; const int sb_size = seq_params->mib_size * MI_SIZE; const int tile_height = (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE; // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However, // as the update will not be equally spaced in smaller resolutions making // it equally spaced by calculating (mv_num_rows_cost_update) the number of // rows after which the cost update should happen. const int sb_size_update_freq_map[2] = { 2, 4 }; const int update_freq_sb_rows = sb_size_update_freq_map[sb_size != MAX_SB_SIZE]; const int update_freq_num_rows = sb_size * update_freq_sb_rows; // Round-up the division result to next integer. const int num_updates_per_tile = (tile_height + update_freq_num_rows - 1) / update_freq_num_rows; const int num_rows_update_per_tile = num_updates_per_tile * sb_size; // Round-up the division result to next integer. const int num_sb_rows_per_update = (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile; if ((sb_row % num_sb_rows_per_update) != 0) return 1; } return 0; } // Checks for skip status of mv cost update. static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, const int mi_row, const int mi_col) { const AV1_COMMON *cm = &cpi->common; // For intra frames, mv cdfs are not updated during the encode. Hence, the mv // cost calculation is skipped in this case. if (frame_is_intra_only(cm)) return 1; return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, cpi->sf.inter_sf.mv_cost_upd_level); } // Checks for skip status of dv cost update. static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, const int mi_row, const int mi_col) { const AV1_COMMON *cm = &cpi->common; // Intrabc is only applicable to intra frames. So skip if intrabc is not // allowed. if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) { return 1; } return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, cpi->sf.intra_sf.dv_cost_upd_level); } // Update the rate costs of some symbols according to the frequency directed // by speed features void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, const TileInfo *const tile_info, const int mi_row, const int mi_col) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; if (cm->features.disable_cdf_update) { return; } switch (cpi->sf.inter_sf.coeff_cost_upd_level) { case INTERNAL_COST_UPD_OFF: case INTERNAL_COST_UPD_TILE: // Tile level break; case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile case INTERNAL_COST_UPD_SBROW: // SB row level in tile case INTERNAL_COST_UPD_SB: // SB level if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, cpi->sf.inter_sf.coeff_cost_upd_level)) break; av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); break; default: assert(0); } switch (cpi->sf.inter_sf.mode_cost_upd_level) { case INTERNAL_COST_UPD_OFF: case INTERNAL_COST_UPD_TILE: // Tile level break; case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile case INTERNAL_COST_UPD_SBROW: // SB row level in tile case INTERNAL_COST_UPD_SB: // SB level if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, cpi->sf.inter_sf.mode_cost_upd_level)) break; av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); break; default: assert(0); } switch (cpi->sf.inter_sf.mv_cost_upd_level) { case INTERNAL_COST_UPD_OFF: case INTERNAL_COST_UPD_TILE: // Tile level break; case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile case INTERNAL_COST_UPD_SBROW: // SB row level in tile case INTERNAL_COST_UPD_SB: // SB level // Checks for skip status of mv cost update. if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break; av1_fill_mv_costs(&xd->tile_ctx->nmvc, cm->features.cur_frame_force_integer_mv, cm->features.allow_high_precision_mv, x->mv_costs); break; default: assert(0); } switch (cpi->sf.intra_sf.dv_cost_upd_level) { case INTERNAL_COST_UPD_OFF: case INTERNAL_COST_UPD_TILE: // Tile level break; case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile case INTERNAL_COST_UPD_SBROW: // SB row level in tile case INTERNAL_COST_UPD_SB: // SB level // Checks for skip status of dv cost update. if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break; av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs); break; default: assert(0); } } void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) { for (int plane = 0; plane < num_planes; ++plane) { aom_free(mb->plane[plane].src_diff); mb->plane[plane].src_diff = NULL; } } void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) { const int num_planes = av1_num_planes(cm); #ifndef NDEBUG for (int plane = 0; plane < num_planes; ++plane) { assert(!mb->plane[plane].src_diff); } #endif for (int plane = 0; plane < num_planes; ++plane) { const int subsampling_xy = plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y : 0; const int sb_size = MAX_SB_SQUARE >> subsampling_xy; CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff, (int16_t *)aom_memalign( 32, sizeof(*mb->plane[plane].src_diff) * sb_size)); } }