/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/common.h" #include "av1/common/entropymode.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodemv.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/bitops.h" static void update_mv_component_stats(int comp, nmv_component *mvcomp, MvSubpelPrecision precision) { assert(comp != 0); int offset; const int sign = comp < 0; const int mag = sign ? -comp : comp; const int mv_class = av1_get_mv_class(mag - 1, &offset); const int d = offset >> 3; // int mv data const int fr = (offset >> 1) & 3; // fractional mv data const int hp = offset & 1; // high precision mv data // Sign update_cdf(mvcomp->sign_cdf, sign, 2); // Class update_cdf(mvcomp->classes_cdf, mv_class, MV_CLASSES); // Integer bits if (mv_class == MV_CLASS_0) { update_cdf(mvcomp->class0_cdf, d, CLASS0_SIZE); } else { const int n = mv_class + CLASS0_BITS - 1; // number of bits for (int i = 0; i < n; ++i) update_cdf(mvcomp->bits_cdf[i], (d >> i) & 1, 2); } // Fractional bits if (precision > MV_SUBPEL_NONE) { aom_cdf_prob *fp_cdf = mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf; update_cdf(fp_cdf, fr, MV_FP_SIZE); } // High precision bit if (precision > MV_SUBPEL_LOW_PRECISION) { aom_cdf_prob *hp_cdf = mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf; update_cdf(hp_cdf, hp, 2); } } void av1_update_mv_stats(const MV *mv, const MV *ref, nmv_context *mvctx, MvSubpelPrecision precision) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); update_cdf(mvctx->joints_cdf, j, MV_JOINTS); if (mv_joint_vertical(j)) update_mv_component_stats(diff.row, &mvctx->comps[0], precision); if (mv_joint_horizontal(j)) update_mv_component_stats(diff.col, &mvctx->comps[1], precision); } static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp, MvSubpelPrecision precision) { assert(comp != 0); int offset; const int sign = comp < 0; const int mag = sign ? -comp : comp; const int mv_class = av1_get_mv_class(mag - 1, &offset); const int d = offset >> 3; // int mv data const int fr = (offset >> 1) & 3; // fractional mv data const int hp = offset & 1; // high precision mv data // Sign aom_write_symbol(w, sign, mvcomp->sign_cdf, 2); // Class aom_write_symbol(w, mv_class, mvcomp->classes_cdf, MV_CLASSES); // Integer bits if (mv_class == MV_CLASS_0) { aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits for (i = 0; i < n; ++i) aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2); } // Fractional bits if (precision > MV_SUBPEL_NONE) { aom_write_symbol( w, fr, mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, MV_FP_SIZE); } // High precision bit if (precision > MV_SUBPEL_LOW_PRECISION) aom_write_symbol( w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2); } /* TODO(siekyleb@amazon.com): This function writes MV_VALS ints or 128 KiB. This * is more than most L1D caches and is a significant chunk of L2. Write * SIMD that uses streaming writes to avoid loading all of that into L1, or * just don't update the larger component costs every time this called * (or both). */ void av1_build_nmv_component_cost_table(int *mvcost, const nmv_component *const mvcomp, MvSubpelPrecision precision) { int i, j, v, o, mantissa; int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; int bits_cost[MV_OFFSET_BITS][2]; int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE] = { 0 }, fp_cost[MV_FP_SIZE] = { 0 }; int class0_hp_cost[2] = { 0 }, hp_cost[2] = { 0 }; av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL); av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL); av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL); for (i = 0; i < MV_OFFSET_BITS; ++i) { av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL); } if (precision > MV_SUBPEL_NONE) { for (i = 0; i < CLASS0_SIZE; ++i) av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], NULL); av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL); } if (precision > MV_SUBPEL_LOW_PRECISION) { av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL); av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL); } // Instead of accumulating the cost of each vector component's bits // individually, compute the costs based on smaller vectors. Costs for // [2^exp, 2 * 2^exp - 1] are calculated based on [0, 2^exp - 1] // respectively. Offsets are maintained to swap both 1) class costs when // treated as a complete vector component with the highest set bit when // treated as a mantissa (significand) and 2) leading zeros to account for // the current exponent. // Cost offsets int cost_swap[MV_OFFSET_BITS] = { 0 }; // Delta to convert positive vector to negative vector costs int negate_sign = sign_cost[1] - sign_cost[0]; // Initialize with offsets to swap the class costs with the costs of the // highest set bit. for (i = 1; i < MV_OFFSET_BITS; ++i) { cost_swap[i] = bits_cost[i - 1][1]; if (i > CLASS0_BITS) cost_swap[i] -= class_cost[i - CLASS0_BITS]; } // Seed the fractional costs onto the output (overwritten latter). for (o = 0; o < MV_FP_SIZE; ++o) { int hp; for (hp = 0; hp < 2; ++hp) { v = 2 * o + hp + 1; mvcost[v] = fp_cost[o] + hp_cost[hp] + sign_cost[0]; } } mvcost[0] = 0; // Fill the costs for each exponent's vectors, using the costs set in the // previous exponents. for (i = 0; i < MV_OFFSET_BITS; ++i) { const int exponent = (2 * MV_FP_SIZE) << i; int class = 0; if (i >= CLASS0_BITS) { class = class_cost[i - CLASS0_BITS + 1]; } // Iterate through mantissas, keeping track of the location // of the highest set bit for the mantissa. // To be clear: in the outer loop, the position of the highest set bit // (exponent) is tracked and, in this loop, the highest set bit of the // mantissa is tracked. mantissa = 0; for (j = 0; j <= i; ++j) { for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { int cost = mvcost[mantissa + 1] + class + cost_swap[j]; v = exponent + mantissa + 1; mvcost[v] = cost; mvcost[-v] = cost + negate_sign; } cost_swap[j] += bits_cost[i][0]; } } // Special case to avoid buffer overrun { int exponent = (2 * MV_FP_SIZE) << MV_OFFSET_BITS; int class = class_cost[MV_CLASSES - 1]; mantissa = 0; for (j = 0; j < MV_OFFSET_BITS; ++j) { for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { int cost = mvcost[mantissa + 1] + class + cost_swap[j]; v = exponent + mantissa + 1; mvcost[v] = cost; mvcost[-v] = cost + negate_sign; } } // At this point: mantissa = exponent >> 1 // Manually calculate the final cost offset int cost_swap_hi = bits_cost[MV_OFFSET_BITS - 1][1] - class_cost[MV_CLASSES - 2]; for (; mantissa < exponent - 1; ++mantissa) { int cost = mvcost[mantissa + 1] + class + cost_swap_hi; v = exponent + mantissa + 1; mvcost[v] = cost; mvcost[-v] = cost + negate_sign; } } // Fill costs for class0 vectors, overwriting previous placeholder values // used for calculating the costs of the larger vectors. for (i = 0; i < CLASS0_SIZE; ++i) { const int top = i * 2 * MV_FP_SIZE; for (o = 0; o < MV_FP_SIZE; ++o) { int hp; int cost = class0_fp_cost[i][o] + class_cost[0] + class0_cost[i]; for (hp = 0; hp < 2; ++hp) { v = top + 2 * o + hp + 1; mvcost[v] = cost + class0_hp_cost[hp] + sign_cost[0]; mvcost[-v] = cost + class0_hp_cost[hp] + sign_cost[1]; } } } } void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, ThreadData *td, const MV *mv, const MV *ref, nmv_context *mvctx, int usehp) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); // If the mv_diff is zero, then we should have used near or nearest instead. assert(j != MV_JOINT_ZERO); if (cpi->common.features.cur_frame_force_integer_mv) { usehp = MV_SUBPEL_NONE; } aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); if (mv_joint_vertical(j)) encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); if (mv_joint_horizontal(j)) encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); // If auto_mv_step_size is enabled then keep track of the largest // motion vector component used. if (cpi->sf.mv_sf.auto_mv_step_size) { int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3; td->max_mv_magnitude = AOMMAX(maxv, td->max_mv_magnitude); } } void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, nmv_context *mvctx) { // DV and ref DV should not have sub-pel. assert((mv->col & 7) == 0); assert((mv->row & 7) == 0); assert((ref->col & 7) == 0); assert((ref->row & 7) == 0); const MV diff = { mv->row - ref->row, mv->col - ref->col }; const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); if (mv_joint_vertical(j)) encode_mv_component(w, diff.row, &mvctx->comps[0], MV_SUBPEL_NONE); if (mv_joint_horizontal(j)) encode_mv_component(w, diff.col, &mvctx->comps[1], MV_SUBPEL_NONE); } void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], const nmv_context *ctx, MvSubpelPrecision precision) { av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL); av1_build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision); av1_build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision); } int_mv av1_get_ref_mv_from_stack(int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx, const MB_MODE_INFO_EXT *mbmi_ext) { const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext->ref_mv_stack[ref_frame_type]; if (ref_frame[1] > INTRA_FRAME) { assert(ref_idx == 0 || ref_idx == 1); return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv : curr_ref_mv_stack[ref_mv_idx].this_mv; } assert(ref_idx == 0); return ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type] ? curr_ref_mv_stack[ref_mv_idx].this_mv : mbmi_ext->global_mvs[ref_frame_type]; } int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) { const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; int ref_mv_idx = mbmi->ref_mv_idx; if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) { assert(has_second_ref(mbmi)); ref_mv_idx += 1; } return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, &x->mbmi_ext); } void av1_find_best_ref_mvs_from_stack(int allow_hp, const MB_MODE_INFO_EXT *mbmi_ext, MV_REFERENCE_FRAME ref_frame, int_mv *nearest_mv, int_mv *near_mv, int is_integer) { const int ref_idx = 0; MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; *nearest_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext); lower_mv_precision(&nearest_mv->as_mv, allow_hp, is_integer); *near_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 1, mbmi_ext); lower_mv_precision(&near_mv->as_mv, allow_hp, is_integer); }