/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/bitwriter.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "av1/common/cfl.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/txb_rdopt.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff, ptrdiff_t diff_stride, const uint8_t *src8, ptrdiff_t src_stride, const uint8_t *pred8, ptrdiff_t pred_stride) { assert(rows >= 4 && cols >= 4); #if CONFIG_AV1_HIGHBITDEPTH if (bd_info.use_highbitdepth_buf) { aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); return; } #endif (void)bd_info; aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); } void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int blk_col, int blk_row, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; const BitDepthInfo bd_info = get_bit_depth_info(xd); struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2]; av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; assert(plane_bsize < BLOCK_SIZES_ALL); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const MACROBLOCKD *xd = &x->e_mbd; const BitDepthInfo bd_info = get_bit_depth_info(xd); av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, TX_TYPE tx_type, const TXB_CTX *const txb_ctx, int *rate_cost) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; const int eob = p->eobs[block]; const int segment_id = xd->mi[0]->segment_id; if (eob == 0 || !cpi->optimize_seg_arr[segment_id] || xd->lossless[segment_id]) { *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size); return eob; } return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx, rate_cost, cpi->oxcf.algo_cfg.sharpness); } // Hyper-parameters for dropout optimization, based on following logics. // TODO(yjshen): These settings are tuned by experiments. They may still be // optimized for better performance. // (1) Coefficients which are large enough will ALWAYS be kept. const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient. // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is // NOT required. For example, `5 0 0 0 7` is treated as two continuous // coefficients if three zeros do not fulfill the dropout condition. const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff. // (3) Dropout operation is NOT applicable to blocks with large or small // quantization index. const int DROPOUT_Q_MAX = 128; const int DROPOUT_Q_MIN = 16; // (4) Recall that dropout optimization will forcibly set some quantized // coefficients to zero. The key logic on determining whether a coefficient // should be dropped is to check the number of continuous zeros before AND // after this coefficient. The exact number of zeros for judgement depends // on block size and quantization index. More concretely, block size // determines the base number of zeros, while quantization index determines // the multiplier. Intuitively, larger block requires more zeros and larger // quantization index also requires more zeros (more information is lost // when using larger quantization index). const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros. const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros. const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros. const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros. const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros. const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros. const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier. void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, TX_TYPE tx_type, int qindex) { const int tx_width = tx_size_wide[tx_size]; const int tx_height = tx_size_high[tx_size]; // Early return if `qindex` is out of range. if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) { return; } // Compute number of zeros used for dropout judgement. const int base_size = AOMMAX(tx_width, tx_height); const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE, DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX); const int dropout_num_before = multiplier * CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX); const int dropout_num_after = multiplier * CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX); av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before, dropout_num_after); } void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, TX_TYPE tx_type, int dropout_num_before, int dropout_num_after) { const struct macroblock_plane *const p = &mb->plane[plane]; tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block); tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); const int max_eob = av1_get_max_eob(tx_size); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); // Early return if there are not enough non-zero coefficients. if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before || max_eob <= dropout_num_before + dropout_num_after) { return; } int count_zeros_before = 0; int count_zeros_after = 0; int count_nonzeros = 0; // Index of the first non-zero coefficient after sufficient number of // continuous zeros. If equals to `-1`, it means number of leading zeros // hasn't reach `dropout_num_before`. int idx = -1; int eob = 0; // New end of block. for (int i = 0; i < p->eobs[block]; ++i) { const int scan_idx = scan_order->scan[i]; if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) { // Keep large coefficients. count_zeros_before = 0; count_zeros_after = 0; idx = -1; eob = i + 1; } else if (qcoeff[scan_idx] == 0) { // Count zeros. if (idx == -1) { ++count_zeros_before; } else { ++count_zeros_after; } } else { // Count non-zeros. if (count_zeros_before >= dropout_num_before) { idx = (idx == -1) ? i : idx; ++count_nonzeros; } else { count_zeros_before = 0; eob = i + 1; } } // Handle continuity. if (count_nonzeros > DROPOUT_CONTINUITY_MAX) { count_zeros_before = 0; count_zeros_after = 0; count_nonzeros = 0; idx = -1; eob = i + 1; } // Handle the trailing zeros after original end of block. if (idx != -1 && i == p->eobs[block] - 1) { count_zeros_after += (max_eob - p->eobs[block]); } // Set redundant coefficients to zeros if needed. if (count_zeros_after >= dropout_num_after) { for (int j = idx; j <= i; ++j) { qcoeff[scan_order->scan[j]] = 0; dqcoeff[scan_order->scan[j]] = 0; } count_zeros_before += (i - idx + 1); count_zeros_after = 0; count_nonzeros = 0; } else if (i == p->eobs[block] - 1) { eob = i + 1; } } if (eob != p->eobs[block]) { p->eobs[block] = eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(qcoeff, scan_order, eob); } } // Settings for optimization type. NOTE: To set optimization type for all intra // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set. // TODO(yjshen): These settings are hard-coded and look okay for now. They // should be made configurable later. // Blocks of key frames ONLY. const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; // Blocks of intra frames (key frames EXCLUSIVE). const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default // if trellis optimization is on for inter frames.) const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; enum { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_TYPES = 2 } UENUM1BYTE(QUANT_FUNC); #if CONFIG_AV1_HIGHBITDEPTH static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, { NULL, NULL } }; #else static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = { av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL }; #endif // Computes the transform for DC only blocks void av1_xform_dc_only(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param, int64_t per_px_mean) { assert(per_px_mean != INT64_MAX); const struct macroblock_plane *const p = &x->plane[plane]; const int block_offset = BLOCK_OFFSET(block); tran_low_t *const coeff = p->coeff + block_offset; const int n_coeffs = av1_get_max_eob(txfm_param->tx_size); memset(coeff, 0, sizeof(*coeff) * n_coeffs); coeff[0] = (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12); } void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param, const QUANT_PARAM *qparam) { av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param); av1_quant(x, plane, block, txfm_param, qparam); } void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) { const struct macroblock_plane *const p = &x->plane[plane]; const int block_offset = BLOCK_OFFSET(block); tran_low_t *const coeff = p->coeff + block_offset; const int diff_stride = block_size_wide[plane_bsize]; const int src_offset = (blk_row * diff_stride + blk_col); const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2]; av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param); } void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param, const QUANT_PARAM *qparam) { const struct macroblock_plane *const p = &x->plane[plane]; const SCAN_ORDER *const scan_order = get_scan(txfm_param->tx_size, txfm_param->tx_type); const int block_offset = BLOCK_OFFSET(block); tran_low_t *const coeff = p->coeff + block_offset; tran_low_t *const qcoeff = p->qcoeff + block_offset; tran_low_t *const dqcoeff = p->dqcoeff + block_offset; uint16_t *const eob = &p->eobs[block]; if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { const int n_coeffs = av1_get_max_eob(txfm_param->tx_size); if (LIKELY(!x->seg_skip_block)) { #if CONFIG_AV1_HIGHBITDEPTH quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd]( coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam); #else quant_func_list[qparam->xform_quant_idx]( coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam); #endif } else { av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); } } // use_optimize_b is true means av1_optimze_b will be called, // thus cannot update entropy ctx now (performed in optimize_b) if (qparam->use_optimize_b) { p->txb_entropy_ctx[block] = 0; } else { p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(qcoeff, scan_order, *eob); } } void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size, TX_TYPE tx_type, TxfmParam *txfm_param) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; txfm_param->tx_type = tx_type; txfm_param->tx_size = tx_size; txfm_param->lossless = xd->lossless[mbmi->segment_id]; txfm_param->tx_set_type = av1_get_ext_tx_set_type( tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used); txfm_param->bd = xd->bd; txfm_param->is_hbd = is_cur_buf_hbd(xd); } void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx, int use_quant_b_adapt, QUANT_PARAM *qparam) { qparam->log_scale = av1_get_tx_scale(tx_size); qparam->tx_size = tx_size; qparam->use_quant_b_adapt = use_quant_b_adapt; // TODO(bohanli): optimize_b and quantization idx has relationship, // but is kind of buried and complicated in different encoding stages. // Should have a unified function to derive quant_idx, rather than // determine and pass in the quant_idx qparam->use_optimize_b = use_optimize_b; qparam->xform_quant_idx = xform_quant_idx; qparam->qmatrix = NULL; qparam->iqmatrix = NULL; } void av1_setup_qmatrix(const CommonQuantParams *quant_params, const MACROBLOCKD *xd, int plane, TX_SIZE tx_size, TX_TYPE tx_type, QUANT_PARAM *qparam) { qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type); qparam->iqmatrix = av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type); } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, RUN_TYPE dry_run) { (void)dry_run; struct encode_b_args *const args = arg; const AV1_COMP *const cpi = args->cpi; const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; int dummy_rate_cost = 0; const int bw = mi_size_wide[plane_bsize]; dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; a = &args->ta[blk_col]; l = &args->tl[blk_row]; TX_TYPE tx_type = DCT_DCT; const int blk_skip_idx = blk_row * bw + blk_col; if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) && !mbmi->skip_mode) { tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size, cm->features.reduced_tx_set_used); TxfmParam txfm_param; QUANT_PARAM quant_param; const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run); int quant_idx; if (use_trellis) quant_idx = AV1_XFORM_QUANT_FP; else quant_idx = USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP; av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param); av1_setup_quant(tx_size, use_trellis, quant_idx, cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, &quant_param); av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, &quant_param); // Whether trellis or dropout optimization is required for inter frames. const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT || INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT; const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT || INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT; if (quant_param.use_optimize_b && do_trellis) { TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, &dummy_rate_cost); } if (!quant_param.use_optimize_b && do_dropout) { av1_dropout_qcoeff(x, plane, block, tx_size, tx_type, cm->quant_params.base_qindex); } } else { p->eobs[block] = 0; p->txb_entropy_ctx[block] = 0; } av1_set_txb_context(x, plane, block, tx_size, a, l); if (p->eobs[block]) { // As long as any YUV plane has non-zero quantized transform coefficients, // mbmi->skip_txfm flag is set to 0. mbmi->skip_txfm = 0; av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block], cm->features.reduced_tx_set_used); } else { // Only when YUV planes all have zero quantized transform coefficients, // mbmi->skip_txfm flag is set to 1. mbmi->skip_txfm &= 1; } // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0 // case. It is possible that certain collision in hash index would cause // the assertion failure. To further optimize the rate-distortion // performance, we need to re-visit this part and enable this assert // again. if (p->eobs[block] == 0 && plane == 0) { #if 0 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) { // TODO(jingning,angiebird,huisu@google.com): enable txk_check when // enable_optimize_b is true to detect potential RD bug. const uint8_t disable_txk_check = args->enable_optimize_b; if (!disable_txk_check) { assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] == DCT_DCT); } } #endif update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); } #if CONFIG_MISMATCH_DEBUG if (dry_run == OUTPUT_ENABLED) { int pixel_c, pixel_r; BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int blk_w = block_size_wide[bsize]; int blk_h = block_size_high[bsize]; mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col, blk_row, pd->subsampling_x, pd->subsampling_y); mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint, plane, pixel_c, pixel_r, blk_w, blk_h, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } #endif } static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, RUN_TYPE dry_run) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; const TX_SIZE plane_tx_size = plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, pd->subsampling_y) : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, blk_col)]; if (!plane) { assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] && tx_size_high[tx_size] >= tx_size_high[plane_tx_size]); } if (tx_size == plane_tx_size || plane) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, dry_run); } else { assert(tx_size < TX_SIZES_ALL); const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); // This is the square transform block partition entry point. const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int step = bsh * bsw; const int row_end = AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); const int col_end = AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); assert(bsw > 0 && bsh > 0); for (int row = 0; row < row_end; row += bsh) { const int offsetr = blk_row + row; for (int col = 0; col < col_end; col += bsw) { const int offsetc = blk_col + col; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg, dry_run); block += step; } } } } void av1_foreach_transformed_block_in_plane( const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane, foreach_transformed_block_visitor visit, void *arg) { const struct macroblockd_plane *const pd = &xd->plane[plane]; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; // Call visit() directly with zero offsets if the current block size is the // same as the transform block size. if (plane_bsize == tx_bsize) { visit(plane, 0, 0, 0, plane_bsize, tx_size, arg); return; } const uint8_t txw_unit = tx_size_wide_unit[tx_size]; const uint8_t txh_unit = tx_size_high_unit[tx_size]; const int step = txw_unit * txh_unit; // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); const int mu_blocks_wide = AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide); const int mu_blocks_high = AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. int i = 0; for (int r = 0; r < max_blocks_high; r += mu_blocks_high) { const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high); // Skip visiting the sub blocks that are wholly within the UMV. for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) { const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide); for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) { for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) { visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg); i += step; } } } } // Check if visit() is invoked at least once. assert(i >= 1); } typedef struct encode_block_pass1_args { AV1_COMP *cpi; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMP *cpi = args->cpi; AV1_COMMON *cm = &cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); uint8_t *dst; dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; TxfmParam txfm_param; QUANT_PARAM quant_param; av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT, &quant_param); av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, &quant_param); if (p->eobs[block] > 0) { txfm_param.eob = p->eobs[block]; if (txfm_param.is_hbd) { av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); return; } av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } } void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cpi, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, RUN_TYPE dry_run) { assert(bsize < BLOCK_SIZES_ALL); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; // In the current encoder implementation, for inter blocks, // only when YUV planes all have zero quantized transform coefficients, // mbmi->skip_txfm flag is set to 1. // For intra blocks, this flag is set to 0 since skipped blocks are so rare // that transmitting skip_txfm = 1 is very expensive. // mbmi->skip_txfm is init to 1, and will be modified in encode_block() based // on transform, quantization, and (if exists) trellis optimization. mbmi->skip_txfm = 1; if (x->txfm_search_info.skip_txfm) return; struct optimize_ctx ctx; struct encode_b_args arg = { cpi, x, &ctx, NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id] }; const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const int subsampling_x = pd->subsampling_x; const int subsampling_y = pd->subsampling_y; if (plane && !xd->is_chroma_ref) break; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, subsampling_x, subsampling_y); assert(plane_bsize < BLOCK_SIZES_ALL); const int mi_width = mi_size_wide[plane_bsize]; const int mi_height = mi_size_high[plane_bsize]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = mi_size_wide[txb_size]; const int bh = mi_size_high[txb_size]; int block = 0; const int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]); av1_subtract_plane(x, plane_bsize, plane); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y); int mu_blocks_wide = mi_size_wide[max_unit_bsize]; int mu_blocks_high = mi_size_high[max_unit_bsize]; mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); for (int idy = 0; idy < mi_height; idy += mu_blocks_high) { for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) { int blk_row, blk_col; const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); for (blk_row = idy; blk_row < unit_height; blk_row += bh) { for (blk_col = idx; blk_col < unit_width; blk_col += bw) { encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, max_tx_size, &arg, dry_run); block += step; } } } } } } static void encode_block_intra_and_set_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); struct encode_b_args *const args = arg; MACROBLOCK *x = args->x; ENTROPY_CONTEXT *a = &args->ta[blk_col]; ENTROPY_CONTEXT *l = &args->tl[blk_row]; av1_set_txb_context(x, plane, block, tx_size, a, l); } void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; const AV1_COMP *const cpi = args->cpi; const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); PLANE_TYPE plane_type = get_plane_type(plane); uint16_t *eob = &p->eobs[block]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; int dummy_rate_cost = 0; av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); TX_TYPE tx_type = DCT_DCT; const int bw = mi_size_wide[plane_bsize]; if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_row * bw + blk_col)) { *eob = 0; p->txb_entropy_ctx[block] = 0; } else { av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); const ENTROPY_CONTEXT *a = &args->ta[blk_col]; const ENTROPY_CONTEXT *l = &args->tl[blk_row]; tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, cm->features.reduced_tx_set_used); TxfmParam txfm_param; QUANT_PARAM quant_param; const int use_trellis = is_trellis_used(args->enable_optimize_b, args->dry_run); int quant_idx; if (use_trellis) quant_idx = AV1_XFORM_QUANT_FP; else quant_idx = USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP; av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param); av1_setup_quant(tx_size, use_trellis, quant_idx, cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, &quant_param); av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, &quant_param); // Whether trellis or dropout optimization is required for key frames and // intra frames. const bool do_trellis = (frame_is_intra_only(cm) && (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT || KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) || (!frame_is_intra_only(cm) && (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT || INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)); const bool do_dropout = (frame_is_intra_only(cm) && (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT || KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) || (!frame_is_intra_only(cm) && (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT || INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)); if (quant_param.use_optimize_b && do_trellis) { TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, &dummy_rate_cost); } if (do_dropout) { av1_dropout_qcoeff(x, plane, block, tx_size, tx_type, cm->quant_params.base_qindex); } } if (*eob) { av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, dst_stride, *eob, cm->features.reduced_tx_set_used); } // TODO(jingning): Temporarily disable txk_type check for eob=0 case. // It is possible that certain collision in hash index would cause // the assertion failure. To further optimize the rate-distortion // performance, we need to re-visit this part and enable this assert // again. if (*eob == 0 && plane == 0) { #if 0 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) { assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] == DCT_DCT); } #endif update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); } // For intra mode, skipped blocks are so rare that transmitting // skip_txfm = 1 is very expensive. mbmi->skip_txfm = 0; if (plane == AOM_PLANE_Y && xd->cfl.store_y) { cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); } } void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run, TRELLIS_OPT_TYPE enable_optimize_b) { assert(bsize < BLOCK_SIZES_ALL); const MACROBLOCKD *const xd = &x->e_mbd; if (plane && !xd->is_chroma_ref) return; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 }; ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 }; struct encode_b_args arg = { cpi, x, NULL, ta, tl, dry_run, enable_optimize_b }; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); if (enable_optimize_b) { av1_get_entropy_contexts(plane_bsize, pd, ta, tl); } av1_foreach_transformed_block_in_plane( xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg); }