/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_ENCODEFRAME_UTILS_H_ #define AOM_AV1_ENCODER_ENCODEFRAME_UTILS_H_ #include "aom_ports/aom_timer.h" #include "av1/common/reconinter.h" #include "av1/encoder/encoder.h" #include "av1/encoder/rdopt.h" #ifdef __cplusplus extern "C" { #endif #define WRITE_FEATURE_TO_FILE 0 #define FEATURE_SIZE_SMS_SPLIT_FAST 6 #define FEATURE_SIZE_SMS_SPLIT 17 #define FEATURE_SIZE_SMS_PRUNE_PART 25 #define FEATURE_SIZE_SMS_TERM_NONE 28 #define FEATURE_SIZE_FP_SMS_TERM_NONE 20 #define FEATURE_SIZE_MAX_MIN_PART_PRED 13 #define MAX_NUM_CLASSES_MAX_MIN_PART_PRED 4 #define FEATURE_SMS_NONE_FLAG 1 #define FEATURE_SMS_SPLIT_FLAG (1 << 1) #define FEATURE_SMS_RECT_FLAG (1 << 2) #define FEATURE_SMS_PRUNE_PART_FLAG \ (FEATURE_SMS_NONE_FLAG | FEATURE_SMS_SPLIT_FLAG | FEATURE_SMS_RECT_FLAG) #define FEATURE_SMS_SPLIT_MODEL_FLAG \ (FEATURE_SMS_NONE_FLAG | FEATURE_SMS_SPLIT_FLAG) // Number of sub-partitions in rectangular partition types. #define SUB_PARTITIONS_RECT 2 // Number of sub-partitions in split partition type. #define SUB_PARTITIONS_SPLIT 4 // Number of sub-partitions in AB partition types. #define SUB_PARTITIONS_AB 3 // Number of sub-partitions in 4-way partition types. #define SUB_PARTITIONS_PART4 4 // 4part partition types. enum { HORZ4 = 0, VERT4, NUM_PART4_TYPES } UENUM1BYTE(PART4_TYPES); // AB partition types. enum { HORZ_A = 0, HORZ_B, VERT_A, VERT_B, NUM_AB_PARTS } UENUM1BYTE(AB_PART_TYPE); // Rectangular partition types. enum { HORZ = 0, VERT, NUM_RECT_PARTS } UENUM1BYTE(RECT_PART_TYPE); // Structure to keep win flags for HORZ and VERT partition evaluations. typedef struct { int rect_part_win[NUM_RECT_PARTS]; } RD_RECT_PART_WIN_INFO; enum { PICK_MODE_RD = 0, PICK_MODE_NONRD }; enum { SB_SINGLE_PASS, // Single pass encoding: all ctxs get updated normally SB_DRY_PASS, // First pass of multi-pass: does not update the ctxs SB_WET_PASS // Second pass of multi-pass: finalize and update the ctx } UENUM1BYTE(SB_MULTI_PASS_MODE); typedef struct { ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; PARTITION_CONTEXT sa[MAX_MIB_SIZE]; PARTITION_CONTEXT sl[MAX_MIB_SIZE]; TXFM_CONTEXT *p_ta; TXFM_CONTEXT *p_tl; TXFM_CONTEXT ta[MAX_MIB_SIZE]; TXFM_CONTEXT tl[MAX_MIB_SIZE]; } RD_SEARCH_MACROBLOCK_CONTEXT; // This struct is used to store the statistics used by sb-level multi-pass // encoding. Currently, this is only used to make a copy of the state before we // perform the first pass typedef struct SB_FIRST_PASS_STATS { RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_COUNTS rd_count; int split_count; FRAME_COUNTS fc; InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL]; int thresh_freq_fact[BLOCK_SIZES_ALL][MAX_MODES]; int current_qindex; #if CONFIG_INTERNAL_STATS unsigned int mode_chosen_counts[MAX_MODES]; #endif // CONFIG_INTERNAL_STATS } SB_FIRST_PASS_STATS; // This structure contains block size related // variables for use in rd_pick_partition(). typedef struct { // Half of block width to determine block edge. int mi_step; // Block row and column indices. int mi_row; int mi_col; // Block edge row and column indices. int mi_row_edge; int mi_col_edge; // Block width of current partition block. int width; // Block width of minimum partition size allowed. int min_partition_size_1d; // Flag to indicate if partition is 8x8 or higher size. int bsize_at_least_8x8; // Indicates edge blocks in frame. int has_rows; int has_cols; // Block size of current partition. BLOCK_SIZE bsize; // Size of current sub-partition. BLOCK_SIZE subsize; // Size of split partition. BLOCK_SIZE split_bsize2; } PartitionBlkParams; #if CONFIG_COLLECT_PARTITION_STATS typedef struct PartitionTimingStats { // Tracks the number of partition decision used in the current call to \ref // av1_rd_pick_partition int partition_decisions[EXT_PARTITION_TYPES]; // Tracks the number of partition_block searched in the current call to \ref // av1_rd_pick_partition int partition_attempts[EXT_PARTITION_TYPES]; // Tracks the time spent on each partition search in the current call to \ref // av1_rd_pick_partition int64_t partition_times[EXT_PARTITION_TYPES]; // Tracks the rdcost spent on each partition search in the current call to // \ref av1_rd_pick_partition int64_t partition_rdcost[EXT_PARTITION_TYPES]; // Timer used to time the partitions. struct aom_usec_timer timer; // Whether the timer is on int timer_is_on; } PartitionTimingStats; #endif // CONFIG_COLLECT_PARTITION_STATS // Structure holding state variables for partition search. typedef struct { // Intra partitioning related info. PartitionSearchInfo *intra_part_info; // Parameters related to partition block size. PartitionBlkParams part_blk_params; // Win flags for HORZ and VERT partition evaluations. RD_RECT_PART_WIN_INFO split_part_rect_win[SUB_PARTITIONS_SPLIT]; // RD cost for the current block of given partition type. RD_STATS this_rdc; // RD cost summed across all blocks of partition type. RD_STATS sum_rdc; // Array holding partition type cost. int tmp_partition_cost[PARTITION_TYPES]; // Pointer to partition cost buffer int *partition_cost; // RD costs for different partition types. int64_t none_rd; int64_t split_rd[SUB_PARTITIONS_SPLIT]; // RD costs for rectangular partitions. // rect_part_rd[0][i] is the RD cost of ith partition index of PARTITION_HORZ. // rect_part_rd[1][i] is the RD cost of ith partition index of PARTITION_VERT. int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT]; // Flags indicating if the corresponding partition was winner or not. // Used to bypass similar blocks during AB partition evaluation. int is_split_ctx_is_ready[2]; int is_rect_ctx_is_ready[NUM_RECT_PARTS]; // If true, skips the rest of partition evaluation at the current bsize level. int terminate_partition_search; // If false, skips rdopt on PARTITION_NONE. int partition_none_allowed; // If partition_rect_allowed[HORZ] is false, skips searching PARTITION_HORZ, // PARTITION_HORZ_A, PARTITIO_HORZ_B, PARTITION_HORZ_4. Same holds for VERT. int partition_rect_allowed[NUM_RECT_PARTS]; // If false, skips searching rectangular partition unless some logic related // to edge detection holds. int do_rectangular_split; // If false, skips searching PARTITION_SPLIT. int do_square_split; // If true, prunes the corresponding PARTITION_HORZ/PARTITION_VERT. Note that // this does not directly affect the extended partitions, so this can be used // to prune out PARTITION_HORZ/PARTITION_VERT while still allowing rdopt of // PARTITION_HORZ_AB4, etc. int prune_rect_part[NUM_RECT_PARTS]; // Chroma subsampling in x and y directions. int ss_x; int ss_y; // Partition plane context index. int pl_ctx_idx; // This flag will be set if best partition is found from the search. bool found_best_partition; #if CONFIG_COLLECT_PARTITION_STATS PartitionTimingStats part_timing_stats; #endif // CONFIG_COLLECT_PARTITION_STATS } PartitionSearchState; static AOM_INLINE void av1_disable_square_split_partition( PartitionSearchState *part_state) { part_state->do_square_split = 0; } // Disables all possible rectangular splits. This includes PARTITION_AB4 as they // depend on the corresponding partition_rect_allowed. static AOM_INLINE void av1_disable_rect_partitions( PartitionSearchState *part_state) { part_state->do_rectangular_split = 0; part_state->partition_rect_allowed[HORZ] = 0; part_state->partition_rect_allowed[VERT] = 0; } // Disables all possible splits so that only PARTITION_NONE *might* be allowed. static AOM_INLINE void av1_disable_all_splits( PartitionSearchState *part_state) { av1_disable_square_split_partition(part_state); av1_disable_rect_partitions(part_state); } static AOM_INLINE void av1_set_square_split_only( PartitionSearchState *part_state) { part_state->partition_none_allowed = 0; part_state->do_square_split = 1; av1_disable_rect_partitions(part_state); } static AOM_INLINE bool av1_blk_has_rows_and_cols( const PartitionBlkParams *blk_params) { return blk_params->has_rows && blk_params->has_cols; } static AOM_INLINE bool av1_is_whole_blk_in_frame( const PartitionBlkParams *blk_params, const CommonModeInfoParams *mi_params) { const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; const BLOCK_SIZE bsize = blk_params->bsize; return mi_row + mi_size_high[bsize] <= mi_params->mi_rows && mi_col + mi_size_wide[bsize] <= mi_params->mi_cols; } static AOM_INLINE void update_filter_type_cdf(const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, int dual_filter) { for (int dir = 0; dir < 2; ++dir) { if (dir && !dual_filter) break; const int ctx = av1_get_pred_context_switchable_interp(xd, dir); InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, SWITCHABLE_FILTERS); } } static AOM_INLINE int set_rdmult(const AV1_COMP *const cpi, const MACROBLOCK *const x, int segment_id) { const AV1_COMMON *const cm = &cpi->common; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const CommonQuantParams *quant_params = &cm->quant_params; const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth; const FRAME_UPDATE_TYPE update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; const FRAME_TYPE frame_type = cm->current_frame.frame_type; const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); int qindex; if (segment_id >= 0) { qindex = av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex); } else { qindex = quant_params->base_qindex + x->rdmult_delta_qindex + quant_params->y_dc_delta_q; } return av1_compute_rd_mult( qindex, bit_depth, update_type, layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); } static AOM_INLINE int do_split_check(BLOCK_SIZE bsize) { return (bsize == BLOCK_16X16 || bsize == BLOCK_32X32); } #if !CONFIG_REALTIME_ONLY static AOM_INLINE const FIRSTPASS_STATS *read_one_frame_stats(const TWO_PASS *p, int frm) { assert(frm >= 0); if (frm < 0 || p->stats_buf_ctx->stats_in_start + frm > p->stats_buf_ctx->stats_in_end) { return NULL; } return &p->stats_buf_ctx->stats_in_start[frm]; } int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int orig_rdmult); int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step); int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step); void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, SuperBlockEnc *sb_enc); int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td, int64_t *delta_dist, BLOCK_SIZE bsize, int mi_row, int mi_col); int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, int mi_col); int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col); int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int orig_rdmult); #endif // !CONFIG_REALTIME_ONLY void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult); #if CONFIG_SALIENCY_MAP void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi, int *errorperbit, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult); #endif void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, const PICK_MODE_CONTEXT *const ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run); void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, PREDICTION_MODE mode, int16_t mode_context); void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, const MB_MODE_INFO *above_mi, const MB_MODE_INFO *left_mi, const int intraonly); void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes); void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes); void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, MB_MODE_INFO **mib, int mi_row, int mi_col, BLOCK_SIZE bsize); int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, BLOCK_SIZE bsize); void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, BLOCK_SIZE bsize); void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, BLOCK_SIZE bsize, int mib_size, int mi_row, int mi_col); void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, int wt_left, int wt_tr); void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, int mi_row, int mi_col); void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size, int mi_row, int mi_col); void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, ThreadData *td, const TileDataEnc *tile_data, int mi_row, int mi_col); void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, int mi_col); void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, const TileInfo *const tile_info, const int mi_row, const int mi_col); void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes); static AOM_INLINE void av1_dealloc_mb_data(struct macroblock *mb, int num_planes) { aom_free(mb->txfm_search_info.mb_rd_record); mb->txfm_search_info.mb_rd_record = NULL; aom_free(mb->inter_modes_info); mb->inter_modes_info = NULL; av1_dealloc_src_diff_buf(mb, num_planes); aom_free(mb->e_mbd.seg_mask); mb->e_mbd.seg_mask = NULL; aom_free(mb->winner_mode_stats); mb->winner_mode_stats = NULL; aom_free(mb->dqcoeff_buf); mb->dqcoeff_buf = NULL; } static AOM_INLINE void allocate_winner_mode_stats(const AV1_COMP *cpi, struct macroblock *mb) { const SPEED_FEATURES *sf = &cpi->sf; // The winner_mode_stats buffer is not required in these cases. if (is_stat_generation_stage(cpi) || (sf->rt_sf.use_nonrd_pick_mode && !sf->rt_sf.hybrid_intra_pickmode) || (sf->winner_mode_sf.multi_winner_mode_type == MULTI_WINNER_MODE_OFF)) return; const AV1_COMMON *cm = &cpi->common; const int winner_mode_count = winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type]; CHECK_MEM_ERROR(cm, mb->winner_mode_stats, (WinnerModeStats *)aom_malloc( winner_mode_count * sizeof(mb->winner_mode_stats[0]))); } void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb); static AOM_INLINE void av1_alloc_mb_data(const AV1_COMP *cpi, struct macroblock *mb) { const AV1_COMMON *cm = &cpi->common; const SPEED_FEATURES *sf = &cpi->sf; if (!sf->rt_sf.use_nonrd_pick_mode) { // Memory for mb_rd_record is allocated only when use_mb_rd_hash sf is // enabled. if (sf->rd_sf.use_mb_rd_hash) CHECK_MEM_ERROR(cm, mb->txfm_search_info.mb_rd_record, (MB_RD_RECORD *)aom_malloc(sizeof(MB_RD_RECORD))); if (!frame_is_intra_only(cm)) CHECK_MEM_ERROR( cm, mb->inter_modes_info, (InterModesInfo *)aom_malloc(sizeof(*mb->inter_modes_info))); } av1_alloc_src_diff_buf(cm, mb); CHECK_MEM_ERROR(cm, mb->e_mbd.seg_mask, (uint8_t *)aom_memalign( 16, 2 * MAX_SB_SQUARE * sizeof(mb->e_mbd.seg_mask[0]))); allocate_winner_mode_stats(cpi, mb); const int max_sb_square_y = 1 << num_pels_log2_lookup[cm->seq_params->sb_size]; CHECK_MEM_ERROR( cm, mb->dqcoeff_buf, (tran_low_t *)aom_memalign(32, max_sb_square_y * sizeof(tran_low_t))); } // This function will compute the number of reference frames to be disabled // based on selective_ref_frame speed feature. static AOM_INLINE unsigned int get_num_refs_to_disable( const AV1_COMP *cpi, const int *ref_frame_flags, const unsigned int *ref_display_order_hint, unsigned int cur_frame_display_index) { unsigned int num_refs_to_disable = 0; if (cpi->sf.inter_sf.selective_ref_frame >= 3) { num_refs_to_disable++; if (cpi->sf.inter_sf.selective_ref_frame >= 6) { // Disable LAST2_FRAME and ALTREF2_FRAME num_refs_to_disable += 2; } else if (cpi->sf.inter_sf.selective_ref_frame == 5 && *ref_frame_flags & av1_ref_frame_flag_list[LAST2_FRAME]) { const int last2_frame_dist = av1_encoder_get_relative_dist( ref_display_order_hint[LAST2_FRAME - LAST_FRAME], cur_frame_display_index); // Disable LAST2_FRAME if it is a temporally distant frame if (abs(last2_frame_dist) > 2) { num_refs_to_disable++; } #if !CONFIG_REALTIME_ONLY else if (is_stat_consumption_stage_twopass(cpi)) { const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(&cpi->ppi->twopass, cur_frame_display_index); const double coded_error_per_mb = this_frame_stats->coded_error; // Disable LAST2_FRAME if the coded error of the current frame based on // first pass stats is very low. if (coded_error_per_mb < 100.0) num_refs_to_disable++; } #endif // CONFIG_REALTIME_ONLY } } return num_refs_to_disable; } static INLINE int get_max_allowed_ref_frames( const AV1_COMP *cpi, const int *ref_frame_flags, const unsigned int *ref_display_order_hint, unsigned int cur_frame_display_index) { const unsigned int max_reference_frames = cpi->oxcf.ref_frm_cfg.max_reference_frames; const unsigned int num_refs_to_disable = get_num_refs_to_disable( cpi, ref_frame_flags, ref_display_order_hint, cur_frame_display_index); const unsigned int max_allowed_refs_for_given_speed = INTER_REFS_PER_FRAME - num_refs_to_disable; return AOMMIN(max_allowed_refs_for_given_speed, max_reference_frames); } // Enforce the number of references for each arbitrary frame based on user // options and speed. static AOM_INLINE void enforce_max_ref_frames( AV1_COMP *cpi, int *ref_frame_flags, const unsigned int *ref_display_order_hint, unsigned int cur_frame_display_index) { MV_REFERENCE_FRAME ref_frame; int total_valid_refs = 0; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { if (*ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { total_valid_refs++; } } const int max_allowed_refs = get_max_allowed_ref_frames( cpi, ref_frame_flags, ref_display_order_hint, cur_frame_display_index); for (int i = 0; i < 4 && total_valid_refs > max_allowed_refs; ++i) { const MV_REFERENCE_FRAME ref_frame_to_disable = disable_order[i]; if (!(*ref_frame_flags & av1_ref_frame_flag_list[ref_frame_to_disable])) { continue; } switch (ref_frame_to_disable) { case LAST3_FRAME: *ref_frame_flags &= ~AOM_LAST3_FLAG; break; case LAST2_FRAME: *ref_frame_flags &= ~AOM_LAST2_FLAG; break; case ALTREF2_FRAME: *ref_frame_flags &= ~AOM_ALT2_FLAG; break; case BWDREF_FRAME: *ref_frame_flags &= ~AOM_GOLD_FLAG; break; default: assert(0); } --total_valid_refs; } assert(total_valid_refs <= max_allowed_refs); } #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_ENCODEFRAME_UTILS_H_