/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include "av1/common/scale.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom/aomcx.h" #if CONFIG_DENOISE #include "aom_dsp/grain_table.h" #include "aom_dsp/noise_util.h" #include "aom_dsp/noise_model.h" #endif #include "aom_dsp/flow_estimation/corner_detect.h" #include "aom_dsp/psnr.h" #if CONFIG_INTERNAL_STATS #include "aom_dsp/ssim.h" #endif #include "aom_ports/aom_timer.h" #include "aom_ports/mem.h" #include "aom_scale/aom_scale.h" #if CONFIG_BITSTREAM_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG #include "av1/common/alloccommon.h" #include "av1/common/filter.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/resize.h" #include "av1/common/tile_common.h" #include "av1/encoder/allintra_vis.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/context_tree.h" #include "av1/encoder/dwt.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encode_strategy.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_alloc.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/ethread.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/hash_motion.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/intra_mode_search.h" #include "av1/encoder/mv_prec.h" #include "av1/encoder/pass2_strategy.h" #include "av1/encoder/pickcdef.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/pickrst.h" #include "av1/encoder/random.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rc_utils.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #if CONFIG_SALIENCY_MAP #include "av1/encoder/saliency_map.h" #endif #include "av1/encoder/segmentation.h" #include "av1/encoder/speed_features.h" #include "av1/encoder/superres_scale.h" #include "av1/encoder/thirdpass.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/var_based_part.h" #define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7 // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #define FILE_NAME_LEN 100 #endif #ifdef OUTPUT_YUV_DENOISED FILE *yuv_denoised_file = NULL; #endif static INLINE void Scale2Ratio(AOM_SCALING_MODE mode, int *hr, int *hs) { switch (mode) { case AOME_NORMAL: *hr = 1; *hs = 1; break; case AOME_FOURFIVE: *hr = 4; *hs = 5; break; case AOME_THREEFIVE: *hr = 3; *hs = 5; break; case AOME_THREEFOUR: *hr = 3; *hs = 4; break; case AOME_ONEFOUR: *hr = 1; *hs = 4; break; case AOME_ONEEIGHT: *hr = 1; *hs = 8; break; case AOME_ONETWO: *hr = 1; *hs = 2; break; case AOME_TWOTHREE: *hr = 2; *hs = 3; break; case AOME_ONETHREE: *hr = 1; *hs = 3; break; default: *hr = 1; *hs = 1; assert(0); break; } } int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols) { const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; if (rows == mi_params->mb_rows && cols == mi_params->mb_cols) { unsigned char *const active_map_4x4 = cpi->active_map.map; const int mi_rows = mi_params->mi_rows; const int mi_cols = mi_params->mi_cols; const int row_scale = mi_size_high_log2[BLOCK_16X16]; const int col_scale = mi_size_wide_log2[BLOCK_16X16]; cpi->active_map.update = 0; assert(mi_rows % 2 == 0); assert(mi_cols % 2 == 0); if (new_map_16x16) { for (int r = 0; r < (mi_rows >> row_scale); ++r) { for (int c = 0; c < (mi_cols >> col_scale); ++c) { const uint8_t val = new_map_16x16[r * cols + c] ? AM_SEGMENT_ID_ACTIVE : AM_SEGMENT_ID_INACTIVE; active_map_4x4[(2 * r + 0) * mi_cols + (c + 0)] = val; active_map_4x4[(2 * r + 0) * mi_cols + (c + 1)] = val; active_map_4x4[(2 * r + 1) * mi_cols + (c + 0)] = val; active_map_4x4[(2 * r + 1) * mi_cols + (c + 1)] = val; } } cpi->active_map.enabled = 1; } return 0; } return -1; } int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols) { const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; if (rows == mi_params->mb_rows && cols == mi_params->mb_cols && new_map_16x16) { unsigned char *const seg_map_8x8 = cpi->enc_seg.map; const int mi_rows = mi_params->mi_rows; const int mi_cols = mi_params->mi_cols; const int row_scale = mi_size_high_log2[BLOCK_16X16]; const int col_scale = mi_size_wide_log2[BLOCK_16X16]; assert(mi_rows % 2 == 0); assert(mi_cols % 2 == 0); memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); if (cpi->active_map.enabled) { for (int r = 0; r < (mi_rows >> row_scale); ++r) { for (int c = 0; c < (mi_cols >> col_scale); ++c) { // Cyclic refresh segments are considered active despite not having // AM_SEGMENT_ID_ACTIVE uint8_t temp = 0; temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 0)] != AM_SEGMENT_ID_INACTIVE; temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 1)] != AM_SEGMENT_ID_INACTIVE; temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 0)] != AM_SEGMENT_ID_INACTIVE; temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 1)] != AM_SEGMENT_ID_INACTIVE; new_map_16x16[r * cols + c] |= temp; } } } return 0; } return -1; } void av1_initialize_enc(unsigned int usage, enum aom_rc_mode end_usage) { bool is_allintra = usage == ALLINTRA; av1_rtcd(); aom_dsp_rtcd(); aom_scale_rtcd(); av1_init_intra_predictors(); av1_init_me_luts(); if (!is_allintra) av1_init_wedge_masks(); if (!is_allintra || end_usage != AOM_Q) av1_rc_init_minq_luts(); } void av1_new_framerate(AV1_COMP *cpi, double framerate) { cpi->framerate = framerate < 0.1 ? 30 : framerate; av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height); } double av1_get_compression_ratio(const AV1_COMMON *const cm, size_t encoded_frame_size) { const int upscaled_width = cm->superres_upscaled_width; const int height = cm->height; const int64_t luma_pic_size = (int64_t)upscaled_width * height; const SequenceHeader *const seq_params = cm->seq_params; const BITSTREAM_PROFILE profile = seq_params->profile; const int pic_size_profile_factor = profile == PROFILE_0 ? 15 : (profile == PROFILE_1 ? 30 : 36); encoded_frame_size = (encoded_frame_size > 129 ? encoded_frame_size - 128 : 1); const int64_t uncompressed_frame_size = (luma_pic_size * pic_size_profile_factor) >> 3; return (double)uncompressed_frame_size / encoded_frame_size; } static void auto_tile_size_balancing(AV1_COMMON *const cm, int num_sbs, int num_tiles_lg, int tile_col_row) { CommonTileParams *const tiles = &cm->tiles; int i, start_sb; int size_sb = num_sbs >> num_tiles_lg; int res_sbs = num_sbs - (size_sb << num_tiles_lg); int num_tiles = 1 << num_tiles_lg; int inc_index = num_tiles - res_sbs; tiles->uniform_spacing = 0; for (i = 0, start_sb = 0; start_sb < num_sbs && i < MAX_TILE_COLS; ++i) { if (i == inc_index) ++size_sb; if (tile_col_row) tiles->col_start_sb[i] = start_sb; else tiles->row_start_sb[i] = start_sb; start_sb += AOMMIN(size_sb, tiles->max_width_sb); } if (tile_col_row) { tiles->cols = i; tiles->col_start_sb[i] = num_sbs; } else { tiles->rows = i; tiles->row_start_sb[i] = num_sbs; } } static void set_tile_info(AV1_COMMON *const cm, const TileConfig *const tile_cfg) { const CommonModeInfoParams *const mi_params = &cm->mi_params; const SequenceHeader *const seq_params = cm->seq_params; CommonTileParams *const tiles = &cm->tiles; int i, start_sb; av1_get_tile_limits(cm); int sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, seq_params->mib_size_log2); // configure tile columns if (tile_cfg->tile_width_count == 0 || tile_cfg->tile_height_count == 0) { tiles->uniform_spacing = 1; tiles->log2_cols = AOMMAX(tile_cfg->tile_columns, tiles->min_log2_cols); // Add a special case to handle super resolution sb_cols = coded_to_superres_mi(sb_cols, cm->superres_scale_denominator); int min_log2_cols = 0; for (; (tiles->max_width_sb << min_log2_cols) <= sb_cols; ++min_log2_cols) { } tiles->log2_cols = AOMMAX(tiles->log2_cols, min_log2_cols); tiles->log2_cols = AOMMIN(tiles->log2_cols, tiles->max_log2_cols); } else if (tile_cfg->tile_widths[0] < 0) { auto_tile_size_balancing(cm, sb_cols, tile_cfg->tile_columns, 1); } else { int size_sb, j = 0; tiles->uniform_spacing = 0; for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) { tiles->col_start_sb[i] = start_sb; size_sb = tile_cfg->tile_widths[j++]; if (j >= tile_cfg->tile_width_count) j = 0; start_sb += AOMMIN(size_sb, tiles->max_width_sb); } tiles->cols = i; tiles->col_start_sb[i] = sb_cols; } av1_calculate_tile_cols(seq_params, mi_params->mi_rows, mi_params->mi_cols, tiles); // configure tile rows int sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, seq_params->mib_size_log2); if (tiles->uniform_spacing) { tiles->log2_rows = AOMMAX(tile_cfg->tile_rows, tiles->min_log2_rows); tiles->log2_rows = AOMMIN(tiles->log2_rows, tiles->max_log2_rows); } else if (tile_cfg->tile_heights[0] < 0) { auto_tile_size_balancing(cm, sb_rows, tile_cfg->tile_rows, 0); } else { int size_sb, j = 0; for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) { tiles->row_start_sb[i] = start_sb; size_sb = tile_cfg->tile_heights[j++]; if (j >= tile_cfg->tile_height_count) j = 0; start_sb += AOMMIN(size_sb, tiles->max_height_sb); } tiles->rows = i; tiles->row_start_sb[i] = sb_rows; } av1_calculate_tile_rows(seq_params, mi_params->mi_rows, tiles); } void av1_update_frame_size(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; // Setup mi_params here in case we need more mi's. CommonModeInfoParams *const mi_params = &cm->mi_params; mi_params->set_mb_mi(mi_params, cm->width, cm->height, cpi->sf.part_sf.default_min_partition_size); av1_init_macroblockd(cm, xd); if (!cpi->ppi->seq_params_locked) set_sb_size(cm->seq_params, av1_select_sb_size(&cpi->oxcf, cm->width, cm->height, cpi->ppi->number_spatial_layers)); set_tile_info(cm, &cpi->oxcf.tile_cfg); } static INLINE int does_level_match(int width, int height, double fps, int lvl_width, int lvl_height, double lvl_fps, int lvl_dim_mult) { const int64_t lvl_luma_pels = (int64_t)lvl_width * lvl_height; const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps; const int64_t luma_pels = (int64_t)width * height; const double display_sample_rate = luma_pels * fps; return luma_pels <= lvl_luma_pels && display_sample_rate <= lvl_display_sample_rate && width <= lvl_width * lvl_dim_mult && height <= lvl_height * lvl_dim_mult; } static void set_bitstream_level_tier(AV1_PRIMARY *const ppi, int width, int height, double init_framerate) { SequenceHeader *const seq_params = &ppi->seq_params; const AV1LevelParams *const level_params = &ppi->level_params; // TODO(any): This is a placeholder function that only addresses dimensions // and max display sample rates. // Need to add checks for max bit rate, max decoded luma sample rate, header // rate, etc. that are not covered by this function. AV1_LEVEL level = SEQ_LEVEL_MAX; if (does_level_match(width, height, init_framerate, 512, 288, 30.0, 4)) { level = SEQ_LEVEL_2_0; } else if (does_level_match(width, height, init_framerate, 704, 396, 30.0, 4)) { level = SEQ_LEVEL_2_1; } else if (does_level_match(width, height, init_framerate, 1088, 612, 30.0, 4)) { level = SEQ_LEVEL_3_0; } else if (does_level_match(width, height, init_framerate, 1376, 774, 30.0, 4)) { level = SEQ_LEVEL_3_1; } else if (does_level_match(width, height, init_framerate, 2048, 1152, 30.0, 3)) { level = SEQ_LEVEL_4_0; } else if (does_level_match(width, height, init_framerate, 2048, 1152, 60.0, 3)) { level = SEQ_LEVEL_4_1; } else if (does_level_match(width, height, init_framerate, 4096, 2176, 30.0, 2)) { level = SEQ_LEVEL_5_0; } else if (does_level_match(width, height, init_framerate, 4096, 2176, 60.0, 2)) { level = SEQ_LEVEL_5_1; } else if (does_level_match(width, height, init_framerate, 4096, 2176, 120.0, 2)) { level = SEQ_LEVEL_5_2; } else if (does_level_match(width, height, init_framerate, 8192, 4352, 30.0, 2)) { level = SEQ_LEVEL_6_0; } else if (does_level_match(width, height, init_framerate, 8192, 4352, 60.0, 2)) { level = SEQ_LEVEL_6_1; } else if (does_level_match(width, height, init_framerate, 8192, 4352, 120.0, 2)) { level = SEQ_LEVEL_6_2; } #if CONFIG_CWG_C013 // TODO(bohanli): currently target level is only working for the 0th operating // point, so scalable coding is not supported. else if (level_params->target_seq_level_idx[0] >= SEQ_LEVEL_7_0 && level_params->target_seq_level_idx[0] <= SEQ_LEVEL_8_3) { // Only use level 7.x to 8.x when explicitly asked to. if (does_level_match(width, height, init_framerate, 16384, 8704, 30.0, 2)) { level = SEQ_LEVEL_7_0; } else if (does_level_match(width, height, init_framerate, 16384, 8704, 60.0, 2)) { level = SEQ_LEVEL_7_1; } else if (does_level_match(width, height, init_framerate, 16384, 8704, 120.0, 2)) { level = SEQ_LEVEL_7_2; } else if (does_level_match(width, height, init_framerate, 32768, 17408, 30.0, 2)) { level = SEQ_LEVEL_8_0; } else if (does_level_match(width, height, init_framerate, 32768, 17408, 60.0, 2)) { level = SEQ_LEVEL_8_1; } else if (does_level_match(width, height, init_framerate, 32768, 17408, 120.0, 2)) { level = SEQ_LEVEL_8_2; } } #endif for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { assert(is_valid_seq_level_idx(level_params->target_seq_level_idx[i]) || level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS); // If a higher target level is specified, it is then used rather than the // inferred one from resolution and framerate. seq_params->seq_level_idx[i] = level_params->target_seq_level_idx[i] < SEQ_LEVELS && level_params->target_seq_level_idx[i] > level ? level_params->target_seq_level_idx[i] : level; // Set the maximum parameters for bitrate and buffer size for this profile, // level, and tier seq_params->op_params[i].bitrate = av1_max_level_bitrate( seq_params->profile, seq_params->seq_level_idx[i], seq_params->tier[i]); // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass the // check if (seq_params->op_params[i].bitrate == 0) aom_internal_error( &ppi->error, AOM_CODEC_UNSUP_BITSTREAM, "AV1 does not support this combination of profile, level, and tier."); // Buffer size in bits/s is bitrate in bits/s * 1 s seq_params->op_params[i].buffer_size = seq_params->op_params[i].bitrate; } } void av1_init_seq_coding_tools(AV1_PRIMARY *const ppi, const AV1EncoderConfig *oxcf, int disable_frame_id_numbers) { SequenceHeader *const seq = &ppi->seq_params; const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; const ToolCfg *const tool_cfg = &oxcf->tool_cfg; seq->still_picture = !tool_cfg->force_video_mode && (oxcf->input_cfg.limit == 1); seq->reduced_still_picture_hdr = seq->still_picture && !tool_cfg->full_still_picture_hdr; seq->force_screen_content_tools = 2; seq->force_integer_mv = 2; seq->order_hint_info.enable_order_hint = tool_cfg->enable_order_hint; seq->frame_id_numbers_present_flag = !seq->reduced_still_picture_hdr && !oxcf->tile_cfg.enable_large_scale_tile && tool_cfg->error_resilient_mode && !disable_frame_id_numbers; if (seq->reduced_still_picture_hdr) { seq->order_hint_info.enable_order_hint = 0; seq->force_screen_content_tools = 2; seq->force_integer_mv = 2; } seq->order_hint_info.order_hint_bits_minus_1 = seq->order_hint_info.enable_order_hint ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1 : -1; seq->max_frame_width = frm_dim_cfg->forced_max_frame_width ? frm_dim_cfg->forced_max_frame_width : frm_dim_cfg->width; seq->max_frame_height = frm_dim_cfg->forced_max_frame_height ? frm_dim_cfg->forced_max_frame_height : frm_dim_cfg->height; seq->num_bits_width = (seq->max_frame_width > 1) ? get_msb(seq->max_frame_width - 1) + 1 : 1; seq->num_bits_height = (seq->max_frame_height > 1) ? get_msb(seq->max_frame_height - 1) + 1 : 1; assert(seq->num_bits_width <= 16); assert(seq->num_bits_height <= 16); seq->frame_id_length = FRAME_ID_LENGTH; seq->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; seq->enable_dual_filter = tool_cfg->enable_dual_filter; seq->order_hint_info.enable_dist_wtd_comp = oxcf->comp_type_cfg.enable_dist_wtd_comp; seq->order_hint_info.enable_dist_wtd_comp &= seq->order_hint_info.enable_order_hint; seq->order_hint_info.enable_ref_frame_mvs = tool_cfg->ref_frame_mvs_present; seq->order_hint_info.enable_ref_frame_mvs &= seq->order_hint_info.enable_order_hint; seq->enable_superres = oxcf->superres_cfg.enable_superres; seq->enable_cdef = tool_cfg->cdef_control != CDEF_NONE ? 1 : 0; seq->enable_restoration = tool_cfg->enable_restoration; seq->enable_warped_motion = oxcf->motion_mode_cfg.enable_warped_motion; seq->enable_interintra_compound = tool_cfg->enable_interintra_comp; seq->enable_masked_compound = oxcf->comp_type_cfg.enable_masked_comp; seq->enable_intra_edge_filter = oxcf->intra_mode_cfg.enable_intra_edge_filter; seq->enable_filter_intra = oxcf->intra_mode_cfg.enable_filter_intra; set_bitstream_level_tier(ppi, frm_dim_cfg->width, frm_dim_cfg->height, oxcf->input_cfg.init_framerate); if (seq->operating_points_cnt_minus_1 == 0) { seq->operating_point_idc[0] = 0; } else { // Set operating_point_idc[] such that the i=0 point corresponds to the // highest quality operating point (all layers), and subsequent // operarting points (i > 0) are lower quality corresponding to // skip decoding enhancement layers (temporal first). int i = 0; assert(seq->operating_points_cnt_minus_1 == (int)(ppi->number_spatial_layers * ppi->number_temporal_layers - 1)); for (unsigned int sl = 0; sl < ppi->number_spatial_layers; sl++) { for (unsigned int tl = 0; tl < ppi->number_temporal_layers; tl++) { seq->operating_point_idc[i] = (~(~0u << (ppi->number_spatial_layers - sl)) << 8) | ~(~0u << (ppi->number_temporal_layers - tl)); i++; } } } } static void init_config_sequence(struct AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf) { SequenceHeader *const seq_params = &ppi->seq_params; const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg; const ColorCfg *const color_cfg = &oxcf->color_cfg; ppi->use_svc = 0; ppi->number_spatial_layers = 1; ppi->number_temporal_layers = 1; seq_params->profile = oxcf->profile; seq_params->bit_depth = oxcf->tool_cfg.bit_depth; seq_params->use_highbitdepth = oxcf->use_highbitdepth; seq_params->color_primaries = color_cfg->color_primaries; seq_params->transfer_characteristics = color_cfg->transfer_characteristics; seq_params->matrix_coefficients = color_cfg->matrix_coefficients; seq_params->monochrome = oxcf->tool_cfg.enable_monochrome; seq_params->chroma_sample_position = color_cfg->chroma_sample_position; seq_params->color_range = color_cfg->color_range; seq_params->timing_info_present = dec_model_cfg->timing_info_present; seq_params->timing_info.num_units_in_display_tick = dec_model_cfg->timing_info.num_units_in_display_tick; seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale; seq_params->timing_info.equal_picture_interval = dec_model_cfg->timing_info.equal_picture_interval; seq_params->timing_info.num_ticks_per_picture = dec_model_cfg->timing_info.num_ticks_per_picture; seq_params->display_model_info_present_flag = dec_model_cfg->display_model_info_present_flag; seq_params->decoder_model_info_present_flag = dec_model_cfg->decoder_model_info_present_flag; if (dec_model_cfg->decoder_model_info_present_flag) { // set the decoder model parameters in schedule mode seq_params->decoder_model_info.num_units_in_decoding_tick = dec_model_cfg->num_units_in_decoding_tick; ppi->buffer_removal_time_present = 1; av1_set_aom_dec_model_info(&seq_params->decoder_model_info); av1_set_dec_model_op_parameters(&seq_params->op_params[0]); } else if (seq_params->timing_info_present && seq_params->timing_info.equal_picture_interval && !seq_params->decoder_model_info_present_flag) { // set the decoder model parameters in resource availability mode av1_set_resource_availability_parameters(&seq_params->op_params[0]); } else { seq_params->op_params[0].initial_display_delay = 10; // Default value (not signaled) } if (seq_params->monochrome) { seq_params->subsampling_x = 1; seq_params->subsampling_y = 1; } else if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { seq_params->subsampling_x = 0; seq_params->subsampling_y = 0; } else { if (seq_params->profile == 0) { seq_params->subsampling_x = 1; seq_params->subsampling_y = 1; } else if (seq_params->profile == 1) { seq_params->subsampling_x = 0; seq_params->subsampling_y = 0; } else { if (seq_params->bit_depth == AOM_BITS_12) { seq_params->subsampling_x = oxcf->input_cfg.chroma_subsampling_x; seq_params->subsampling_y = oxcf->input_cfg.chroma_subsampling_y; } else { seq_params->subsampling_x = 1; seq_params->subsampling_y = 0; } } } av1_change_config_seq(ppi, oxcf, NULL); } static void init_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) { AV1_COMMON *const cm = &cpi->common; ResizePendingParams *resize_pending_params = &cpi->resize_pending_params; cpi->oxcf = *oxcf; cpi->framerate = oxcf->input_cfg.init_framerate; cm->width = oxcf->frm_dim_cfg.width; cm->height = oxcf->frm_dim_cfg.height; cpi->is_dropped_frame = false; alloc_compressor_data(cpi); cpi->data_alloc_width = cm->width; cpi->data_alloc_height = cm->height; cpi->frame_size_related_setup_done = false; // Single thread case: use counts in common. cpi->td.counts = &cpi->counts; // Init SVC parameters. cpi->svc.number_spatial_layers = 1; cpi->svc.number_temporal_layers = 1; cm->spatial_layer_id = 0; cm->temporal_layer_id = 0; // Init rtc_ref parameters. cpi->ppi->rtc_ref.set_ref_frame_config = 0; cpi->ppi->rtc_ref.non_reference_frame = 0; cpi->ppi->rtc_ref.ref_frame_comp[0] = 0; cpi->ppi->rtc_ref.ref_frame_comp[1] = 0; cpi->ppi->rtc_ref.ref_frame_comp[2] = 0; // change includes all joint functionality av1_change_config(cpi, oxcf, false); cpi->ref_frame_flags = 0; // Reset resize pending flags resize_pending_params->width = 0; resize_pending_params->height = 0; // Setup identity scale factor av1_setup_scale_factors_for_frame(&cm->sf_identity, 1, 1, 1, 1); init_buffer_indices(&cpi->force_intpel_info, cm->remapped_ref_idx); av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); } void av1_change_config_seq(struct AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf, bool *is_sb_size_changed) { SequenceHeader *const seq_params = &ppi->seq_params; const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg; const ColorCfg *const color_cfg = &oxcf->color_cfg; if (seq_params->profile != oxcf->profile) seq_params->profile = oxcf->profile; seq_params->bit_depth = oxcf->tool_cfg.bit_depth; seq_params->color_primaries = color_cfg->color_primaries; seq_params->transfer_characteristics = color_cfg->transfer_characteristics; seq_params->matrix_coefficients = color_cfg->matrix_coefficients; seq_params->monochrome = oxcf->tool_cfg.enable_monochrome; seq_params->chroma_sample_position = color_cfg->chroma_sample_position; seq_params->color_range = color_cfg->color_range; assert(IMPLIES(seq_params->profile <= PROFILE_1, seq_params->bit_depth <= AOM_BITS_10)); seq_params->timing_info_present = dec_model_cfg->timing_info_present; seq_params->timing_info.num_units_in_display_tick = dec_model_cfg->timing_info.num_units_in_display_tick; seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale; seq_params->timing_info.equal_picture_interval = dec_model_cfg->timing_info.equal_picture_interval; seq_params->timing_info.num_ticks_per_picture = dec_model_cfg->timing_info.num_ticks_per_picture; seq_params->display_model_info_present_flag = dec_model_cfg->display_model_info_present_flag; seq_params->decoder_model_info_present_flag = dec_model_cfg->decoder_model_info_present_flag; if (dec_model_cfg->decoder_model_info_present_flag) { // set the decoder model parameters in schedule mode seq_params->decoder_model_info.num_units_in_decoding_tick = dec_model_cfg->num_units_in_decoding_tick; ppi->buffer_removal_time_present = 1; av1_set_aom_dec_model_info(&seq_params->decoder_model_info); av1_set_dec_model_op_parameters(&seq_params->op_params[0]); } else if (seq_params->timing_info_present && seq_params->timing_info.equal_picture_interval && !seq_params->decoder_model_info_present_flag) { // set the decoder model parameters in resource availability mode av1_set_resource_availability_parameters(&seq_params->op_params[0]); } else { seq_params->op_params[0].initial_display_delay = 10; // Default value (not signaled) } av1_update_film_grain_parameters_seq(ppi, oxcf); int sb_size = seq_params->sb_size; // Superblock size should not be updated after the first key frame. if (!ppi->seq_params_locked) { set_sb_size(seq_params, av1_select_sb_size(oxcf, frm_dim_cfg->width, frm_dim_cfg->height, ppi->number_spatial_layers)); for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) seq_params->tier[i] = (oxcf->tier_mask >> i) & 1; } if (is_sb_size_changed != NULL && sb_size != seq_params->sb_size) *is_sb_size_changed = true; // Init sequence level coding tools // This should not be called after the first key frame. if (!ppi->seq_params_locked) { seq_params->operating_points_cnt_minus_1 = (ppi->number_spatial_layers > 1 || ppi->number_temporal_layers > 1) ? ppi->number_spatial_layers * ppi->number_temporal_layers - 1 : 0; av1_init_seq_coding_tools( ppi, oxcf, ppi->use_svc || ppi->rtc_ref.set_ref_frame_config); } seq_params->timing_info_present &= !seq_params->reduced_still_picture_hdr; #if CONFIG_AV1_HIGHBITDEPTH highbd_set_var_fns(ppi); #endif set_primary_rc_buffer_sizes(oxcf, ppi); } void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf, bool is_sb_size_changed) { AV1_COMMON *const cm = &cpi->common; SequenceHeader *const seq_params = cm->seq_params; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; MACROBLOCK *const x = &cpi->td.mb; AV1LevelParams *const level_params = &cpi->ppi->level_params; RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const FrameDimensionCfg *const frm_dim_cfg = &cpi->oxcf.frm_dim_cfg; const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; FeatureFlags *const features = &cm->features; // in case of LAP, lag in frames is set according to number of lap buffers // calculated at init time. This stores and restores LAP's lag in frames to // prevent override by new cfg. int lap_lag_in_frames = -1; if (cpi->ppi->lap_enabled && cpi->compressor_stage == LAP_STAGE) { lap_lag_in_frames = cpi->oxcf.gf_cfg.lag_in_frames; } cpi->oxcf = *oxcf; av1_update_film_grain_parameters(cpi, oxcf); // When user provides superres_mode = AOM_SUPERRES_AUTO, we still initialize // superres mode for current encoding = AOM_SUPERRES_NONE. This is to ensure // that any analysis (e.g. TPL) happening outside the main encoding loop still // happens at full resolution. // This value will later be set appropriately just before main encoding loop. cpi->superres_mode = oxcf->superres_cfg.superres_mode == AOM_SUPERRES_AUTO ? AOM_SUPERRES_NONE : oxcf->superres_cfg.superres_mode; // default x->e_mbd.bd = (int)seq_params->bit_depth; x->e_mbd.global_motion = cm->global_motion; memcpy(level_params->target_seq_level_idx, cpi->oxcf.target_seq_level_idx, sizeof(level_params->target_seq_level_idx)); level_params->keep_level_stats = 0; for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { if (level_params->target_seq_level_idx[i] < SEQ_LEVELS || level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS) { level_params->keep_level_stats |= 1u << i; if (!level_params->level_info[i]) { CHECK_MEM_ERROR(cm, level_params->level_info[i], aom_calloc(1, sizeof(*level_params->level_info[i]))); } } } // TODO(huisu@): level targeting currently only works for the 0th operating // point, so scalable coding is not supported yet. if (level_params->target_seq_level_idx[0] < SEQ_LEVELS) { // Adjust encoder config in order to meet target level. config_target_level(cpi, level_params->target_seq_level_idx[0], seq_params->tier[0]); } if (has_no_stats_stage(cpi) && (rc_cfg->mode == AOM_Q)) { p_rc->baseline_gf_interval = FIXED_GF_INTERVAL; } else if (!is_one_pass_rt_params(cpi) || cm->current_frame.frame_number == 0) { // For rtc mode: logic for setting the baseline_gf_interval is done // in av1_get_one_pass_rt_params(), and it should not be reset here in // change_config(), unless after init_config (first frame). p_rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; } refresh_frame->golden_frame = false; refresh_frame->bwd_ref_frame = false; features->refresh_frame_context = (oxcf->tool_cfg.frame_parallel_decoding_mode) ? REFRESH_FRAME_CONTEXT_DISABLED : REFRESH_FRAME_CONTEXT_BACKWARD; if (oxcf->tile_cfg.enable_large_scale_tile) features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; if (x->palette_buffer == NULL) { CHECK_MEM_ERROR(cm, x->palette_buffer, aom_memalign(16, sizeof(*x->palette_buffer))); } if (x->tmp_conv_dst == NULL) { CHECK_MEM_ERROR( cm, x->tmp_conv_dst, aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*x->tmp_conv_dst))); x->e_mbd.tmp_conv_dst = x->tmp_conv_dst; } // The buffers 'tmp_pred_bufs[]' and 'comp_rd_buffer' are used in inter frames // to store intermediate inter mode prediction results and are not required // for allintra encoding mode. Hence, the memory allocations for these buffers // are avoided for allintra encoding mode. if (cpi->oxcf.kf_cfg.key_freq_max != 0) { if (x->comp_rd_buffer.pred0 == NULL) alloc_compound_type_rd_buffers(cm->error, &x->comp_rd_buffer); for (int i = 0; i < 2; ++i) { if (x->tmp_pred_bufs[i] == NULL) { CHECK_MEM_ERROR(cm, x->tmp_pred_bufs[i], aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*x->tmp_pred_bufs[i]))); x->e_mbd.tmp_obmc_bufs[i] = x->tmp_pred_bufs[i]; } } } av1_reset_segment_features(cm); av1_set_high_precision_mv(cpi, 1, 0); // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. p_rc->bits_off_target = AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size); // Set up frame rate and related parameters rate control values. av1_new_framerate(cpi, cpi->framerate); // Set absolute upper and lower quality limits rc->worst_quality = rc_cfg->worst_allowed_q; rc->best_quality = rc_cfg->best_allowed_q; // If lossless has been requested make sure average Q accumulators are reset. if (is_lossless_requested(&cpi->oxcf.rc_cfg)) { int i; for (i = 0; i < FRAME_TYPES; ++i) { p_rc->avg_frame_qindex[i] = 0; } } features->interp_filter = oxcf->tile_cfg.enable_large_scale_tile ? EIGHTTAP_REGULAR : SWITCHABLE; features->switchable_motion_mode = is_switchable_motion_mode_allowed( features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); if (frm_dim_cfg->render_width > 0 && frm_dim_cfg->render_height > 0) { cm->render_width = frm_dim_cfg->render_width; cm->render_height = frm_dim_cfg->render_height; } else { cm->render_width = frm_dim_cfg->width; cm->render_height = frm_dim_cfg->height; } cm->width = frm_dim_cfg->width; cm->height = frm_dim_cfg->height; if (cm->width > cpi->data_alloc_width || cm->height > cpi->data_alloc_height || is_sb_size_changed) { av1_free_context_buffers(cm); av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf); av1_free_sms_tree(&cpi->td); av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm)); cpi->td.firstpass_ctx = NULL; alloc_compressor_data(cpi); realloc_segmentation_maps(cpi); cpi->data_alloc_width = cm->width; cpi->data_alloc_height = cm->height; cpi->frame_size_related_setup_done = false; } av1_update_frame_size(cpi); rc->is_src_frame_alt_ref = 0; if (!cpi->ppi->rtc_ref.set_ref_frame_config) cpi->ext_flags.refresh_frame.update_pending = 0; cpi->ext_flags.refresh_frame_context_pending = 0; if (cpi->ppi->use_svc) av1_update_layer_context_change_config(cpi, rc_cfg->target_bandwidth); check_reset_rc_flag(cpi); // restore the value of lag_in_frame for LAP stage. if (lap_lag_in_frames != -1) { cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames; } #if CONFIG_REALTIME_ONLY assert(!oxcf->tool_cfg.enable_global_motion); cpi->image_pyramid_levels = 0; #else if (oxcf->tool_cfg.enable_global_motion) { cpi->image_pyramid_levels = global_motion_pyr_levels[default_global_motion_method]; } else { cpi->image_pyramid_levels = 0; } #endif // CONFIG_REALTIME_ONLY } static INLINE void init_frame_info(FRAME_INFO *frame_info, const AV1_COMMON *const cm) { const CommonModeInfoParams *const mi_params = &cm->mi_params; const SequenceHeader *const seq_params = cm->seq_params; frame_info->frame_width = cm->width; frame_info->frame_height = cm->height; frame_info->mi_cols = mi_params->mi_cols; frame_info->mi_rows = mi_params->mi_rows; frame_info->mb_cols = mi_params->mb_cols; frame_info->mb_rows = mi_params->mb_rows; frame_info->num_mbs = mi_params->MBs; frame_info->bit_depth = seq_params->bit_depth; frame_info->subsampling_x = seq_params->subsampling_x; frame_info->subsampling_y = seq_params->subsampling_y; } static INLINE void init_frame_index_set(FRAME_INDEX_SET *frame_index_set) { frame_index_set->show_frame_count = 0; } static INLINE void update_counters_for_show_frame(AV1_COMP *const cpi) { assert(cpi->common.show_frame); cpi->frame_index_set.show_frame_count++; cpi->common.current_frame.frame_number++; } AV1_PRIMARY *av1_create_primary_compressor( struct aom_codec_pkt_list *pkt_list_head, int num_lap_buffers, const AV1EncoderConfig *oxcf) { AV1_PRIMARY *volatile const ppi = aom_memalign(32, sizeof(AV1_PRIMARY)); if (!ppi) return NULL; av1_zero(*ppi); // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(ppi->error.jmp)) { ppi->error.setjmp = 0; av1_remove_primary_compressor(ppi); return 0; } ppi->error.setjmp = 1; ppi->seq_params_locked = 0; ppi->lap_enabled = num_lap_buffers > 0; ppi->output_pkt_list = pkt_list_head; ppi->b_calculate_psnr = CONFIG_INTERNAL_STATS; ppi->frames_left = oxcf->input_cfg.limit; ppi->num_fp_contexts = 1; init_config_sequence(ppi, oxcf); #if CONFIG_ENTROPY_STATS av1_zero(ppi->aggregate_fc); #endif // CONFIG_ENTROPY_STATS av1_primary_rc_init(oxcf, &ppi->p_rc); // For two pass and lag_in_frames > 33 in LAP. ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_2; if (ppi->lap_enabled) { if ((num_lap_buffers < (MAX_GF_LENGTH_LAP + SCENE_CUT_KEY_TEST_INTERVAL + 1)) && num_lap_buffers >= (MAX_GF_LENGTH_LAP + 3)) { /* * For lag in frames >= 19 and <33, enable scenecut * with limited future frame prediction. */ ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_1; } else if (num_lap_buffers < (MAX_GF_LENGTH_LAP + 3)) { // Disable scenecut when lag_in_frames < 19. ppi->p_rc.enable_scenecut_detection = DISABLE_SCENECUT; } } #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, SDX3DF, JSDAF, JSVAF) \ ppi->fn_ptr[BT].sdf = SDF; \ ppi->fn_ptr[BT].sdaf = SDAF; \ ppi->fn_ptr[BT].vf = VF; \ ppi->fn_ptr[BT].svf = SVF; \ ppi->fn_ptr[BT].svaf = SVAF; \ ppi->fn_ptr[BT].sdx4df = SDX4DF; \ ppi->fn_ptr[BT].jsdaf = JSDAF; \ ppi->fn_ptr[BT].jsvaf = JSVAF; \ ppi->fn_ptr[BT].sdx3df = SDX3DF; // Realtime mode doesn't use 4x rectangular blocks. #if !CONFIG_REALTIME_ONLY BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16, aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16, aom_sad4x16x4d, aom_sad4x16x3d, aom_dist_wtd_sad4x16_avg, aom_dist_wtd_sub_pixel_avg_variance4x16) BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4, aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4, aom_sad16x4x4d, aom_sad16x4x3d, aom_dist_wtd_sad16x4_avg, aom_dist_wtd_sub_pixel_avg_variance16x4) BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32, aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32, aom_sad8x32x4d, aom_sad8x32x3d, aom_dist_wtd_sad8x32_avg, aom_dist_wtd_sub_pixel_avg_variance8x32) BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8, aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8, aom_sad32x8x4d, aom_sad32x8x3d, aom_dist_wtd_sad32x8_avg, aom_dist_wtd_sub_pixel_avg_variance32x8) BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64, aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64, aom_sad16x64x4d, aom_sad16x64x3d, aom_dist_wtd_sad16x64_avg, aom_dist_wtd_sub_pixel_avg_variance16x64) BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16, aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16, aom_sad64x16x4d, aom_sad64x16x3d, aom_dist_wtd_sad64x16_avg, aom_dist_wtd_sub_pixel_avg_variance64x16) #endif // !CONFIG_REALTIME_ONLY BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128, aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128, aom_sad128x128x4d, aom_sad128x128x3d, aom_dist_wtd_sad128x128_avg, aom_dist_wtd_sub_pixel_avg_variance128x128) BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64, aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, aom_sad128x64x4d, aom_sad128x64x3d, aom_dist_wtd_sad128x64_avg, aom_dist_wtd_sub_pixel_avg_variance128x64) BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128, aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, aom_sad64x128x4d, aom_sad64x128x3d, aom_dist_wtd_sad64x128_avg, aom_dist_wtd_sub_pixel_avg_variance64x128) BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16, aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, aom_sad32x16x4d, aom_sad32x16x3d, aom_dist_wtd_sad32x16_avg, aom_dist_wtd_sub_pixel_avg_variance32x16) BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32, aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, aom_sad16x32x4d, aom_sad16x32x3d, aom_dist_wtd_sad16x32_avg, aom_dist_wtd_sub_pixel_avg_variance16x32) BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32, aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, aom_sad64x32x4d, aom_sad64x32x3d, aom_dist_wtd_sad64x32_avg, aom_dist_wtd_sub_pixel_avg_variance64x32) BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64, aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, aom_sad32x64x4d, aom_sad32x64x3d, aom_dist_wtd_sad32x64_avg, aom_dist_wtd_sub_pixel_avg_variance32x64) BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32, aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32, aom_sad32x32x4d, aom_sad32x32x3d, aom_dist_wtd_sad32x32_avg, aom_dist_wtd_sub_pixel_avg_variance32x32) BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64, aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64, aom_sad64x64x4d, aom_sad64x64x3d, aom_dist_wtd_sad64x64_avg, aom_dist_wtd_sub_pixel_avg_variance64x64) BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16, aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16, aom_sad16x16x4d, aom_sad16x16x3d, aom_dist_wtd_sad16x16_avg, aom_dist_wtd_sub_pixel_avg_variance16x16) BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8, aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, aom_sad16x8x4d, aom_sad16x8x3d, aom_dist_wtd_sad16x8_avg, aom_dist_wtd_sub_pixel_avg_variance16x8) BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16, aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, aom_sad8x16x4d, aom_sad8x16x3d, aom_dist_wtd_sad8x16_avg, aom_dist_wtd_sub_pixel_avg_variance8x16) BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8, aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d, aom_sad8x8x3d, aom_dist_wtd_sad8x8_avg, aom_dist_wtd_sub_pixel_avg_variance8x8) BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4, aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d, aom_sad8x4x3d, aom_dist_wtd_sad8x4_avg, aom_dist_wtd_sub_pixel_avg_variance8x4) BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8, aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d, aom_sad4x8x3d, aom_dist_wtd_sad4x8_avg, aom_dist_wtd_sub_pixel_avg_variance4x8) BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4, aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d, aom_sad4x4x3d, aom_dist_wtd_sad4x4_avg, aom_dist_wtd_sub_pixel_avg_variance4x4) #if !CONFIG_REALTIME_ONLY #define OBFP(BT, OSDF, OVF, OSVF) \ ppi->fn_ptr[BT].osdf = OSDF; \ ppi->fn_ptr[BT].ovf = OVF; \ ppi->fn_ptr[BT].osvf = OSVF; OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128, aom_obmc_sub_pixel_variance128x128) OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64, aom_obmc_sub_pixel_variance128x64) OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128, aom_obmc_sub_pixel_variance64x128) OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64, aom_obmc_sub_pixel_variance64x64) OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32, aom_obmc_sub_pixel_variance64x32) OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64, aom_obmc_sub_pixel_variance32x64) OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32, aom_obmc_sub_pixel_variance32x32) OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16, aom_obmc_sub_pixel_variance32x16) OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32, aom_obmc_sub_pixel_variance16x32) OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16, aom_obmc_sub_pixel_variance16x16) OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8, aom_obmc_sub_pixel_variance16x8) OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16, aom_obmc_sub_pixel_variance8x16) OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8, aom_obmc_sub_pixel_variance8x8) OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8, aom_obmc_sub_pixel_variance4x8) OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4, aom_obmc_sub_pixel_variance8x4) OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4, aom_obmc_sub_pixel_variance4x4) OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16, aom_obmc_sub_pixel_variance4x16) OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4, aom_obmc_sub_pixel_variance16x4) OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32, aom_obmc_sub_pixel_variance8x32) OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8, aom_obmc_sub_pixel_variance32x8) OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64, aom_obmc_sub_pixel_variance16x64) OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16, aom_obmc_sub_pixel_variance64x16) #endif // !CONFIG_REALTIME_ONLY #define MBFP(BT, MCSDF, MCSVF) \ ppi->fn_ptr[BT].msdf = MCSDF; \ ppi->fn_ptr[BT].msvf = MCSVF; MBFP(BLOCK_128X128, aom_masked_sad128x128, aom_masked_sub_pixel_variance128x128) MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64) MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128) MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64) MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32) MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64) MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32) MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16) MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32) MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16) MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8) MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16) MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8) MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8) MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4) MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4) #if !CONFIG_REALTIME_ONLY MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16) MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4) MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32) MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8) MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64) MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16) #endif #define SDSFP(BT, SDSF, SDSX4DF) \ ppi->fn_ptr[BT].sdsf = SDSF; \ ppi->fn_ptr[BT].sdsx4df = SDSX4DF; SDSFP(BLOCK_128X128, aom_sad_skip_128x128, aom_sad_skip_128x128x4d) SDSFP(BLOCK_128X64, aom_sad_skip_128x64, aom_sad_skip_128x64x4d) SDSFP(BLOCK_64X128, aom_sad_skip_64x128, aom_sad_skip_64x128x4d) SDSFP(BLOCK_64X64, aom_sad_skip_64x64, aom_sad_skip_64x64x4d) SDSFP(BLOCK_64X32, aom_sad_skip_64x32, aom_sad_skip_64x32x4d) SDSFP(BLOCK_32X64, aom_sad_skip_32x64, aom_sad_skip_32x64x4d) SDSFP(BLOCK_32X32, aom_sad_skip_32x32, aom_sad_skip_32x32x4d) SDSFP(BLOCK_32X16, aom_sad_skip_32x16, aom_sad_skip_32x16x4d) SDSFP(BLOCK_16X32, aom_sad_skip_16x32, aom_sad_skip_16x32x4d) SDSFP(BLOCK_16X16, aom_sad_skip_16x16, aom_sad_skip_16x16x4d) SDSFP(BLOCK_16X8, aom_sad_skip_16x8, aom_sad_skip_16x8x4d) SDSFP(BLOCK_8X16, aom_sad_skip_8x16, aom_sad_skip_8x16x4d) SDSFP(BLOCK_8X8, aom_sad_skip_8x8, aom_sad_skip_8x8x4d) SDSFP(BLOCK_4X8, aom_sad_skip_4x8, aom_sad_skip_4x8x4d) #if !CONFIG_REALTIME_ONLY SDSFP(BLOCK_64X16, aom_sad_skip_64x16, aom_sad_skip_64x16x4d) SDSFP(BLOCK_16X64, aom_sad_skip_16x64, aom_sad_skip_16x64x4d) SDSFP(BLOCK_32X8, aom_sad_skip_32x8, aom_sad_skip_32x8x4d) SDSFP(BLOCK_8X32, aom_sad_skip_8x32, aom_sad_skip_8x32x4d) SDSFP(BLOCK_4X16, aom_sad_skip_4x16, aom_sad_skip_4x16x4d) #endif #undef SDSFP #if CONFIG_AV1_HIGHBITDEPTH highbd_set_var_fns(ppi); #endif { // As cm->mi_params is a part of the frame level context (cpi), it is // unavailable at this point. mi_params is created as a local temporary // variable, to be passed into the functions used for allocating tpl // buffers. The values in this variable are populated according to initial // width and height of the frame. CommonModeInfoParams mi_params; enc_set_mb_mi(&mi_params, oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, BLOCK_4X4); const BLOCK_SIZE bsize = BLOCK_16X16; const int w = mi_size_wide[bsize]; const int h = mi_size_high[bsize]; const int num_cols = (mi_params.mi_cols + w - 1) / w; const int num_rows = (mi_params.mi_rows + h - 1) / h; AOM_CHECK_MEM_ERROR( &ppi->error, ppi->tpl_sb_rdmult_scaling_factors, aom_calloc(num_rows * num_cols, sizeof(*ppi->tpl_sb_rdmult_scaling_factors))); #if CONFIG_INTERNAL_STATS ppi->b_calculate_blockiness = 1; ppi->b_calculate_consistency = 1; for (int i = 0; i <= STAT_ALL; i++) { ppi->psnr[0].stat[i] = 0; ppi->psnr[1].stat[i] = 0; ppi->fastssim.stat[i] = 0; ppi->psnrhvs.stat[i] = 0; } ppi->psnr[0].worst = 100.0; ppi->psnr[1].worst = 100.0; ppi->worst_ssim = 100.0; ppi->worst_ssim_hbd = 100.0; ppi->count[0] = 0; ppi->count[1] = 0; ppi->total_bytes = 0; if (ppi->b_calculate_psnr) { ppi->total_sq_error[0] = 0; ppi->total_samples[0] = 0; ppi->total_sq_error[1] = 0; ppi->total_samples[1] = 0; ppi->total_recode_hits = 0; ppi->summed_quality = 0; ppi->summed_weights = 0; ppi->summed_quality_hbd = 0; ppi->summed_weights_hbd = 0; } ppi->fastssim.worst = 100.0; ppi->psnrhvs.worst = 100.0; if (ppi->b_calculate_blockiness) { ppi->total_blockiness = 0; ppi->worst_blockiness = 0.0; } ppi->total_inconsistency = 0; ppi->worst_consistency = 100.0; if (ppi->b_calculate_consistency) { AOM_CHECK_MEM_ERROR(&ppi->error, ppi->ssim_vars, aom_malloc(sizeof(*ppi->ssim_vars) * 4 * mi_params.mi_rows * mi_params.mi_cols)); } #endif } ppi->error.setjmp = 0; return ppi; } AV1_COMP *av1_create_compressor(AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf, BufferPool *const pool, COMPRESSOR_STAGE stage, int lap_lag_in_frames) { AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP)); if (!cpi) return NULL; av1_zero(*cpi); cpi->ppi = ppi; AV1_COMMON *volatile const cm = &cpi->common; cm->seq_params = &ppi->seq_params; cm->error = (struct aom_internal_error_info *)aom_calloc(1, sizeof(*cm->error)); if (!cm->error) { aom_free(cpi); return NULL; } // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(cm->error->jmp)) { cm->error->setjmp = 0; av1_remove_compressor(cpi); return NULL; } cm->error->setjmp = 1; cpi->compressor_stage = stage; cpi->do_frame_data_update = true; CommonModeInfoParams *const mi_params = &cm->mi_params; mi_params->free_mi = enc_free_mi; mi_params->setup_mi = enc_setup_mi; mi_params->set_mb_mi = (oxcf->pass == AOM_RC_FIRST_PASS || cpi->compressor_stage == LAP_STAGE) ? stat_stage_set_mb_mi : enc_set_mb_mi; mi_params->mi_alloc_bsize = BLOCK_4X4; CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); CHECK_MEM_ERROR( cm, cm->default_frame_context, (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context))); memset(cm->fc, 0, sizeof(*cm->fc)); memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context)); cpi->common.buffer_pool = pool; init_config(cpi, oxcf); if (cpi->compressor_stage == LAP_STAGE) { cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames; } av1_rc_init(&cpi->oxcf, &cpi->rc); init_frame_info(&cpi->frame_info, cm); init_frame_index_set(&cpi->frame_index_set); cm->current_frame.frame_number = 0; cpi->rc.frame_number_encoded = 0; cpi->rc.prev_frame_is_dropped = 0; cpi->rc.max_consec_drop = INT_MAX; cpi->rc.drop_count_consec = 0; cm->current_frame_id = -1; cpi->tile_data = NULL; cpi->last_show_frame_buf = NULL; realloc_segmentation_maps(cpi); cpi->refresh_frame.alt_ref_frame = false; #if CONFIG_SPEED_STATS cpi->tx_search_count = 0; #endif // CONFIG_SPEED_STATS cpi->time_stamps.first_ts_start = INT64_MAX; #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #ifdef OUTPUT_YUV_DENOISED yuv_denoised_file = fopen("denoised.yuv", "wb"); #endif #if !CONFIG_REALTIME_ONLY if (is_stat_consumption_stage(cpi)) { const size_t packet_sz = sizeof(FIRSTPASS_STATS); const int packets = (int)(oxcf->twopass_stats_in.sz / packet_sz); if (!cpi->ppi->lap_enabled) { /*Re-initialize to stats buffer, populated by application in the case of * two pass*/ cpi->ppi->twopass.stats_buf_ctx->stats_in_start = oxcf->twopass_stats_in.buf; cpi->twopass_frame.stats_in = cpi->ppi->twopass.stats_buf_ctx->stats_in_start; cpi->ppi->twopass.stats_buf_ctx->stats_in_end = &cpi->ppi->twopass.stats_buf_ctx->stats_in_start[packets - 1]; // The buffer size is packets - 1 because the last packet is total_stats. av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info, oxcf->twopass_stats_in.buf, packets - 1); av1_init_second_pass(cpi); } else { av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info, NULL, 0); av1_init_single_pass_lap(cpi); } } #endif // The buffer "obmc_buffer" is used in inter frames for fast obmc search. // Hence, the memory allocation for the same is avoided for allintra encoding // mode. if (cpi->oxcf.kf_cfg.key_freq_max != 0) alloc_obmc_buffers(&cpi->td.mb.obmc_buffer, cm->error); for (int x = 0; x < 2; x++) for (int y = 0; y < 2; y++) CHECK_MEM_ERROR( cm, cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], (uint32_t *)aom_malloc( AOM_BUFFER_SIZE_FOR_BLOCK_HASH * sizeof(*cpi->td.mb.intrabc_hash_info.hash_value_buffer[0][0]))); cpi->td.mb.intrabc_hash_info.g_crc_initialized = 0; av1_set_speed_features_framesize_independent(cpi, oxcf->speed); av1_set_speed_features_framesize_dependent(cpi, oxcf->speed); int max_mi_cols = mi_params->mi_cols; int max_mi_rows = mi_params->mi_rows; if (oxcf->frm_dim_cfg.forced_max_frame_width) { max_mi_cols = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_width); } if (oxcf->frm_dim_cfg.forced_max_frame_height) { max_mi_rows = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_height); } const int consec_zero_mv_alloc_size = (max_mi_rows * max_mi_cols) >> 2; CHECK_MEM_ERROR( cm, cpi->consec_zero_mv, aom_calloc(consec_zero_mv_alloc_size, sizeof(*cpi->consec_zero_mv))); cpi->consec_zero_mv_alloc_size = consec_zero_mv_alloc_size; cpi->mb_weber_stats = NULL; cpi->mb_delta_q = NULL; cpi->palette_pixel_num = 0; cpi->scaled_last_source_available = 0; { const BLOCK_SIZE bsize = BLOCK_16X16; const int w = mi_size_wide[bsize]; const int h = mi_size_high[bsize]; const int num_cols = (max_mi_cols + w - 1) / w; const int num_rows = (max_mi_rows + h - 1) / h; CHECK_MEM_ERROR(cm, cpi->ssim_rdmult_scaling_factors, aom_calloc(num_rows * num_cols, sizeof(*cpi->ssim_rdmult_scaling_factors))); CHECK_MEM_ERROR(cm, cpi->tpl_rdmult_scaling_factors, aom_calloc(num_rows * num_cols, sizeof(*cpi->tpl_rdmult_scaling_factors))); } #if CONFIG_TUNE_VMAF { const BLOCK_SIZE bsize = BLOCK_64X64; const int w = mi_size_wide[bsize]; const int h = mi_size_high[bsize]; const int num_cols = (mi_params->mi_cols + w - 1) / w; const int num_rows = (mi_params->mi_rows + h - 1) / h; CHECK_MEM_ERROR(cm, cpi->vmaf_info.rdmult_scaling_factors, aom_calloc(num_rows * num_cols, sizeof(*cpi->vmaf_info.rdmult_scaling_factors))); for (int i = 0; i < MAX_ARF_LAYERS; i++) { cpi->vmaf_info.last_frame_unsharp_amount[i] = -1.0; cpi->vmaf_info.last_frame_ysse[i] = -1.0; cpi->vmaf_info.last_frame_vmaf[i] = -1.0; } cpi->vmaf_info.original_qindex = -1; cpi->vmaf_info.vmaf_model = NULL; } #endif #if CONFIG_TUNE_BUTTERAUGLI { const int w = mi_size_wide[butteraugli_rdo_bsize]; const int h = mi_size_high[butteraugli_rdo_bsize]; const int num_cols = (mi_params->mi_cols + w - 1) / w; const int num_rows = (mi_params->mi_rows + h - 1) / h; CHECK_MEM_ERROR( cm, cpi->butteraugli_info.rdmult_scaling_factors, aom_malloc(num_rows * num_cols * sizeof(*cpi->butteraugli_info.rdmult_scaling_factors))); memset(&cpi->butteraugli_info.source, 0, sizeof(cpi->butteraugli_info.source)); memset(&cpi->butteraugli_info.resized_source, 0, sizeof(cpi->butteraugli_info.resized_source)); cpi->butteraugli_info.recon_set = false; } #endif #if CONFIG_SALIENCY_MAP { CHECK_MEM_ERROR(cm, cpi->saliency_map, (uint8_t *)aom_calloc(cm->height * cm->width, sizeof(*cpi->saliency_map))); // Buffer initialization based on MIN_MIB_SIZE_LOG2 to ensure that // cpi->sm_scaling_factor buffer is allocated big enough, since we have no // idea of the actual superblock size we are going to use yet. const int min_mi_w_sb = (1 << MIN_MIB_SIZE_LOG2); const int min_mi_h_sb = (1 << MIN_MIB_SIZE_LOG2); const int max_sb_cols = (cm->mi_params.mi_cols + min_mi_w_sb - 1) / min_mi_w_sb; const int max_sb_rows = (cm->mi_params.mi_rows + min_mi_h_sb - 1) / min_mi_h_sb; CHECK_MEM_ERROR(cm, cpi->sm_scaling_factor, (double *)aom_calloc(max_sb_rows * max_sb_cols, sizeof(*cpi->sm_scaling_factor))); } #endif #if CONFIG_COLLECT_PARTITION_STATS av1_zero(cpi->partition_stats); #endif // CONFIG_COLLECT_PARTITION_STATS // Initialize the members of DeltaQuantParams with INT_MAX to ensure that // the quantizer tables are correctly initialized using the default deltaq // parameters when av1_init_quantizer is called for the first time. DeltaQuantParams *const prev_deltaq_params = &cpi->enc_quant_dequant_params.prev_deltaq_params; prev_deltaq_params->y_dc_delta_q = INT_MAX; prev_deltaq_params->u_dc_delta_q = INT_MAX; prev_deltaq_params->v_dc_delta_q = INT_MAX; prev_deltaq_params->u_ac_delta_q = INT_MAX; prev_deltaq_params->v_ac_delta_q = INT_MAX; av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_qm_init(&cm->quant_params, av1_num_planes(cm)); av1_loop_filter_init(cm); cm->superres_scale_denominator = SCALE_NUMERATOR; cm->superres_upscaled_width = oxcf->frm_dim_cfg.width; cm->superres_upscaled_height = oxcf->frm_dim_cfg.height; #if !CONFIG_REALTIME_ONLY av1_loop_restoration_precal(); #endif cpi->third_pass_ctx = NULL; if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) { av1_init_thirdpass_ctx(cm, &cpi->third_pass_ctx, NULL); } cpi->second_pass_log_stream = NULL; cpi->use_ducky_encode = 0; cm->error->setjmp = 0; return cpi; } #if CONFIG_INTERNAL_STATS #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) #define SNPRINT2(H, T, V) \ snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) #endif // CONFIG_INTERNAL_STATS void av1_remove_primary_compressor(AV1_PRIMARY *ppi) { if (!ppi) return; #if !CONFIG_REALTIME_ONLY av1_tf_info_free(&ppi->tf_info); #endif // !CONFIG_REALTIME_ONLY for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { aom_free(ppi->level_params.level_info[i]); } av1_lookahead_destroy(ppi->lookahead); aom_free(ppi->tpl_sb_rdmult_scaling_factors); ppi->tpl_sb_rdmult_scaling_factors = NULL; TplParams *const tpl_data = &ppi->tpl_data; aom_free(tpl_data->txfm_stats_list); for (int frame = 0; frame < MAX_LAG_BUFFERS; ++frame) { aom_free(tpl_data->tpl_stats_pool[frame]); aom_free_frame_buffer(&tpl_data->tpl_rec_pool[frame]); tpl_data->tpl_stats_pool[frame] = NULL; } #if !CONFIG_REALTIME_ONLY av1_tpl_dealloc(&tpl_data->tpl_mt_sync); #endif av1_terminate_workers(ppi); free_thread_data(ppi); aom_free(ppi->p_mt_info.tile_thr_data); ppi->p_mt_info.tile_thr_data = NULL; aom_free(ppi->p_mt_info.workers); ppi->p_mt_info.workers = NULL; ppi->p_mt_info.num_workers = 0; aom_free(ppi); } void av1_remove_compressor(AV1_COMP *cpi) { if (!cpi) return; #if CONFIG_RATECTRL_LOG if (cpi->oxcf.pass == 3) { rc_log_show(&cpi->rc_log); } #endif // CONFIG_RATECTRL_LOG AV1_COMMON *cm = &cpi->common; if (cm->current_frame.frame_number > 0) { #if CONFIG_SPEED_STATS if (!is_stat_generation_stage(cpi)) { fprintf(stdout, "tx_search_count = %d\n", cpi->tx_search_count); } #endif // CONFIG_SPEED_STATS #if CONFIG_COLLECT_PARTITION_STATS == 2 if (!is_stat_generation_stage(cpi)) { av1_print_fr_partition_timing_stats(&cpi->partition_stats, "fr_part_timing_data.csv"); } #endif } #if CONFIG_AV1_TEMPORAL_DENOISING av1_denoiser_free(&(cpi->denoiser)); #endif if (cm->error) { // Help detect use after free of the error detail string. memset(cm->error->detail, 'A', sizeof(cm->error->detail) - 1); cm->error->detail[sizeof(cm->error->detail) - 1] = '\0'; aom_free(cm->error); } aom_free(cpi->td.tctx); MultiThreadInfo *const mt_info = &cpi->mt_info; #if CONFIG_MULTITHREAD pthread_mutex_t *const enc_row_mt_mutex_ = mt_info->enc_row_mt.mutex_; pthread_cond_t *const enc_row_mt_cond_ = mt_info->enc_row_mt.cond_; pthread_mutex_t *const gm_mt_mutex_ = mt_info->gm_sync.mutex_; pthread_mutex_t *const tpl_error_mutex_ = mt_info->tpl_row_mt.mutex_; pthread_mutex_t *const pack_bs_mt_mutex_ = mt_info->pack_bs_sync.mutex_; if (enc_row_mt_mutex_ != NULL) { pthread_mutex_destroy(enc_row_mt_mutex_); aom_free(enc_row_mt_mutex_); } if (enc_row_mt_cond_ != NULL) { pthread_cond_destroy(enc_row_mt_cond_); aom_free(enc_row_mt_cond_); } if (gm_mt_mutex_ != NULL) { pthread_mutex_destroy(gm_mt_mutex_); aom_free(gm_mt_mutex_); } if (tpl_error_mutex_ != NULL) { pthread_mutex_destroy(tpl_error_mutex_); aom_free(tpl_error_mutex_); } if (pack_bs_mt_mutex_ != NULL) { pthread_mutex_destroy(pack_bs_mt_mutex_); aom_free(pack_bs_mt_mutex_); } #endif av1_row_mt_mem_dealloc(cpi); if (mt_info->num_workers > 1) { av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync); av1_loop_filter_dealloc(&mt_info->lf_row_sync); av1_cdef_mt_dealloc(&mt_info->cdef_sync); #if !CONFIG_REALTIME_ONLY av1_loop_restoration_dealloc(&mt_info->lr_row_sync); av1_tf_mt_dealloc(&mt_info->tf_sync); #endif } av1_free_thirdpass_ctx(cpi->third_pass_ctx); av1_close_second_pass_log(cpi); dealloc_compressor_data(cpi); av1_ext_part_delete(&cpi->ext_part_controller); av1_remove_common(cm); aom_free(cpi); #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #ifdef OUTPUT_YUV_DENOISED fclose(yuv_denoised_file); #endif } static void generate_psnr_packet(AV1_COMP *cpi) { struct aom_codec_cx_pkt pkt; int i; PSNR_STATS psnr; #if CONFIG_AV1_HIGHBITDEPTH const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; aom_calc_highbd_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr, bit_depth, in_bit_depth); #else aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); #endif for (i = 0; i < 4; ++i) { pkt.data.psnr.samples[i] = psnr.samples[i]; pkt.data.psnr.sse[i] = psnr.sse[i]; pkt.data.psnr.psnr[i] = psnr.psnr[i]; } #if CONFIG_AV1_HIGHBITDEPTH if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) && (in_bit_depth < bit_depth)) { for (i = 0; i < 4; ++i) { pkt.data.psnr.samples_hbd[i] = psnr.samples_hbd[i]; pkt.data.psnr.sse_hbd[i] = psnr.sse_hbd[i]; pkt.data.psnr.psnr_hbd[i] = psnr.psnr_hbd[i]; } } #endif pkt.kind = AOM_CODEC_PSNR_PKT; aom_codec_pkt_list_add(cpi->ppi->output_pkt_list, &pkt); } int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags) { if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1; *ext_ref_frame_flags = ref_frame_flags; return 0; } int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); if (cfg) { aom_yv12_copy_frame(cfg, sd, num_planes); return 0; } else { return -1; } } int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); if (cfg) { aom_yv12_copy_frame(sd, cfg, num_planes); return 0; } else { return -1; } } #ifdef OUTPUT_YUV_REC void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) { uint8_t *src = s->y_buffer; int h = cm->height; if (yuv_rec_file == NULL) return; if (s->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); do { fwrite(src16, s->y_width, 2, yuv_rec_file); src16 += s->y_stride; } while (--h); src16 = CONVERT_TO_SHORTPTR(s->u_buffer); h = s->uv_height; do { fwrite(src16, s->uv_width, 2, yuv_rec_file); src16 += s->uv_stride; } while (--h); src16 = CONVERT_TO_SHORTPTR(s->v_buffer); h = s->uv_height; do { fwrite(src16, s->uv_width, 2, yuv_rec_file); src16 += s->uv_stride; } while (--h); fflush(yuv_rec_file); return; } do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); fflush(yuv_rec_file); } #endif // OUTPUT_YUV_REC void av1_set_mv_search_params(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params; const int max_mv_def = AOMMAX(cm->width, cm->height); // Default based on max resolution. mv_search_params->mv_step_param = av1_init_search_range(max_mv_def); if (cpi->sf.mv_sf.auto_mv_step_size) { if (frame_is_intra_only(cm)) { // Initialize max_mv_magnitude for use in the first INTER frame // after a key/intra-only frame. mv_search_params->max_mv_magnitude = max_mv_def; } else { // Use adaptive mv steps based on previous frame stats for show frames and // internal arfs. FRAME_UPDATE_TYPE cur_update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; int use_auto_mv_step = (cm->show_frame || cur_update_type == INTNL_ARF_UPDATE) && mv_search_params->max_mv_magnitude != -1 && cpi->sf.mv_sf.auto_mv_step_size >= 2; if (use_auto_mv_step) { // Allow mv_steps to correspond to twice the max mv magnitude found // in the previous frame, capped by the default max_mv_magnitude based // on resolution. mv_search_params->mv_step_param = av1_init_search_range( AOMMIN(max_mv_def, 2 * mv_search_params->max_mv_magnitude)); } // Reset max_mv_magnitude based on update flag. if (cpi->do_frame_data_update) mv_search_params->max_mv_magnitude = -1; } } } void av1_set_screen_content_options(AV1_COMP *cpi, FeatureFlags *features) { const AV1_COMMON *const cm = &cpi->common; const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; if (cm->seq_params->force_screen_content_tools != 2) { features->allow_screen_content_tools = features->allow_intrabc = cm->seq_params->force_screen_content_tools; return; } if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { features->allow_screen_content_tools = 1; features->allow_intrabc = cpi->oxcf.mode == REALTIME ? 0 : 1; cpi->is_screen_content_type = 1; cpi->use_screen_content_tools = 1; return; } if (cpi->oxcf.mode == REALTIME) { features->allow_screen_content_tools = features->allow_intrabc = 0; return; } // Screen content tools are not evaluated in non-RD encoding mode unless // content type is not set explicitly, i.e., when // cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN, use_nonrd_pick_mode = 1 // and hybrid_intra_pickmode = 0. Hence, screen content detection is // disabled. if (cpi->sf.rt_sf.use_nonrd_pick_mode && !cpi->sf.rt_sf.hybrid_intra_pickmode) { features->allow_screen_content_tools = features->allow_intrabc = 0; return; } // Estimate if the source frame is screen content, based on the portion of // blocks that have few luma colors. const uint8_t *src = cpi->unfiltered_source->y_buffer; assert(src != NULL); const int use_hbd = cpi->unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH; const int stride = cpi->unfiltered_source->y_stride; const int width = cpi->unfiltered_source->y_width; const int height = cpi->unfiltered_source->y_height; const int64_t area = (int64_t)width * height; const int bd = cm->seq_params->bit_depth; const int blk_w = 16; const int blk_h = 16; // These threshold values are selected experimentally. const int color_thresh = 4; const unsigned int var_thresh = 0; // Counts of blocks with no more than color_thresh colors. int64_t counts_1 = 0; // Counts of blocks with no more than color_thresh colors and variance larger // than var_thresh. int64_t counts_2 = 0; for (int r = 0; r + blk_h <= height; r += blk_h) { for (int c = 0; c + blk_w <= width; c += blk_w) { int count_buf[1 << 8]; // Maximum (1 << 8) bins for hbd path. const uint8_t *const this_src = src + r * stride + c; int n_colors; if (use_hbd) av1_count_colors_highbd(this_src, stride, blk_w, blk_h, bd, NULL, count_buf, &n_colors, NULL); else av1_count_colors(this_src, stride, blk_w, blk_h, count_buf, &n_colors); if (n_colors > 1 && n_colors <= color_thresh) { ++counts_1; struct buf_2d buf; buf.stride = stride; buf.buf = (uint8_t *)this_src; const unsigned int var = av1_get_perpixel_variance( cpi, xd, &buf, BLOCK_16X16, AOM_PLANE_Y, use_hbd); if (var > var_thresh) ++counts_2; } } } // The threshold values are selected experimentally. features->allow_screen_content_tools = counts_1 * blk_h * blk_w * 10 > area; // IntraBC would force loop filters off, so we use more strict rules that also // requires that the block has high variance. features->allow_intrabc = features->allow_screen_content_tools && counts_2 * blk_h * blk_w * 12 > area; cpi->use_screen_content_tools = features->allow_screen_content_tools; cpi->is_screen_content_type = features->allow_intrabc || (counts_1 * blk_h * blk_w * 10 > area * 4 && counts_2 * blk_h * blk_w * 30 > area); } static void init_motion_estimation(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params; const int aligned_width = (cm->width + 7) & ~7; const int y_stride = aom_calc_y_stride(aligned_width, cpi->oxcf.border_in_pixels); const int y_stride_src = ((cpi->oxcf.frm_dim_cfg.width != cm->width || cpi->oxcf.frm_dim_cfg.height != cm->height) || av1_superres_scaled(cm)) ? y_stride : cpi->ppi->lookahead->buf->img.y_stride; int fpf_y_stride = cm->cur_frame != NULL ? cm->cur_frame->buf.y_stride : y_stride; // Update if search_site_cfg is uninitialized or the current frame has a new // stride const int should_update = !mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride || !mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][DIAMOND].stride || (y_stride != mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride); if (!should_update) { return; } // Initialization of search_site_cfg for NUM_DISTINCT_SEARCH_METHODS. for (SEARCH_METHODS i = DIAMOND; i < NUM_DISTINCT_SEARCH_METHODS; i++) { const int level = ((i == NSTEP_8PT) || (i == CLAMPED_DIAMOND)) ? 1 : 0; av1_init_motion_compensation[i]( &mv_search_params->search_site_cfg[SS_CFG_SRC][i], y_stride, level); av1_init_motion_compensation[i]( &mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][i], y_stride_src, level); } // First pass search site config initialization. av1_init_motion_fpf(&mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND], fpf_y_stride); for (SEARCH_METHODS i = NSTEP; i < NUM_DISTINCT_SEARCH_METHODS; i++) { memcpy(&mv_search_params->search_site_cfg[SS_CFG_FPF][i], &mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND], sizeof(search_site_config)); } } static void init_ref_frame_bufs(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int i; if (cm->cur_frame) { cm->cur_frame->ref_count--; cm->cur_frame = NULL; } for (i = 0; i < REF_FRAMES; ++i) { if (cm->ref_frame_map[i]) { cm->ref_frame_map[i]->ref_count--; cm->ref_frame_map[i] = NULL; } } #ifndef NDEBUG BufferPool *const pool = cm->buffer_pool; for (i = 0; i < pool->num_frame_bufs; ++i) { assert(pool->frame_bufs[i].ref_count == 0); } #endif } // TODO(chengchen): consider renaming this function as it is necessary // for the encoder to setup critical parameters, and it does not // deal with initial width any longer. aom_codec_err_t av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth, int subsampling_x, int subsampling_y) { AV1_COMMON *const cm = &cpi->common; SequenceHeader *const seq_params = cm->seq_params; if (!cpi->frame_size_related_setup_done || seq_params->use_highbitdepth != use_highbitdepth || seq_params->subsampling_x != subsampling_x || seq_params->subsampling_y != subsampling_y) { seq_params->subsampling_x = subsampling_x; seq_params->subsampling_y = subsampling_y; seq_params->use_highbitdepth = use_highbitdepth; av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed); av1_set_speed_features_framesize_dependent(cpi, cpi->oxcf.speed); if (!is_stat_generation_stage(cpi)) { #if !CONFIG_REALTIME_ONLY if (!av1_tf_info_alloc(&cpi->ppi->tf_info, cpi)) return AOM_CODEC_MEM_ERROR; #endif // !CONFIG_REALTIME_ONLY } init_ref_frame_bufs(cpi); init_motion_estimation(cpi); // TODO(agrange) This can be removed. cpi->initial_mbs = cm->mi_params.MBs; cpi->frame_size_related_setup_done = true; } return AOM_CODEC_OK; } #if CONFIG_AV1_TEMPORAL_DENOISING static void setup_denoiser_buffer(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; if (cpi->oxcf.noise_sensitivity > 0 && !cpi->denoiser.frame_buffer_initialized) { if (av1_denoiser_alloc( cm, &cpi->svc, &cpi->denoiser, cpi->ppi->use_svc, cpi->oxcf.noise_sensitivity, cm->width, cm->height, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate denoiser"); } } #endif // Returns 1 if the assigned width or height was <= 0. static int set_size_literal(AV1_COMP *cpi, int width, int height) { AV1_COMMON *cm = &cpi->common; aom_codec_err_t err = av1_check_initial_width( cpi, cm->seq_params->use_highbitdepth, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y); if (err != AOM_CODEC_OK) { aom_internal_error(cm->error, err, "av1_check_initial_width() failed"); } if (width <= 0 || height <= 0) return 1; cm->width = width; cm->height = height; #if CONFIG_AV1_TEMPORAL_DENOISING setup_denoiser_buffer(cpi); #endif if (cm->width > cpi->data_alloc_width || cm->height > cpi->data_alloc_height) { av1_free_context_buffers(cm); av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf); av1_free_sms_tree(&cpi->td); av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm)); cpi->td.firstpass_ctx = NULL; alloc_compressor_data(cpi); realloc_segmentation_maps(cpi); cpi->data_alloc_width = cm->width; cpi->data_alloc_height = cm->height; cpi->frame_size_related_setup_done = false; } alloc_mb_mode_info_buffers(cpi); av1_update_frame_size(cpi); return 0; } void av1_set_frame_size(AV1_COMP *cpi, int width, int height) { AV1_COMMON *const cm = &cpi->common; const SequenceHeader *const seq_params = cm->seq_params; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; int ref_frame; if (width != cm->width || height != cm->height) { // There has been a change in the encoded frame size set_size_literal(cpi, width, height); // Recalculate 'all_lossless' in case super-resolution was (un)selected. cm->features.all_lossless = cm->features.coded_lossless && !av1_superres_scaled(cm); av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); #if CONFIG_AV1_TEMPORAL_DENOISING // Reset the denoiser on the resized frame. if (cpi->oxcf.noise_sensitivity > 0) { av1_denoiser_free(&(cpi->denoiser)); setup_denoiser_buffer(cpi); } #endif } if (is_stat_consumption_stage(cpi)) { av1_set_target_rate(cpi, cm->width, cm->height); } alloc_frame_mvs(cm, cm->cur_frame); // Allocate above context buffers CommonContexts *const above_contexts = &cm->above_contexts; if (above_contexts->num_planes < av1_num_planes(cm) || above_contexts->num_mi_cols < cm->mi_params.mi_cols || above_contexts->num_tile_rows < cm->tiles.rows) { av1_free_above_context_buffers(above_contexts); if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, cm->mi_params.mi_cols, av1_num_planes(cm))) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } AV1EncoderConfig *oxcf = &cpi->oxcf; oxcf->border_in_pixels = av1_get_enc_border_size( av1_is_resize_needed(oxcf), oxcf->kf_cfg.key_freq_max == 0, cm->seq_params->sb_size); // Reset the frame pointers to the current frame size. if (aom_realloc_frame_buffer( &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL, cpi->image_pyramid_levels, 0)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); if (!is_stat_generation_stage(cpi)) av1_init_cdef_worker(cpi); #if !CONFIG_REALTIME_ONLY if (is_restoration_used(cm)) { for (int i = 0; i < num_planes; ++i) cm->rst_info[i].frame_restoration_type = RESTORE_NONE; const bool is_sgr_enabled = !cpi->sf.lpf_sf.disable_sgr_filter; av1_alloc_restoration_buffers(cm, is_sgr_enabled); // Store the allocated restoration buffers in MT object. if (cpi->ppi->p_mt_info.num_workers > 1) { av1_init_lr_mt_buffers(cpi); } } #endif init_motion_estimation(cpi); int has_valid_ref_frame = 0; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); if (buf != NULL) { struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame); av1_setup_scale_factors_for_frame(sf, buf->buf.y_crop_width, buf->buf.y_crop_height, cm->width, cm->height); has_valid_ref_frame |= av1_is_valid_scale(sf); if (av1_is_scaled(sf)) aom_extend_frame_borders(&buf->buf, num_planes); } } if (!frame_is_intra_only(cm) && !has_valid_ref_frame) { aom_internal_error( cm->error, AOM_CODEC_CORRUPT_FRAME, "Can't find at least one reference frame with valid size"); } av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height, cm->width, cm->height); set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); } static INLINE int extend_borders_mt(const AV1_COMP *cpi, MULTI_THREADED_MODULES stage, int plane) { const AV1_COMMON *const cm = &cpi->common; if (cpi->mt_info.num_mod_workers[stage] < 2) return 0; switch (stage) { // TODO(deepa.kg@ittiam.com): When cdef and loop-restoration are disabled, // multi-thread frame border extension along with loop filter frame. // As loop-filtering of a superblock row modifies the pixels of the // above superblock row, border extension requires that loop filtering // of the current and above superblock row is complete. case MOD_LPF: return 0; case MOD_CDEF: return is_cdef_used(cm) && !cpi->ppi->rtc_ref.non_reference_frame && !is_restoration_used(cm) && !av1_superres_scaled(cm); case MOD_LR: return is_restoration_used(cm) && (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE); default: assert(0); } return 0; } /*!\brief Select and apply cdef filters and switchable restoration filters * * \ingroup high_level_algo */ static void cdef_restoration_frame(AV1_COMP *cpi, AV1_COMMON *cm, MACROBLOCKD *xd, int use_restoration, int use_cdef, unsigned int skip_apply_postproc_filters) { #if !CONFIG_REALTIME_ONLY if (use_restoration) av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 0); #else (void)use_restoration; #endif if (use_cdef) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, cdef_time); #endif const int num_workers = cpi->mt_info.num_mod_workers[MOD_CDEF]; // Find CDEF parameters av1_cdef_search(cpi); // Apply the filter if ((skip_apply_postproc_filters & SKIP_APPLY_CDEF) == 0) { assert(!cpi->ppi->rtc_ref.non_reference_frame); if (num_workers > 1) { // Extension of frame borders is multi-threaded along with cdef. const int do_extend_border = extend_borders_mt(cpi, MOD_CDEF, /* plane */ 0); av1_cdef_frame_mt(cm, xd, cpi->mt_info.cdef_worker, cpi->mt_info.workers, &cpi->mt_info.cdef_sync, num_workers, av1_cdef_init_fb_row_mt, do_extend_border); } else { av1_cdef_frame(&cm->cur_frame->buf, cm, xd, av1_cdef_init_fb_row); } } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, cdef_time); #endif } const int use_superres = av1_superres_scaled(cm); if (use_superres) { if ((skip_apply_postproc_filters & SKIP_APPLY_SUPERRES) == 0) { av1_superres_post_encode(cpi); } } #if !CONFIG_REALTIME_ONLY #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, loop_restoration_time); #endif if (use_restoration) { MultiThreadInfo *const mt_info = &cpi->mt_info; const int num_workers = mt_info->num_mod_workers[MOD_LR]; av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 1); av1_pick_filter_restoration(cpi->source, cpi); if ((skip_apply_postproc_filters & SKIP_APPLY_RESTORATION) == 0 && (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || cm->rst_info[1].frame_restoration_type != RESTORE_NONE || cm->rst_info[2].frame_restoration_type != RESTORE_NONE)) { if (num_workers > 1) { // Extension of frame borders is multi-threaded along with loop // restoration filter. const int do_extend_border = 1; av1_loop_restoration_filter_frame_mt( &cm->cur_frame->buf, cm, 0, mt_info->workers, num_workers, &mt_info->lr_row_sync, &cpi->lr_ctxt, do_extend_border); } else { av1_loop_restoration_filter_frame(&cm->cur_frame->buf, cm, 0, &cpi->lr_ctxt); } } } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, loop_restoration_time); #endif #endif // !CONFIG_REALTIME_ONLY } static void extend_frame_borders(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; // TODO(debargha): Fix mv search range on encoder side for (int plane = 0; plane < av1_num_planes(cm); ++plane) { const bool extend_border_done = extend_borders_mt(cpi, MOD_CDEF, plane) || extend_borders_mt(cpi, MOD_LR, plane); if (!extend_border_done) { const YV12_BUFFER_CONFIG *const ybf = &cm->cur_frame->buf; aom_extend_frame_borders_plane_row(ybf, plane, 0, ybf->crop_heights[plane > 0]); } } } /*!\brief Select and apply deblocking filters, cdef filters, and restoration * filters. * * \ingroup high_level_algo */ static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) { MultiThreadInfo *const mt_info = &cpi->mt_info; const int num_workers = mt_info->num_mod_workers[MOD_LPF]; const int num_planes = av1_num_planes(cm); MACROBLOCKD *xd = &cpi->td.mb.e_mbd; cpi->td.mb.rdmult = cpi->rd.RDMULT; assert(IMPLIES(is_lossless_requested(&cpi->oxcf.rc_cfg), cm->features.coded_lossless && cm->features.all_lossless)); const int use_loopfilter = is_loopfilter_used(cm) && !cpi->mt_info.pipeline_lpf_mt_with_enc; const int use_cdef = is_cdef_used(cm); const int use_superres = av1_superres_scaled(cm); const int use_restoration = is_restoration_used(cm); const unsigned int skip_apply_postproc_filters = derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef, use_superres, use_restoration); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, loop_filter_time); #endif if (use_loopfilter) { av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_sf.lpf_pick); struct loopfilter *lf = &cm->lf; if ((lf->filter_level[0] || lf->filter_level[1]) && (skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0) { assert(!cpi->ppi->rtc_ref.non_reference_frame); // lpf_opt_level = 1 : Enables dual/quad loop-filtering. // lpf_opt_level is set to 1 if transform size search depth in inter // blocks is limited to one as quad loop filtering assumes that all the // transform blocks within a 16x8/8x16/16x16 prediction block are of the // same size. lpf_opt_level = 2 : Filters both chroma planes together, in // addition to enabling dual/quad loop-filtering. This is enabled when lpf // pick method is LPF_PICK_FROM_Q as u and v plane filter levels are // equal. int lpf_opt_level = get_lpf_opt_level(&cpi->sf); av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, xd, 0, num_planes, 0, mt_info->workers, num_workers, &mt_info->lf_row_sync, lpf_opt_level); } } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, loop_filter_time); #endif cdef_restoration_frame(cpi, cm, xd, use_restoration, use_cdef, skip_apply_postproc_filters); } static void update_motion_stat(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; RATE_CONTROL *const rc = &cpi->rc; SVC *const svc = &cpi->svc; const int avg_cnt_zeromv = 100 * cpi->rc.cnt_zeromv / (mi_params->mi_rows * mi_params->mi_cols); if (!cpi->ppi->use_svc || (cpi->ppi->use_svc && !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) { rc->avg_frame_low_motion = (rc->avg_frame_low_motion == 0) ? avg_cnt_zeromv : (3 * rc->avg_frame_low_motion + avg_cnt_zeromv) / 4; // For SVC: set avg_frame_low_motion (only computed on top spatial layer) // to all lower spatial layers. if (cpi->ppi->use_svc && svc->spatial_layer_id == svc->number_spatial_layers - 1) { for (int i = 0; i < svc->number_spatial_layers - 1; ++i) { const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id, svc->number_temporal_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; lrc->avg_frame_low_motion = rc->avg_frame_low_motion; } } } } /*!\brief Encode a frame without the recode loop, usually used in one-pass * encoding and realtime coding. * * \ingroup high_level_algo * * \param[in] cpi Top-level encoder structure * * \return Returns a value to indicate if the encoding is done successfully. * \retval #AOM_CODEC_OK * \retval #AOM_CODEC_ERROR */ static int encode_without_recode(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const QuantizationCfg *const q_cfg = &cpi->oxcf.q_cfg; SVC *const svc = &cpi->svc; const int resize_pending = is_frame_resize_pending(cpi); int top_index = 0, bottom_index = 0, q = 0; YV12_BUFFER_CONFIG *unscaled = cpi->unscaled_source; InterpFilter filter_scaler = cpi->ppi->use_svc ? svc->downsample_filter_type[svc->spatial_layer_id] : EIGHTTAP_SMOOTH; int phase_scaler = cpi->ppi->use_svc ? svc->downsample_filter_phase[svc->spatial_layer_id] : 0; set_size_independent_vars(cpi); av1_setup_frame_size(cpi); cm->prev_frame = get_primary_ref_frame_buf(cm); av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); av1_set_mv_search_params(cpi); if (cm->current_frame.frame_number == 0 && (cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) && cpi->svc.temporal_layer_id == 0) { const SequenceHeader *seq_params = cm->seq_params; if (aom_alloc_frame_buffer( &cpi->svc.source_last_TL0, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate buffer for source_last_TL0"); } } if (!cpi->ppi->use_svc) { phase_scaler = 8; // 2:1 scaling. if ((cm->width << 1) == unscaled->y_crop_width && (cm->height << 1) == unscaled->y_crop_height) { filter_scaler = BILINEAR; // For lower resolutions use eighttap_smooth. if (cm->width * cm->height <= 320 * 180) filter_scaler = EIGHTTAP_SMOOTH; } else if ((cm->width << 2) == unscaled->y_crop_width && (cm->height << 2) == unscaled->y_crop_height) { // 4:1 scaling. filter_scaler = EIGHTTAP_SMOOTH; } else if ((cm->width << 2) == 3 * unscaled->y_crop_width && (cm->height << 2) == 3 * unscaled->y_crop_height) { // 4:3 scaling. filter_scaler = EIGHTTAP_REGULAR; } } allocate_gradient_info_for_hog(cpi); allocate_src_var_of_4x4_sub_block_buf(cpi); const SPEED_FEATURES *sf = &cpi->sf; if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) variance_partition_alloc(cpi); if (cm->current_frame.frame_type == KEY_FRAME || ((sf->inter_sf.extra_prune_warped && cpi->refresh_frame.golden_frame))) copy_frame_prob_info(cpi); #if CONFIG_COLLECT_COMPONENT_TIMING printf("\n Encoding a frame: \n"); #endif #if CONFIG_TUNE_BUTTERAUGLI if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { av1_setup_butteraugli_rdmult(cpi); } #endif cpi->source = av1_realloc_and_scale_if_required( cm, unscaled, &cpi->scaled_source, filter_scaler, phase_scaler, true, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); if (frame_is_intra_only(cm) || resize_pending != 0) { const int current_size = (cm->mi_params.mi_rows * cm->mi_params.mi_cols) >> 2; if (cpi->consec_zero_mv && (cpi->consec_zero_mv_alloc_size < current_size)) { aom_free(cpi->consec_zero_mv); cpi->consec_zero_mv_alloc_size = 0; CHECK_MEM_ERROR(cm, cpi->consec_zero_mv, aom_malloc(current_size * sizeof(*cpi->consec_zero_mv))); cpi->consec_zero_mv_alloc_size = current_size; } assert(cpi->consec_zero_mv != NULL); memset(cpi->consec_zero_mv, 0, current_size * sizeof(*cpi->consec_zero_mv)); } if (cpi->scaled_last_source_available) { cpi->last_source = &cpi->scaled_last_source; cpi->scaled_last_source_available = 0; } else if (cpi->unscaled_last_source != NULL) { cpi->last_source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_last_source, &cpi->scaled_last_source, filter_scaler, phase_scaler, true, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); } if (cpi->sf.rt_sf.use_temporal_noise_estimate) { av1_update_noise_estimate(cpi); } #if CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && cpi->ppi->use_svc) av1_denoiser_reset_on_first_frame(cpi); #endif // For 1 spatial layer encoding: if the (non-LAST) reference has different // resolution from the source then disable that reference. This is to avoid // significant increase in encode time from scaling the references in // av1_scale_references. Note GOLDEN is forced to update on the (first/tigger) // resized frame and ALTREF will be refreshed ~4 frames later, so both // references become available again after few frames. // For superres: don't disable golden reference. if (svc->number_spatial_layers == 1) { if (!cpi->oxcf.superres_cfg.enable_superres) { if (cpi->ref_frame_flags & av1_ref_frame_flag_list[GOLDEN_FRAME]) { const YV12_BUFFER_CONFIG *const ref = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); if (ref == NULL || ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { cpi->ref_frame_flags ^= AOM_GOLD_FLAG; } } } if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]) { const YV12_BUFFER_CONFIG *const ref = get_ref_frame_yv12_buf(cm, ALTREF_FRAME); if (ref == NULL || ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { cpi->ref_frame_flags ^= AOM_ALT_FLAG; } } } int scale_references = 0; #if CONFIG_FPMT_TEST scale_references = cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0; #endif // CONFIG_FPMT_TEST if (scale_references || cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { if (!frame_is_intra_only(cm)) { av1_scale_references(cpi, filter_scaler, phase_scaler, 1); } } av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed); av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_set_variance_partition_thresholds(cpi, q, 0); av1_setup_frame(cpi); // Check if this high_source_sad (scene/slide change) frame should be // encoded at high/max QP, and if so, set the q and adjust some rate // control parameters. if (cpi->sf.rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ && cpi->rc.high_source_sad) { if (av1_encodedframe_overshoot_cbr(cpi, &q)) { av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed); av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_set_variance_partition_thresholds(cpi, q, 0); if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || cm->features.primary_ref_frame == PRIMARY_REF_NONE) av1_setup_frame(cpi); } } if (q_cfg->aq_mode == CYCLIC_REFRESH_AQ) { suppress_active_map(cpi); av1_cyclic_refresh_setup(cpi); } av1_apply_active_map(cpi); if (cm->seg.enabled) { if (!cm->seg.update_data && cm->prev_frame) { segfeatures_copy(&cm->seg, &cm->prev_frame->seg); cm->seg.enabled = cm->prev_frame->seg.enabled; } else { av1_calculate_segdata(&cm->seg); } } else { memset(&cm->seg, 0, sizeof(cm->seg)); } segfeatures_copy(&cm->cur_frame->seg, &cm->seg); cm->cur_frame->seg.enabled = cm->seg.enabled; // This is for rtc temporal filtering case. if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf && cm->current_frame.frame_type != KEY_FRAME) { const SequenceHeader *seq_params = cm->seq_params; if (cpi->orig_source.buffer_alloc_sz == 0 || cpi->last_source->y_width != cpi->source->y_width || cpi->last_source->y_height != cpi->source->y_height) { // Allocate a source buffer to store the true source for psnr calculation. if (aom_alloc_frame_buffer( &cpi->orig_source, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate scaled buffer"); } aom_yv12_copy_y(cpi->source, &cpi->orig_source); aom_yv12_copy_u(cpi->source, &cpi->orig_source); aom_yv12_copy_v(cpi->source, &cpi->orig_source); } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_encode_frame_time); #endif // Set the motion vector precision based on mv stats from the last coded // frame. if (!frame_is_intra_only(cm)) av1_pick_and_set_high_precision_mv(cpi, q); // transform / motion compensation build reconstruction frame av1_encode_frame(cpi); if (!cpi->rc.rtc_external_ratectrl && !frame_is_intra_only(cm)) update_motion_stat(cpi); // Adjust the refresh of the golden (longer-term) reference based on QP // selected for this frame. This is for CBR real-time mode, and only // for single layer without usage of the set_ref_frame_config (so // reference structure for 1 layer is set internally). if (!frame_is_intra_only(cm) && cpi->oxcf.rc_cfg.mode == AOM_CBR && cpi->oxcf.mode == REALTIME && svc->number_spatial_layers == 1 && svc->number_temporal_layers == 1 && !cpi->rc.rtc_external_ratectrl && !cpi->ppi->rtc_ref.set_ref_frame_config && sf->rt_sf.gf_refresh_based_on_qp) av1_adjust_gf_refresh_qp_one_pass_rt(cpi); // For non-svc: if scaling is required, copy scaled_source // into scaled_last_source. if (cm->current_frame.frame_number > 1 && !cpi->ppi->use_svc && cpi->scaled_source.y_buffer != NULL && cpi->scaled_last_source.y_buffer != NULL && cpi->scaled_source.y_crop_width == cpi->scaled_last_source.y_crop_width && cpi->scaled_source.y_crop_height == cpi->scaled_last_source.y_crop_height && (cm->width != cpi->unscaled_source->y_crop_width || cm->height != cpi->unscaled_source->y_crop_height)) { cpi->scaled_last_source_available = 1; aom_yv12_copy_y(&cpi->scaled_source, &cpi->scaled_last_source); aom_yv12_copy_u(&cpi->scaled_source, &cpi->scaled_last_source); aom_yv12_copy_v(&cpi->scaled_source, &cpi->scaled_last_source); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_encode_frame_time); #endif #if CONFIG_INTERNAL_STATS ++cpi->frame_recode_hits; #endif return AOM_CODEC_OK; } #if !CONFIG_REALTIME_ONLY /*!\brief Recode loop for encoding one frame. the purpose of encoding one frame * for multiple times can be approaching a target bitrate or adjusting the usage * of global motions. * * \ingroup high_level_algo * * \param[in] cpi Top-level encoder structure * \param[in] size Bitstream size * \param[in] dest Bitstream output * * \return Returns a value to indicate if the encoding is done successfully. * \retval #AOM_CODEC_OK * \retval -1 * \retval #AOM_CODEC_ERROR */ static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; GlobalMotionInfo *const gm_info = &cpi->gm_info; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const QuantizationCfg *const q_cfg = &oxcf->q_cfg; const int allow_recode = (cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE); // Must allow recode if minimum compression ratio is set. assert(IMPLIES(oxcf->rc_cfg.min_cr > 0, allow_recode)); set_size_independent_vars(cpi); if (is_stat_consumption_stage_twopass(cpi) && cpi->sf.interp_sf.adaptive_interp_filter_search) cpi->interp_search_flags.interp_filter_search_mask = av1_setup_interp_filter_search_mask(cpi); av1_setup_frame_size(cpi); if (av1_superres_in_recode_allowed(cpi) && cpi->superres_mode != AOM_SUPERRES_NONE && cm->superres_scale_denominator == SCALE_NUMERATOR) { // Superres mode is currently enabled, but the denominator selected will // disable superres. So no need to continue, as we will go through another // recode loop for full-resolution after this anyway. return -1; } int top_index = 0, bottom_index = 0; int q = 0, q_low = 0, q_high = 0; av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); q_low = bottom_index; q_high = top_index; av1_set_mv_search_params(cpi); allocate_gradient_info_for_hog(cpi); allocate_src_var_of_4x4_sub_block_buf(cpi); if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) variance_partition_alloc(cpi); if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi); #if CONFIG_COLLECT_COMPONENT_TIMING printf("\n Encoding a frame: \n"); #endif #if !CONFIG_RD_COMMAND // Determine whether to use screen content tools using two fast encoding. if (!cpi->sf.hl_sf.disable_extra_sc_testing && !cpi->use_ducky_encode) av1_determine_sc_tools_with_encoding(cpi, q); #endif // !CONFIG_RD_COMMAND #if CONFIG_TUNE_VMAF if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { av1_vmaf_neg_preprocessing(cpi, cpi->unscaled_source); } #endif #if CONFIG_TUNE_BUTTERAUGLI cpi->butteraugli_info.recon_set = false; int original_q = 0; #endif cpi->num_frame_recode = 0; // Loop variables int loop = 0; int loop_count = 0; int overshoot_seen = 0; int undershoot_seen = 0; int low_cr_seen = 0; int last_loop_allow_hp = 0; do { loop = 0; int do_mv_stats_collection = 1; // if frame was scaled calculate global_motion_search again if already // done if (loop_count > 0 && cpi->source && gm_info->search_done) { if (cpi->source->y_crop_width != cm->width || cpi->source->y_crop_height != cm->height) { gm_info->search_done = 0; } } cpi->source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_source, &cpi->scaled_source, EIGHTTAP_REGULAR, 0, false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); #if CONFIG_TUNE_BUTTERAUGLI if (oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { if (loop_count == 0) { original_q = q; // TODO(sdeng): different q here does not make big difference. Use a // faster pass instead. q = 96; av1_setup_butteraugli_source(cpi); } else { q = original_q; } } #endif if (cpi->unscaled_last_source != NULL) { cpi->last_source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_last_source, &cpi->scaled_last_source, EIGHTTAP_REGULAR, 0, false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); } int scale_references = 0; #if CONFIG_FPMT_TEST scale_references = cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0; #endif // CONFIG_FPMT_TEST if (scale_references || cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { if (!frame_is_intra_only(cm)) { if (loop_count > 0) { release_scaled_references(cpi); } av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0); } } #if CONFIG_TUNE_VMAF if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) { cpi->vmaf_info.original_qindex = q; q = av1_get_vmaf_base_qindex(cpi, q); } #endif #if CONFIG_RD_COMMAND RD_COMMAND *rd_command = &cpi->rd_command; RD_OPTION option = rd_command->option_ls[rd_command->frame_index]; if (option == RD_OPTION_SET_Q || option == RD_OPTION_SET_Q_RDMULT) { q = rd_command->q_index_ls[rd_command->frame_index]; } #endif // CONFIG_RD_COMMAND #if CONFIG_BITRATE_ACCURACY #if CONFIG_THREE_PASS if (oxcf->pass == AOM_RC_THIRD_PASS && cpi->vbr_rc_info.ready == 1) { int frame_coding_idx = av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); if (frame_coding_idx < cpi->vbr_rc_info.total_frame_count) { q = cpi->vbr_rc_info.q_index_list[frame_coding_idx]; } else { // TODO(angiebird): Investigate why sometimes there is an extra frame // after the last GOP. q = cpi->vbr_rc_info.base_q_index; } } #else if (cpi->vbr_rc_info.q_index_list_ready) { q = cpi->vbr_rc_info.q_index_list[cpi->gf_frame_index]; } #endif // CONFIG_THREE_PASS #endif // CONFIG_BITRATE_ACCURACY #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY // TODO(angiebird): Move this into a function. if (oxcf->pass == AOM_RC_THIRD_PASS) { int frame_coding_idx = av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); double qstep_ratio = cpi->vbr_rc_info.qstep_ratio_list[frame_coding_idx]; FRAME_UPDATE_TYPE update_type = cpi->vbr_rc_info.update_type_list[frame_coding_idx]; rc_log_frame_encode_param(&cpi->rc_log, frame_coding_idx, qstep_ratio, q, update_type); } #endif // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY if (cpi->use_ducky_encode) { const DuckyEncodeFrameInfo *frame_info = &cpi->ducky_encode_info.frame_info; if (frame_info->qp_mode == DUCKY_ENCODE_FRAME_MODE_QINDEX) { q = frame_info->q_index; cm->delta_q_info.delta_q_present_flag = frame_info->delta_q_enabled; } } av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); av1_set_speed_features_qindex_dependent(cpi, oxcf->speed); av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_set_variance_partition_thresholds(cpi, q, 0); // printf("Frame %d/%d: q = %d, frame_type = %d superres_denom = %d\n", // cm->current_frame.frame_number, cm->show_frame, q, // cm->current_frame.frame_type, cm->superres_scale_denominator); if (loop_count == 0) { av1_setup_frame(cpi); } else if (get_primary_ref_frame_buf(cm) == NULL) { // Base q-index may have changed, so we need to assign proper default coef // probs before every iteration. av1_default_coef_probs(cm); av1_setup_frame_contexts(cm); } if (q_cfg->aq_mode == VARIANCE_AQ) { av1_vaq_frame_setup(cpi); } else if (q_cfg->aq_mode == COMPLEXITY_AQ) { av1_setup_in_frame_q_adj(cpi); } if (cm->seg.enabled) { if (!cm->seg.update_data && cm->prev_frame) { segfeatures_copy(&cm->seg, &cm->prev_frame->seg); cm->seg.enabled = cm->prev_frame->seg.enabled; } else { av1_calculate_segdata(&cm->seg); } } else { memset(&cm->seg, 0, sizeof(cm->seg)); } segfeatures_copy(&cm->cur_frame->seg, &cm->seg); cm->cur_frame->seg.enabled = cm->seg.enabled; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_encode_frame_time); #endif // Set the motion vector precision based on mv stats from the last coded // frame. if (!frame_is_intra_only(cm)) { av1_pick_and_set_high_precision_mv(cpi, q); // If the precision has changed during different iteration of the loop, // then we need to reset the global motion vectors if (loop_count > 0 && cm->features.allow_high_precision_mv != last_loop_allow_hp) { gm_info->search_done = 0; } last_loop_allow_hp = cm->features.allow_high_precision_mv; } // transform / motion compensation build reconstruction frame av1_encode_frame(cpi); // Disable mv_stats collection for parallel frames based on update flag. if (!cpi->do_frame_data_update) do_mv_stats_collection = 0; // Reset the mv_stats in case we are interrupted by an intraframe or an // overlay frame. if (cpi->mv_stats.valid && do_mv_stats_collection) av1_zero(cpi->mv_stats); // Gather the mv_stats for the next frame if (cpi->sf.hl_sf.high_precision_mv_usage == LAST_MV_DATA && av1_frame_allows_smart_mv(cpi) && do_mv_stats_collection) { av1_collect_mv_stats(cpi, q); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_encode_frame_time); #endif #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND const int do_dummy_pack = 1; #else // CONFIG_BITRATE_ACCURACY // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. const int do_dummy_pack = (cpi->sf.hl_sf.recode_loop >= ALLOW_RECODE_KFARFGF && oxcf->rc_cfg.mode != AOM_Q) || oxcf->rc_cfg.min_cr > 0; #endif // CONFIG_BITRATE_ACCURACY if (do_dummy_pack) { av1_finalize_encoded_frame(cpi); int largest_tile_id = 0; // Output from bitstream: unused here rc->coefficient_size = 0; if (av1_pack_bitstream(cpi, dest, size, &largest_tile_id) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } // bits used for this frame rc->projected_frame_size = (int)(*size) << 3; #if CONFIG_RD_COMMAND PSNR_STATS psnr; aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); printf("q %d rdmult %d rate %d dist %" PRIu64 "\n", q, cpi->rd.RDMULT, rc->projected_frame_size, psnr.sse[0]); ++rd_command->frame_index; if (rd_command->frame_index == rd_command->frame_count) { return AOM_CODEC_ERROR; } #endif // CONFIG_RD_COMMAND #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY if (oxcf->pass == AOM_RC_THIRD_PASS) { int frame_coding_idx = av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); rc_log_frame_entropy(&cpi->rc_log, frame_coding_idx, rc->projected_frame_size, rc->coefficient_size); } #endif // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY } #if CONFIG_TUNE_VMAF if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) { q = cpi->vmaf_info.original_qindex; } #endif if (allow_recode) { // Update q and decide whether to do a recode loop recode_loop_update_q(cpi, &loop, &q, &q_low, &q_high, top_index, bottom_index, &undershoot_seen, &overshoot_seen, &low_cr_seen, loop_count); } #if CONFIG_TUNE_BUTTERAUGLI if (loop_count == 0 && oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { loop = 1; av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.4); } #endif if (cpi->use_ducky_encode) { // Ducky encode currently does not support recode loop. loop = 0; } #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND loop = 0; // turn off recode loop when CONFIG_BITRATE_ACCURACY is on #endif // CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND if (loop) { ++loop_count; cpi->num_frame_recode = (cpi->num_frame_recode < (NUM_RECODES_PER_FRAME - 1)) ? (cpi->num_frame_recode + 1) : (NUM_RECODES_PER_FRAME - 1); #if CONFIG_INTERNAL_STATS ++cpi->frame_recode_hits; #endif } #if CONFIG_COLLECT_COMPONENT_TIMING if (loop) printf("\n Recoding:"); #endif } while (loop); return AOM_CODEC_OK; } #endif // !CONFIG_REALTIME_ONLY // TODO(jingning, paulwilkins): Set up high grain level to test // hardware decoders. Need to adapt the actual noise variance // according to the difference between reconstructed frame and the // source signal. static void set_grain_syn_params(AV1_COMMON *cm) { aom_film_grain_t *film_grain_params = &cm->film_grain_params; film_grain_params->apply_grain = 1; film_grain_params->update_parameters = 1; film_grain_params->random_seed = rand() & 0xffff; film_grain_params->num_y_points = 1; film_grain_params->scaling_points_y[0][0] = 128; film_grain_params->scaling_points_y[0][1] = 100; if (!cm->seq_params->monochrome) { film_grain_params->num_cb_points = 1; film_grain_params->scaling_points_cb[0][0] = 128; film_grain_params->scaling_points_cb[0][1] = 100; film_grain_params->num_cr_points = 1; film_grain_params->scaling_points_cr[0][0] = 128; film_grain_params->scaling_points_cr[0][1] = 100; } else { film_grain_params->num_cb_points = 0; film_grain_params->num_cr_points = 0; } film_grain_params->chroma_scaling_from_luma = 0; film_grain_params->scaling_shift = 1; film_grain_params->ar_coeff_lag = 0; film_grain_params->ar_coeff_shift = 1; film_grain_params->overlap_flag = 1; film_grain_params->grain_scale_shift = 0; } /*!\brief Recode loop or a single loop for encoding one frame, followed by * in-loop deblocking filters, CDEF filters, and restoration filters. * * \ingroup high_level_algo * \callgraph * \callergraph * * \param[in] cpi Top-level encoder structure * \param[in] size Bitstream size * \param[in] dest Bitstream output * \param[in] sse Total distortion of the frame * \param[in] rate Total rate of the frame * \param[in] largest_tile_id Tile id of the last tile * * \return Returns a value to indicate if the encoding is done successfully. * \retval #AOM_CODEC_OK * \retval #AOM_CODEC_ERROR */ static int encode_with_recode_loop_and_filter(AV1_COMP *cpi, size_t *size, uint8_t *dest, int64_t *sse, int64_t *rate, int *largest_tile_id) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, encode_with_or_without_recode_time); #endif for (int i = 0; i < NUM_RECODES_PER_FRAME; i++) { cpi->do_update_frame_probs_txtype[i] = 0; cpi->do_update_frame_probs_obmc[i] = 0; cpi->do_update_frame_probs_warp[i] = 0; cpi->do_update_frame_probs_interpfilter[i] = 0; } cpi->do_update_vbr_bits_off_target_fast = 0; int err; #if CONFIG_REALTIME_ONLY err = encode_without_recode(cpi); #else if (cpi->sf.hl_sf.recode_loop == DISALLOW_RECODE) err = encode_without_recode(cpi); else err = encode_with_recode_loop(cpi, size, dest); #endif #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, encode_with_or_without_recode_time); #endif if (err != AOM_CODEC_OK) { if (err == -1) { // special case as described in encode_with_recode_loop(). // Encoding was skipped. err = AOM_CODEC_OK; if (sse != NULL) *sse = INT64_MAX; if (rate != NULL) *rate = INT64_MAX; *largest_tile_id = 0; } return err; } #ifdef OUTPUT_YUV_DENOISED const AV1EncoderConfig *const oxcf = &cpi->oxcf; if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) { aom_write_yuv_frame(yuv_denoised_file, &cpi->denoiser.running_avg_y[INTRA_FRAME]); } #endif AV1_COMMON *const cm = &cpi->common; SequenceHeader *const seq_params = cm->seq_params; // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before // the force key frame if (cpi->ppi->p_rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { #if CONFIG_AV1_HIGHBITDEPTH if (seq_params->use_highbitdepth) { cpi->ambient_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf); } else { cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); } #else cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); #endif } cm->cur_frame->buf.color_primaries = seq_params->color_primaries; cm->cur_frame->buf.transfer_characteristics = seq_params->transfer_characteristics; cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; cm->cur_frame->buf.monochrome = seq_params->monochrome; cm->cur_frame->buf.chroma_sample_position = seq_params->chroma_sample_position; cm->cur_frame->buf.color_range = seq_params->color_range; cm->cur_frame->buf.render_width = cm->render_width; cm->cur_frame->buf.render_height = cm->render_height; if (!cpi->mt_info.pipeline_lpf_mt_with_enc) set_postproc_filter_default_params(&cpi->common); if (!cm->features.allow_intrabc) { loopfilter_frame(cpi, cm); } if (cpi->oxcf.mode != ALLINTRA && !cpi->ppi->rtc_ref.non_reference_frame) { extend_frame_borders(cpi); } #ifdef OUTPUT_YUV_REC aom_write_one_yuv_frame(cm, &cm->cur_frame->buf); #endif if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_FILM) { set_grain_syn_params(cm); } av1_finalize_encoded_frame(cpi); // Build the bitstream #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_pack_bitstream_final_time); #endif cpi->rc.coefficient_size = 0; if (av1_pack_bitstream(cpi, dest, size, largest_tile_id) != AOM_CODEC_OK) return AOM_CODEC_ERROR; #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_pack_bitstream_final_time); #endif // Compute sse and rate. if (sse != NULL) { #if CONFIG_AV1_HIGHBITDEPTH *sse = (seq_params->use_highbitdepth) ? aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf) : aom_get_y_sse(cpi->source, &cm->cur_frame->buf); #else *sse = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); #endif } if (rate != NULL) { const int64_t bits = (*size << 3); *rate = (bits << 5); // To match scale. } #if !CONFIG_REALTIME_ONLY if (cpi->use_ducky_encode) { PSNR_STATS psnr; aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); DuckyEncodeFrameResult *frame_result = &cpi->ducky_encode_info.frame_result; frame_result->global_order_idx = cm->cur_frame->display_order_hint; frame_result->q_index = cm->quant_params.base_qindex; frame_result->rdmult = cpi->rd.RDMULT; frame_result->rate = (int)(*size) * 8; frame_result->dist = psnr.sse[0]; frame_result->psnr = psnr.psnr[0]; } #endif // !CONFIG_REALTIME_ONLY return AOM_CODEC_OK; } static int encode_with_and_without_superres(AV1_COMP *cpi, size_t *size, uint8_t *dest, int *largest_tile_id) { const AV1_COMMON *const cm = &cpi->common; assert(cm->seq_params->enable_superres); assert(av1_superres_in_recode_allowed(cpi)); aom_codec_err_t err = AOM_CODEC_OK; av1_save_all_coding_context(cpi); int64_t sse1 = INT64_MAX; int64_t rate1 = INT64_MAX; int largest_tile_id1 = 0; int64_t sse2 = INT64_MAX; int64_t rate2 = INT64_MAX; int largest_tile_id2; double proj_rdcost1 = DBL_MAX; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const FRAME_UPDATE_TYPE update_type = gf_group->update_type[cpi->gf_frame_index]; const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth; // Encode with superres. if (cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_ALL) { SuperResCfg *const superres_cfg = &cpi->oxcf.superres_cfg; int64_t superres_sses[SCALE_NUMERATOR]; int64_t superres_rates[SCALE_NUMERATOR]; int superres_largest_tile_ids[SCALE_NUMERATOR]; // Use superres for Key-frames and Alt-ref frames only. if (update_type != OVERLAY_UPDATE && update_type != INTNL_OVERLAY_UPDATE) { for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; ++denom) { superres_cfg->superres_scale_denominator = denom; superres_cfg->superres_kf_scale_denominator = denom; const int this_index = denom - (SCALE_NUMERATOR + 1); cpi->superres_mode = AOM_SUPERRES_AUTO; // Super-res on for this loop. err = encode_with_recode_loop_and_filter( cpi, size, dest, &superres_sses[this_index], &superres_rates[this_index], &superres_largest_tile_ids[this_index]); cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). if (err != AOM_CODEC_OK) return err; restore_all_coding_context(cpi); } // Reset. superres_cfg->superres_scale_denominator = SCALE_NUMERATOR; superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR; } else { for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; ++denom) { const int this_index = denom - (SCALE_NUMERATOR + 1); superres_sses[this_index] = INT64_MAX; superres_rates[this_index] = INT64_MAX; } } // Encode without superres. assert(cpi->superres_mode == AOM_SUPERRES_NONE); err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse2, &rate2, &largest_tile_id2); if (err != AOM_CODEC_OK) return err; // Note: Both use common rdmult based on base qindex of fullres. const int64_t rdmult = av1_compute_rd_mult_based_on_qindex( bit_depth, update_type, cm->quant_params.base_qindex); // Find the best rdcost among all superres denoms. int best_denom = -1; for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; ++denom) { const int this_index = denom - (SCALE_NUMERATOR + 1); const int64_t this_sse = superres_sses[this_index]; const int64_t this_rate = superres_rates[this_index]; const int this_largest_tile_id = superres_largest_tile_ids[this_index]; const double this_rdcost = RDCOST_DBL_WITH_NATIVE_BD_DIST( rdmult, this_rate, this_sse, bit_depth); if (this_rdcost < proj_rdcost1) { sse1 = this_sse; rate1 = this_rate; largest_tile_id1 = this_largest_tile_id; proj_rdcost1 = this_rdcost; best_denom = denom; } } const double proj_rdcost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth); // Re-encode with superres if it's better. if (proj_rdcost1 < proj_rdcost2) { restore_all_coding_context(cpi); // TODO(urvang): We should avoid rerunning the recode loop by saving // previous output+state, or running encode only for the selected 'q' in // previous step. // Again, temporarily force the best denom. superres_cfg->superres_scale_denominator = best_denom; superres_cfg->superres_kf_scale_denominator = best_denom; int64_t sse3 = INT64_MAX; int64_t rate3 = INT64_MAX; cpi->superres_mode = AOM_SUPERRES_AUTO; // Super-res on for this recode loop. err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse3, &rate3, largest_tile_id); cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). assert(sse1 == sse3); assert(rate1 == rate3); assert(largest_tile_id1 == *largest_tile_id); // Reset. superres_cfg->superres_scale_denominator = SCALE_NUMERATOR; superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR; } else { *largest_tile_id = largest_tile_id2; } } else { assert(cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_DUAL); cpi->superres_mode = AOM_SUPERRES_AUTO; // Super-res on for this recode loop. err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse1, &rate1, &largest_tile_id1); cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). if (err != AOM_CODEC_OK) return err; restore_all_coding_context(cpi); // Encode without superres. assert(cpi->superres_mode == AOM_SUPERRES_NONE); err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse2, &rate2, &largest_tile_id2); if (err != AOM_CODEC_OK) return err; // Note: Both use common rdmult based on base qindex of fullres. const int64_t rdmult = av1_compute_rd_mult_based_on_qindex( bit_depth, update_type, cm->quant_params.base_qindex); proj_rdcost1 = RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate1, sse1, bit_depth); const double proj_rdcost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth); // Re-encode with superres if it's better. if (proj_rdcost1 < proj_rdcost2) { restore_all_coding_context(cpi); // TODO(urvang): We should avoid rerunning the recode loop by saving // previous output+state, or running encode only for the selected 'q' in // previous step. int64_t sse3 = INT64_MAX; int64_t rate3 = INT64_MAX; cpi->superres_mode = AOM_SUPERRES_AUTO; // Super-res on for this recode loop. err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse3, &rate3, largest_tile_id); cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). assert(sse1 == sse3); assert(rate1 == rate3); assert(largest_tile_id1 == *largest_tile_id); } else { *largest_tile_id = largest_tile_id2; } } return err; } // Conditions to disable cdf_update mode in selective mode for real-time. // Handle case for layers, scene change, and resizing. static AOM_INLINE int selective_disable_cdf_rtc(const AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; // For single layer. if (cpi->svc.number_spatial_layers == 1 && cpi->svc.number_temporal_layers == 1) { // Don't disable on intra_only, scene change (high_source_sad = 1), // or resized frame. To avoid quality loss force enable at // for ~30 frames after key or scene/slide change, and // after 8 frames since last update if frame_source_sad > 0. if (frame_is_intra_only(cm) || is_frame_resize_pending(cpi) || rc->high_source_sad || rc->frames_since_key < 30 || (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->cyclic_refresh->counter_encode_maxq_scene_change < 30) || (cpi->frames_since_last_update > 8 && cpi->rc.frame_source_sad > 0)) return 0; else return 1; } else if (cpi->svc.number_temporal_layers > 1) { // Disable only on top temporal enhancement layer for now. return cpi->svc.temporal_layer_id == cpi->svc.number_temporal_layers - 1; } return 1; } #if !CONFIG_REALTIME_ONLY static void subtract_stats(FIRSTPASS_STATS *section, const FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->weight -= frame->weight; section->intra_error -= frame->intra_error; section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; section->coded_error -= frame->coded_error; section->sr_coded_error -= frame->sr_coded_error; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->intra_skip_pct -= frame->intra_skip_pct; section->inactive_zone_rows -= frame->inactive_zone_rows; section->inactive_zone_cols -= frame->inactive_zone_cols; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void calculate_frame_avg_haar_energy(AV1_COMP *cpi) { TWO_PASS *const twopass = &cpi->ppi->twopass; const FIRSTPASS_STATS *const total_stats = twopass->stats_buf_ctx->total_stats; if (is_one_pass_rt_params(cpi) || (cpi->oxcf.q_cfg.deltaq_mode != DELTA_Q_PERCEPTUAL) || (is_fp_wavelet_energy_invalid(total_stats) == 0)) return; const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) ? cpi->initial_mbs : cpi->common.mi_params.MBs; const YV12_BUFFER_CONFIG *const unfiltered_source = cpi->unfiltered_source; const uint8_t *const src = unfiltered_source->y_buffer; const int hbd = unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH; const int stride = unfiltered_source->y_stride; const BLOCK_SIZE fp_block_size = get_fp_block_size(cpi->is_screen_content_type); const int fp_block_size_width = block_size_wide[fp_block_size]; const int fp_block_size_height = block_size_high[fp_block_size]; const int num_unit_cols = get_num_blocks(unfiltered_source->y_crop_width, fp_block_size_width); const int num_unit_rows = get_num_blocks(unfiltered_source->y_crop_height, fp_block_size_height); const int num_8x8_cols = num_unit_cols * (fp_block_size_width / 8); const int num_8x8_rows = num_unit_rows * (fp_block_size_height / 8); int64_t frame_avg_wavelet_energy = av1_haar_ac_sad_mxn_uint8_input( src, stride, hbd, num_8x8_rows, num_8x8_cols); cpi->twopass_frame.frame_avg_haar_energy = log1p((double)frame_avg_wavelet_energy / num_mbs); } #endif extern void av1_print_frame_contexts(const FRAME_CONTEXT *fc, const char *filename); /*!\brief Run the final pass encoding for 1-pass/2-pass encoding mode, and pack * the bitstream * * \ingroup high_level_algo * \callgraph * \callergraph * * \param[in] cpi Top-level encoder structure * \param[in] size Bitstream size * \param[in] dest Bitstream output * * \return Returns a value to indicate if the encoding is done successfully. * \retval #AOM_CODEC_OK * \retval #AOM_CODEC_ERROR */ static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest) { AV1_COMMON *const cm = &cpi->common; SequenceHeader *const seq_params = cm->seq_params; CurrentFrame *const current_frame = &cm->current_frame; const AV1EncoderConfig *const oxcf = &cpi->oxcf; struct segmentation *const seg = &cm->seg; FeatureFlags *const features = &cm->features; const TileConfig *const tile_cfg = &oxcf->tile_cfg; assert(cpi->source != NULL); cpi->td.mb.e_mbd.cur_buf = cpi->source; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, encode_frame_to_data_rate_time); #endif #if !CONFIG_REALTIME_ONLY calculate_frame_avg_haar_energy(cpi); #endif // frame type has been decided outside of this function call cm->cur_frame->frame_type = current_frame->frame_type; cm->tiles.large_scale = tile_cfg->enable_large_scale_tile; cm->tiles.single_tile_decoding = tile_cfg->enable_single_tile_decoding; features->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm); // features->allow_ref_frame_mvs needs to be written into the frame header // while cm->tiles.large_scale is 1, therefore, "cm->tiles.large_scale=1" case // is separated from frame_might_allow_ref_frame_mvs(). features->allow_ref_frame_mvs &= !cm->tiles.large_scale; features->allow_warped_motion = oxcf->motion_mode_cfg.allow_warped_motion && frame_might_allow_warped_motion(cm); cpi->last_frame_type = current_frame->frame_type; if (frame_is_intra_only(cm)) { cpi->frames_since_last_update = 0; } if (frame_is_sframe(cm)) { GF_GROUP *gf_group = &cpi->ppi->gf_group; // S frame will wipe out any previously encoded altref so we cannot place // an overlay frame gf_group->update_type[gf_group->size] = GF_UPDATE; } if (encode_show_existing_frame(cm)) { #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY // TODO(angiebird): Move this into a function. if (oxcf->pass == AOM_RC_THIRD_PASS) { int frame_coding_idx = av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); rc_log_frame_encode_param( &cpi->rc_log, frame_coding_idx, 1, 255, cpi->ppi->gf_group.update_type[cpi->gf_frame_index]); } #endif av1_finalize_encoded_frame(cpi); // Build the bitstream int largest_tile_id = 0; // Output from bitstream: unused here cpi->rc.coefficient_size = 0; if (av1_pack_bitstream(cpi, dest, size, &largest_tile_id) != AOM_CODEC_OK) return AOM_CODEC_ERROR; if (seq_params->frame_id_numbers_present_flag && current_frame->frame_type == KEY_FRAME) { // Displaying a forward key-frame, so reset the ref buffer IDs int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; for (int i = 0; i < REF_FRAMES; i++) cm->ref_frame_id[i] = display_frame_id; } #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. av1_dump_filtered_recon_frames(cpi); #endif // DUMP_RECON_FRAMES // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., // for the purpose to verify no mismatch between encoder and decoder. if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame; #if CONFIG_AV1_TEMPORAL_DENOISING av1_denoiser_update_ref_frame(cpi); #endif // Since we allocate a spot for the OVERLAY frame in the gf group, we need // to do post-encoding update accordingly. av1_set_target_rate(cpi, cm->width, cm->height); if (is_psnr_calc_enabled(cpi)) { cpi->source = realloc_and_scale_source(cpi, cm->cur_frame->buf.y_crop_width, cm->cur_frame->buf.y_crop_height); } #if !CONFIG_REALTIME_ONLY if (cpi->use_ducky_encode) { PSNR_STATS psnr; aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); DuckyEncodeFrameResult *frame_result = &cpi->ducky_encode_info.frame_result; frame_result->global_order_idx = cm->cur_frame->display_order_hint; frame_result->q_index = cm->quant_params.base_qindex; frame_result->rdmult = cpi->rd.RDMULT; frame_result->rate = (int)(*size) * 8; frame_result->dist = psnr.sse[0]; frame_result->psnr = psnr.psnr[0]; } #endif // !CONFIG_REALTIME_ONLY update_counters_for_show_frame(cpi); return AOM_CODEC_OK; } // Work out whether to force_integer_mv this frame if (!is_stat_generation_stage(cpi) && cpi->common.features.allow_screen_content_tools && !frame_is_intra_only(cm) && !cpi->sf.rt_sf.use_nonrd_pick_mode) { if (cpi->common.seq_params->force_integer_mv == 2) { // Adaptive mode: see what previous frame encoded did if (cpi->unscaled_last_source != NULL) { features->cur_frame_force_integer_mv = av1_is_integer_mv( cpi->source, cpi->unscaled_last_source, &cpi->force_intpel_info); } else { cpi->common.features.cur_frame_force_integer_mv = 0; } } else { cpi->common.features.cur_frame_force_integer_mv = cpi->common.seq_params->force_integer_mv; } } else { cpi->common.features.cur_frame_force_integer_mv = 0; } // This is used by av1_pack_bitstream. So this needs to be set in case of // row-mt where the encoding code will use a temporary structure. cpi->td.mb.e_mbd.cur_frame_force_integer_mv = cpi->common.features.cur_frame_force_integer_mv; // Set default state for segment based loop filter update flags. cm->lf.mode_ref_delta_update = 0; // Set various flags etc to special state if it is a key frame. if (frame_is_intra_only(cm) || frame_is_sframe(cm)) { // Reset the loop filter deltas and segmentation map. av1_reset_segment_features(cm); // If segmentation is enabled force a map update for key frames. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; } } if (tile_cfg->mtu == 0) { cpi->num_tg = tile_cfg->num_tile_groups; } else { // Use a default value for the purposes of weighting costs in probability // updates cpi->num_tg = DEFAULT_MAX_NUM_TG; } // For 1 pass CBR mode: check if we are dropping this frame. if (has_no_stats_stage(cpi) && oxcf->rc_cfg.mode == AOM_CBR) { // Always drop for spatial enhancement layer if layer bandwidth is 0. // Otherwise check for frame-dropping based on buffer level in // av1_rc_drop_frame(). if ((cpi->svc.spatial_layer_id > 0 && cpi->oxcf.rc_cfg.target_bandwidth == 0) || av1_rc_drop_frame(cpi)) { cpi->is_dropped_frame = true; } if (cpi->is_dropped_frame) { av1_setup_frame_size(cpi); av1_set_mv_search_params(cpi); av1_rc_postencode_update_drop_frame(cpi); release_scaled_references(cpi); cpi->ppi->gf_group.is_frame_dropped[cpi->gf_frame_index] = true; // A dropped frame might not be shown but it always takes a slot in the gf // group. Therefore, even when it is not shown, we still need to update // the relevant frame counters. if (cm->show_frame) { update_counters_for_show_frame(cpi); } return AOM_CODEC_OK; } } if (oxcf->tune_cfg.tuning == AOM_TUNE_SSIM) { av1_set_mb_ssim_rdmult_scaling(cpi); } #if CONFIG_SALIENCY_MAP else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP && !(cpi->source->flags & YV12_FLAG_HIGHBITDEPTH)) { if (av1_set_saliency_map(cpi) == 0) { return AOM_CODEC_MEM_ERROR; } #if !CONFIG_REALTIME_ONLY double motion_ratio = av1_setup_motion_ratio(cpi); #else double motion_ratio = 1.0; #endif if (av1_setup_sm_rdmult_scaling_factor(cpi, motion_ratio) == 0) { return AOM_CODEC_MEM_ERROR; } } #endif #if CONFIG_TUNE_VMAF else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { av1_set_mb_vmaf_rdmult_scaling(cpi); } #endif if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI && cpi->sf.rt_sf.use_nonrd_pick_mode == 0) { av1_init_mb_wiener_var_buffer(cpi); av1_set_mb_wiener_variance(cpi); } if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { av1_init_mb_ur_var_buffer(cpi); av1_set_mb_ur_variance(cpi); } #if CONFIG_INTERNAL_STATS memset(cpi->mode_chosen_counts, 0, MAX_MODES * sizeof(*cpi->mode_chosen_counts)); #endif if (seq_params->frame_id_numbers_present_flag) { /* Non-normative definition of current_frame_id ("frame counter" with * wraparound) */ if (cm->current_frame_id == -1) { int lsb, msb; /* quasi-random initialization of current_frame_id for a key frame */ if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) { lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff; msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff; } else { lsb = cpi->source->y_buffer[0] & 0xff; msb = cpi->source->y_buffer[1] & 0xff; } cm->current_frame_id = ((msb << 8) + lsb) % (1 << seq_params->frame_id_length); // S_frame is meant for stitching different streams of different // resolutions together, so current_frame_id must be the // same across different streams of the same content current_frame_id // should be the same and not random. 0x37 is a chosen number as start // point if (oxcf->kf_cfg.sframe_dist != 0) cm->current_frame_id = 0x37; } else { cm->current_frame_id = (cm->current_frame_id + 1 + (1 << seq_params->frame_id_length)) % (1 << seq_params->frame_id_length); } } switch (oxcf->algo_cfg.cdf_update_mode) { case 0: // No CDF update for any frames(4~6% compression loss). features->disable_cdf_update = 1; break; case 1: // Enable CDF update for all frames. if (cpi->sf.rt_sf.disable_cdf_update_non_reference_frame && cpi->ppi->rtc_ref.non_reference_frame && cpi->rc.frames_since_key > 2) features->disable_cdf_update = 1; else if (cpi->sf.rt_sf.selective_cdf_update) features->disable_cdf_update = selective_disable_cdf_rtc(cpi); else features->disable_cdf_update = 0; break; case 2: // Strategically determine at which frames to do CDF update. // Currently only enable CDF update for all-intra and no-show frames(1.5% // compression loss) for good qualiy or allintra mode. if (oxcf->mode == GOOD || oxcf->mode == ALLINTRA) { features->disable_cdf_update = (frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1; } else { features->disable_cdf_update = selective_disable_cdf_rtc(cpi); } break; } // Disable cdf update for the INTNL_ARF_UPDATE frame with // frame_parallel_level 1. if (!cpi->do_frame_data_update && cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { assert(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1); features->disable_cdf_update = 1; } #if !CONFIG_REALTIME_ONLY if (cpi->oxcf.tool_cfg.enable_global_motion && !frame_is_intra_only(cm)) { // Flush any stale global motion information, which may be left over // from a previous frame aom_invalidate_pyramid(cpi->source->y_pyramid); av1_invalidate_corner_list(cpi->source->corners); } #endif // !CONFIG_REALTIME_ONLY int largest_tile_id = 0; if (av1_superres_in_recode_allowed(cpi)) { if (encode_with_and_without_superres(cpi, size, dest, &largest_tile_id) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } } else { const aom_superres_mode orig_superres_mode = cpi->superres_mode; // save cpi->superres_mode = cpi->oxcf.superres_cfg.superres_mode; if (encode_with_recode_loop_and_filter(cpi, size, dest, NULL, NULL, &largest_tile_id) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } cpi->superres_mode = orig_superres_mode; // restore } // Update reference frame ids for reference frames this frame will overwrite if (seq_params->frame_id_numbers_present_flag) { for (int i = 0; i < REF_FRAMES; i++) { if ((current_frame->refresh_frame_flags >> i) & 1) { cm->ref_frame_id[i] = cm->current_frame_id; } } } if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) cpi->svc.num_encoded_top_layer++; #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. av1_dump_filtered_recon_frames(cpi); #endif // DUMP_RECON_FRAMES if (cm->seg.enabled) { if (cm->seg.update_map == 0 && cm->last_frame_seg_map) { memcpy(cm->cur_frame->seg_map, cm->last_frame_seg_map, cm->cur_frame->mi_cols * cm->cur_frame->mi_rows * sizeof(*cm->cur_frame->seg_map)); } } int release_scaled_refs = 0; #if CONFIG_FPMT_TEST release_scaled_refs = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0; #endif // CONFIG_FPMT_TEST if (release_scaled_refs || cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { if (frame_is_intra_only(cm) == 0) { release_scaled_references(cpi); } } #if CONFIG_AV1_TEMPORAL_DENOISING av1_denoiser_update_ref_frame(cpi); #endif // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., // for the purpose to verify no mismatch between encoder and decoder. if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame; if (features->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { *cm->fc = cpi->tile_data[largest_tile_id].tctx; av1_reset_cdf_symbol_counters(cm->fc); } if (!cm->tiles.large_scale) { cm->cur_frame->frame_context = *cm->fc; } if (tile_cfg->enable_ext_tile_debug) { // (yunqing) This test ensures the correctness of large scale tile coding. if (cm->tiles.large_scale && is_stat_consumption_stage(cpi)) { char fn[20] = "./fc"; fn[4] = current_frame->frame_number / 100 + '0'; fn[5] = (current_frame->frame_number % 100) / 10 + '0'; fn[6] = (current_frame->frame_number % 10) + '0'; fn[7] = '\0'; av1_print_frame_contexts(cm->fc, fn); } } cpi->last_frame_type = current_frame->frame_type; if (cm->features.disable_cdf_update) { cpi->frames_since_last_update++; } else { cpi->frames_since_last_update = 1; } if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) cpi->svc.prev_number_spatial_layers = cpi->svc.number_spatial_layers; // Clear the one shot update flags for segmentation map and mode/ref loop // filter deltas. cm->seg.update_map = 0; cm->seg.update_data = 0; cm->lf.mode_ref_delta_update = 0; if (cm->show_frame) { update_counters_for_show_frame(cpi); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, encode_frame_to_data_rate_time); #endif return AOM_CODEC_OK; } int av1_encode(AV1_COMP *const cpi, uint8_t *const dest, const EncodeFrameInput *const frame_input, const EncodeFrameParams *const frame_params, EncodeFrameResults *const frame_results) { AV1_COMMON *const cm = &cpi->common; CurrentFrame *const current_frame = &cm->current_frame; cpi->unscaled_source = frame_input->source; cpi->source = frame_input->source; cpi->unscaled_last_source = frame_input->last_source; current_frame->refresh_frame_flags = frame_params->refresh_frame_flags; cm->features.error_resilient_mode = frame_params->error_resilient_mode; cm->features.primary_ref_frame = frame_params->primary_ref_frame; cm->current_frame.frame_type = frame_params->frame_type; cm->show_frame = frame_params->show_frame; cpi->ref_frame_flags = frame_params->ref_frame_flags; cpi->speed = frame_params->speed; cm->show_existing_frame = frame_params->show_existing_frame; cpi->existing_fb_idx_to_show = frame_params->existing_fb_idx_to_show; memcpy(cm->remapped_ref_idx, frame_params->remapped_ref_idx, REF_FRAMES * sizeof(*cm->remapped_ref_idx)); memcpy(&cpi->refresh_frame, &frame_params->refresh_frame, sizeof(cpi->refresh_frame)); if (current_frame->frame_type == KEY_FRAME && cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { current_frame->frame_number = 0; } current_frame->order_hint = current_frame->frame_number + frame_params->order_offset; current_frame->display_order_hint = current_frame->order_hint; current_frame->order_hint %= (1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1)); current_frame->pyramid_level = get_true_pyr_level( cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], current_frame->display_order_hint, cpi->ppi->gf_group.max_layer_depth); if (is_stat_generation_stage(cpi)) { #if !CONFIG_REALTIME_ONLY if (cpi->oxcf.q_cfg.use_fixed_qp_offsets) av1_noop_first_pass_frame(cpi, frame_input->ts_duration); else av1_first_pass(cpi, frame_input->ts_duration); #endif } else if (cpi->oxcf.pass == AOM_RC_ONE_PASS || cpi->oxcf.pass >= AOM_RC_SECOND_PASS) { if (encode_frame_to_data_rate(cpi, &frame_results->size, dest) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } } else { return AOM_CODEC_ERROR; } return AOM_CODEC_OK; } #if CONFIG_DENOISE static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd, int block_size, float noise_level, int64_t time_stamp, int64_t end_time) { AV1_COMMON *const cm = &cpi->common; if (!cpi->denoise_and_model) { cpi->denoise_and_model = aom_denoise_and_model_alloc( cm->seq_params->bit_depth, block_size, noise_level); if (!cpi->denoise_and_model) { aom_set_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating denoise and model"); return -1; } } if (!cpi->film_grain_table) { cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table)); if (!cpi->film_grain_table) { aom_set_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating grain table"); return -1; } memset(cpi->film_grain_table, 0, sizeof(*cpi->film_grain_table)); } if (aom_denoise_and_model_run(cpi->denoise_and_model, sd, &cm->film_grain_params, cpi->oxcf.enable_dnl_denoising)) { if (cm->film_grain_params.apply_grain) { aom_film_grain_table_append(cpi->film_grain_table, time_stamp, end_time, &cm->film_grain_params); } } return 0; } #endif int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { AV1_COMMON *const cm = &cpi->common; const SequenceHeader *const seq_params = cm->seq_params; int res = 0; const int subsampling_x = sd->subsampling_x; const int subsampling_y = sd->subsampling_y; const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; #if CONFIG_TUNE_VMAF if (!is_stat_generation_stage(cpi) && cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITH_PREPROCESSING) { av1_vmaf_frame_preprocessing(cpi, sd); } if (!is_stat_generation_stage(cpi) && cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN) { av1_vmaf_blk_preprocessing(cpi, sd); } #endif #if CONFIG_INTERNAL_STATS struct aom_usec_timer timer; aom_usec_timer_start(&timer); #endif #if CONFIG_AV1_TEMPORAL_DENOISING setup_denoiser_buffer(cpi); #endif #if CONFIG_DENOISE // even if denoise_noise_level is > 0, we don't need need to denoise on pass // 1 of 2 if enable_dnl_denoising is disabled since the 2nd pass will be // encoding the original (non-denoised) frame if (cpi->oxcf.noise_level > 0 && !(cpi->oxcf.pass == AOM_RC_FIRST_PASS && !cpi->oxcf.enable_dnl_denoising)) { #if !CONFIG_REALTIME_ONLY // Choose a synthetic noise level for still images for enhanced perceptual // quality based on an estimated noise level in the source, but only if // the noise level is set on the command line to > 0. if (cpi->oxcf.mode == ALLINTRA) { // No noise synthesis if source is very clean. // Uses a low edge threshold to focus on smooth areas. // Increase output noise setting a little compared to measured value. double y_noise_level = 0.0; av1_estimate_noise_level(sd, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y, cm->seq_params->bit_depth, 16); cpi->oxcf.noise_level = (float)(y_noise_level - 0.1); cpi->oxcf.noise_level = (float)AOMMAX(0.0, cpi->oxcf.noise_level); if (cpi->oxcf.noise_level > 0.0) { cpi->oxcf.noise_level += (float)0.5; } cpi->oxcf.noise_level = (float)AOMMIN(5.0, cpi->oxcf.noise_level); } #endif if (apply_denoise_2d(cpi, sd, cpi->oxcf.noise_block_size, cpi->oxcf.noise_level, time_stamp, end_time) < 0) res = -1; } #endif // CONFIG_DENOISE if (av1_lookahead_push(cpi->ppi->lookahead, sd, time_stamp, end_time, use_highbitdepth, cpi->image_pyramid_levels, frame_flags)) { aom_set_error(cm->error, AOM_CODEC_ERROR, "av1_lookahead_push() failed"); res = -1; } #if CONFIG_INTERNAL_STATS aom_usec_timer_mark(&timer); cpi->ppi->total_time_receive_data += aom_usec_timer_elapsed(&timer); #endif // Note: Regarding profile setting, the following checks are added to help // choose a proper profile for the input video. The criterion is that all // bitstreams must be designated as the lowest profile that match its content. // E.G. A bitstream that contains 4:4:4 video must be designated as High // Profile in the seq header, and likewise a bitstream that contains 4:2:2 // bitstream must be designated as Professional Profile in the sequence // header. if ((seq_params->profile == PROFILE_0) && !seq_params->monochrome && (subsampling_x != 1 || subsampling_y != 1)) { aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM, "Non-4:2:0 color format requires profile 1 or 2"); res = -1; } if ((seq_params->profile == PROFILE_1) && !(subsampling_x == 0 && subsampling_y == 0)) { aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM, "Profile 1 requires 4:4:4 color format"); res = -1; } if ((seq_params->profile == PROFILE_2) && (seq_params->bit_depth <= AOM_BITS_10) && !(subsampling_x == 1 && subsampling_y == 0)) { aom_set_error(cm->error, AOM_CODEC_INVALID_PARAM, "Profile 2 bit-depth <= 10 requires 4:2:2 color format"); res = -1; } return res; } #if CONFIG_ENTROPY_STATS void print_entropy_stats(AV1_PRIMARY *const ppi) { if (!ppi->cpi) return; if (ppi->cpi->oxcf.pass != 1 && ppi->cpi->common.current_frame.frame_number > 0) { fprintf(stderr, "Writing counts.stt\n"); FILE *f = fopen("counts.stt", "wb"); fwrite(&ppi->aggregate_fc, sizeof(ppi->aggregate_fc), 1, f); fclose(f); } } #endif // CONFIG_ENTROPY_STATS #if CONFIG_INTERNAL_STATS extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch, const unsigned char *img2, int img2_pitch, int width, int height); static void adjust_image_stat(double y, double u, double v, double all, ImageStat *s) { s->stat[STAT_Y] += y; s->stat[STAT_U] += u; s->stat[STAT_V] += v; s->stat[STAT_ALL] += all; s->worst = AOMMIN(s->worst, all); } static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) { AV1_PRIMARY *const ppi = cpi->ppi; AV1_COMMON *const cm = &cpi->common; double samples = 0.0; const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; if (cpi->ppi->use_svc && cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) return; #if CONFIG_INTER_STATS_ONLY if (cm->current_frame.frame_type == KEY_FRAME) return; // skip key frame #endif cpi->bytes += frame_bytes; if (cm->show_frame) { const YV12_BUFFER_CONFIG *orig = cpi->source; const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; double y, u, v, frame_all; ppi->count[0]++; ppi->count[1]++; if (cpi->ppi->b_calculate_psnr) { PSNR_STATS psnr; double weight[2] = { 0.0, 0.0 }; double frame_ssim2[2] = { 0.0, 0.0 }; #if CONFIG_AV1_HIGHBITDEPTH aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); #else aom_calc_psnr(orig, recon, &psnr); #endif adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0], &(ppi->psnr[0])); ppi->total_sq_error[0] += psnr.sse[0]; ppi->total_samples[0] += psnr.samples[0]; samples = psnr.samples[0]; aom_calc_ssim(orig, recon, bit_depth, in_bit_depth, cm->seq_params->use_highbitdepth, weight, frame_ssim2); ppi->worst_ssim = AOMMIN(ppi->worst_ssim, frame_ssim2[0]); ppi->summed_quality += frame_ssim2[0] * weight[0]; ppi->summed_weights += weight[0]; #if CONFIG_AV1_HIGHBITDEPTH // Compute PSNR based on stream bit depth if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) && (in_bit_depth < bit_depth)) { adjust_image_stat(psnr.psnr_hbd[1], psnr.psnr_hbd[2], psnr.psnr_hbd[3], psnr.psnr_hbd[0], &ppi->psnr[1]); ppi->total_sq_error[1] += psnr.sse_hbd[0]; ppi->total_samples[1] += psnr.samples_hbd[0]; ppi->worst_ssim_hbd = AOMMIN(ppi->worst_ssim_hbd, frame_ssim2[1]); ppi->summed_quality_hbd += frame_ssim2[1] * weight[1]; ppi->summed_weights_hbd += weight[1]; } #endif #if 0 { FILE *f = fopen("q_used.stt", "a"); double y2 = psnr.psnr[1]; double u2 = psnr.psnr[2]; double v2 = psnr.psnr[3]; double frame_psnr2 = psnr.psnr[0]; fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cm->current_frame.frame_number, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } if (ppi->b_calculate_blockiness) { if (!cm->seq_params->use_highbitdepth) { const double frame_blockiness = av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height); ppi->worst_blockiness = AOMMAX(ppi->worst_blockiness, frame_blockiness); ppi->total_blockiness += frame_blockiness; } if (ppi->b_calculate_consistency) { if (!cm->seq_params->use_highbitdepth) { const double this_inconsistency = aom_get_ssim_metrics( orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height, ppi->ssim_vars, &ppi->metrics, 1); const double peak = (double)((1 << in_bit_depth) - 1); const double consistency = aom_sse_to_psnr(samples, peak, ppi->total_inconsistency); if (consistency > 0.0) ppi->worst_consistency = AOMMIN(ppi->worst_consistency, consistency); ppi->total_inconsistency += this_inconsistency; } } } frame_all = aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); adjust_image_stat(y, u, v, frame_all, &ppi->fastssim); frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); adjust_image_stat(y, u, v, frame_all, &ppi->psnrhvs); } } void print_internal_stats(AV1_PRIMARY *ppi) { if (!ppi->cpi) return; AV1_COMP *const cpi = ppi->cpi; if (ppi->cpi->oxcf.pass != 1 && ppi->cpi->common.current_frame.frame_number > 0) { char headings[512] = { 0 }; char results[512] = { 0 }; FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->time_stamps.prev_ts_end - cpi->time_stamps.first_ts_start) / 10000000.000; double total_encode_time = (ppi->total_time_receive_data + ppi->total_time_compress_data) / 1000.000; const double dr = (double)ppi->total_bytes * (double)8 / (double)1000 / time_encoded; const double peak = (double)((1 << ppi->cpi->oxcf.input_cfg.input_bit_depth) - 1); const double target_rate = (double)ppi->cpi->oxcf.rc_cfg.target_bandwidth / 1000; const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); if (ppi->b_calculate_psnr) { const double total_psnr = aom_sse_to_psnr( (double)ppi->total_samples[0], peak, (double)ppi->total_sq_error[0]); const double total_ssim = 100 * pow(ppi->summed_quality / ppi->summed_weights, 8.0); snprintf(headings, sizeof(headings), "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" "WstPsnr\tWstSsim\tWstFast\tWstHVS\t" "AVPsrnY\tAPsnrCb\tAPsnrCr"); snprintf(results, sizeof(results), "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\t%7.3f", dr, ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr, ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr, total_ssim, total_ssim, ppi->fastssim.stat[STAT_ALL] / ppi->count[0], ppi->psnrhvs.stat[STAT_ALL] / ppi->count[0], ppi->psnr[0].worst, ppi->worst_ssim, ppi->fastssim.worst, ppi->psnrhvs.worst, ppi->psnr[0].stat[STAT_Y] / ppi->count[0], ppi->psnr[0].stat[STAT_U] / ppi->count[0], ppi->psnr[0].stat[STAT_V] / ppi->count[0]); if (ppi->b_calculate_blockiness) { SNPRINT(headings, "\t Block\tWstBlck"); SNPRINT2(results, "\t%7.3f", ppi->total_blockiness / ppi->count[0]); SNPRINT2(results, "\t%7.3f", ppi->worst_blockiness); } if (ppi->b_calculate_consistency) { double consistency = aom_sse_to_psnr((double)ppi->total_samples[0], peak, (double)ppi->total_inconsistency); SNPRINT(headings, "\tConsist\tWstCons"); SNPRINT2(results, "\t%7.3f", consistency); SNPRINT2(results, "\t%7.3f", ppi->worst_consistency); } SNPRINT(headings, "\t Time\tRcErr\tAbsErr"); SNPRINT2(results, "\t%8.0f", total_encode_time); SNPRINT2(results, " %7.2f", rate_err); SNPRINT2(results, " %7.2f", fabs(rate_err)); SNPRINT(headings, "\tAPsnr611"); SNPRINT2(results, " %7.3f", (6 * ppi->psnr[0].stat[STAT_Y] + ppi->psnr[0].stat[STAT_U] + ppi->psnr[0].stat[STAT_V]) / (ppi->count[0] * 8)); #if CONFIG_AV1_HIGHBITDEPTH const uint32_t in_bit_depth = ppi->cpi->oxcf.input_cfg.input_bit_depth; const uint32_t bit_depth = ppi->seq_params.bit_depth; // Since cpi->source->flags is not available here, but total_samples[1] // will be non-zero if cpi->source->flags & YV12_FLAG_HIGHBITDEPTH was // true in compute_internal_stats if ((ppi->total_samples[1] > 0) && (in_bit_depth < bit_depth)) { const double peak_hbd = (double)((1 << bit_depth) - 1); const double total_psnr_hbd = aom_sse_to_psnr((double)ppi->total_samples[1], peak_hbd, (double)ppi->total_sq_error[1]); const double total_ssim_hbd = 100 * pow(ppi->summed_quality_hbd / ppi->summed_weights_hbd, 8.0); SNPRINT(headings, "\t AVGPsnrH GLBPsnrH AVPsnrPH GLPsnrPH" " AVPsnrYH APsnrCbH APsnrCrH WstPsnrH" " AOMSSIMH VPSSIMPH WstSsimH"); SNPRINT2(results, "\t%7.3f", ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]); SNPRINT2(results, " %7.3f", total_psnr_hbd); SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]); SNPRINT2(results, " %7.3f", total_psnr_hbd); SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_Y] / ppi->count[1]); SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_U] / ppi->count[1]); SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_V] / ppi->count[1]); SNPRINT2(results, " %7.3f", ppi->psnr[1].worst); SNPRINT2(results, " %7.3f", total_ssim_hbd); SNPRINT2(results, " %7.3f", total_ssim_hbd); SNPRINT2(results, " %7.3f", ppi->worst_ssim_hbd); } #endif fprintf(f, "%s\n", headings); fprintf(f, "%s\n", results); } fclose(f); aom_free(ppi->ssim_vars); ppi->ssim_vars = NULL; } } #endif // CONFIG_INTERNAL_STATS static AOM_INLINE void update_keyframe_counters(AV1_COMP *cpi) { if (cpi->common.show_frame && cpi->rc.frames_to_key) { #if !CONFIG_REALTIME_ONLY FIRSTPASS_INFO *firstpass_info = &cpi->ppi->twopass.firstpass_info; if (firstpass_info->past_stats_count > FIRSTPASS_INFO_STATS_PAST_MIN) { av1_firstpass_info_move_cur_index_and_pop(firstpass_info); } else { // When there is not enough past stats, we move the current // index without popping the past stats av1_firstpass_info_move_cur_index(firstpass_info); } #endif if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { cpi->rc.frames_since_key++; cpi->rc.frames_to_key--; cpi->rc.frames_to_fwd_kf--; } } } static AOM_INLINE void update_frames_till_gf_update(AV1_COMP *cpi) { // TODO(weitinglin): Updating this counter for is_frame_droppable // is a work-around to handle the condition when a frame is drop. // We should fix the cpi->common.show_frame flag // instead of checking the other condition to update the counter properly. if (cpi->common.show_frame || is_frame_droppable(&cpi->ppi->rtc_ref, &cpi->ext_flags.refresh_frame)) { // Decrement count down till next gf if (cpi->rc.frames_till_gf_update_due > 0) cpi->rc.frames_till_gf_update_due--; } } static AOM_INLINE void update_gf_group_index(AV1_COMP *cpi) { // Increment the gf group index ready for the next frame. if (is_one_pass_rt_params(cpi) && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { ++cpi->gf_frame_index; // Reset gf_frame_index in case it reaches MAX_STATIC_GF_GROUP_LENGTH // for real time encoding. if (cpi->gf_frame_index == MAX_STATIC_GF_GROUP_LENGTH) cpi->gf_frame_index = 0; } else { ++cpi->gf_frame_index; } } static void update_fb_of_context_type(const AV1_COMP *const cpi, int *const fb_of_context_type) { const AV1_COMMON *const cm = &cpi->common; const int current_frame_ref_type = get_current_frame_ref_type(cpi); if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || cpi->ext_flags.use_primary_ref_none) { for (int i = 0; i < REF_FRAMES; i++) { fb_of_context_type[i] = -1; } fb_of_context_type[current_frame_ref_type] = cm->show_frame ? get_ref_frame_map_idx(cm, GOLDEN_FRAME) : get_ref_frame_map_idx(cm, ALTREF_FRAME); } if (!encode_show_existing_frame(cm)) { // Refresh fb_of_context_type[]: see encoder.h for explanation if (cm->current_frame.frame_type == KEY_FRAME) { // All ref frames are refreshed, pick one that will live long enough fb_of_context_type[current_frame_ref_type] = 0; } else { // If more than one frame is refreshed, it doesn't matter which one we // pick so pick the first. LST sometimes doesn't refresh any: this is ok for (int i = 0; i < REF_FRAMES; i++) { if (cm->current_frame.refresh_frame_flags & (1 << i)) { fb_of_context_type[current_frame_ref_type] = i; break; } } } } } static void update_rc_counts(AV1_COMP *cpi) { update_keyframe_counters(cpi); update_frames_till_gf_update(cpi); update_gf_group_index(cpi); } static void update_end_of_frame_stats(AV1_COMP *cpi) { if (cpi->do_frame_data_update) { // Store current frame loopfilter levels in ppi, if update flag is set. if (!cpi->common.show_existing_frame) { AV1_COMMON *const cm = &cpi->common; struct loopfilter *const lf = &cm->lf; cpi->ppi->filter_level[0] = lf->filter_level[0]; cpi->ppi->filter_level[1] = lf->filter_level[1]; cpi->ppi->filter_level_u = lf->filter_level_u; cpi->ppi->filter_level_v = lf->filter_level_v; } } // Store frame level mv_stats from cpi to ppi. cpi->ppi->mv_stats = cpi->mv_stats; } // Updates frame level stats related to global motion static AOM_INLINE void update_gm_stats(AV1_COMP *cpi) { FRAME_UPDATE_TYPE update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; int i, is_gm_present = 0; // Check if the current frame has any valid global motion model across its // reference frames for (i = 0; i < REF_FRAMES; i++) { if (cpi->common.global_motion[i].wmtype != IDENTITY) { is_gm_present = 1; break; } } int update_actual_stats = 1; #if CONFIG_FPMT_TEST update_actual_stats = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; if (!update_actual_stats) { if (cpi->ppi->temp_valid_gm_model_found[update_type] == INT32_MAX) { cpi->ppi->temp_valid_gm_model_found[update_type] = is_gm_present; } else { cpi->ppi->temp_valid_gm_model_found[update_type] |= is_gm_present; } int show_existing_between_parallel_frames = (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE && cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); if (cpi->do_frame_data_update == 1 && !show_existing_between_parallel_frames) { for (i = 0; i < FRAME_UPDATE_TYPES; i++) { cpi->ppi->valid_gm_model_found[i] = cpi->ppi->temp_valid_gm_model_found[i]; } } } #endif if (update_actual_stats) { if (cpi->ppi->valid_gm_model_found[update_type] == INT32_MAX) { cpi->ppi->valid_gm_model_found[update_type] = is_gm_present; } else { cpi->ppi->valid_gm_model_found[update_type] |= is_gm_present; } } } void av1_post_encode_updates(AV1_COMP *const cpi, const AV1_COMP_DATA *const cpi_data) { AV1_PRIMARY *const ppi = cpi->ppi; AV1_COMMON *const cm = &cpi->common; update_gm_stats(cpi); #if !CONFIG_REALTIME_ONLY // Update the total stats remaining structure. if (cpi->twopass_frame.this_frame != NULL && ppi->twopass.stats_buf_ctx->total_left_stats) { subtract_stats(ppi->twopass.stats_buf_ctx->total_left_stats, cpi->twopass_frame.this_frame); } #endif #if CONFIG_OUTPUT_FRAME_SIZE FILE *f = fopen("frame_sizes.csv", "a"); fprintf(f, "%d,", 8 * (int)cpi_data->frame_size); fprintf(f, "%d\n", cm->quant_params.base_qindex); fclose(f); #endif // CONFIG_OUTPUT_FRAME_SIZE if (!is_stat_generation_stage(cpi) && !cpi->is_dropped_frame) { // Before calling refresh_reference_frames(), copy ppi->ref_frame_map_copy // to cm->ref_frame_map for frame_parallel_level 2 frame in a parallel // encode set of lower layer frames. // TODO(Remya): Move ref_frame_map from AV1_COMMON to AV1_PRIMARY to avoid // copy. if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 2 && ppi->gf_group.frame_parallel_level[cpi->gf_frame_index - 1] == 1 && ppi->gf_group.update_type[cpi->gf_frame_index - 1] == INTNL_ARF_UPDATE) { memcpy(cm->ref_frame_map, ppi->ref_frame_map_copy, sizeof(cm->ref_frame_map)); } refresh_reference_frames(cpi); // For frame_parallel_level 1 frame in a parallel encode set of lower layer // frames, store the updated cm->ref_frame_map in ppi->ref_frame_map_copy. if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1 && ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { memcpy(ppi->ref_frame_map_copy, cm->ref_frame_map, sizeof(cm->ref_frame_map)); } av1_rc_postencode_update(cpi, cpi_data->frame_size); } if (cpi_data->pop_lookahead == 1) { av1_lookahead_pop(cpi->ppi->lookahead, cpi_data->flush, cpi->compressor_stage); } if (cpi->common.show_frame) { cpi->ppi->ts_start_last_show_frame = cpi_data->ts_frame_start; cpi->ppi->ts_end_last_show_frame = cpi_data->ts_frame_end; } if (ppi->level_params.keep_level_stats && !is_stat_generation_stage(cpi)) { // Initialize level info. at the beginning of each sequence. if (cm->current_frame.frame_type == KEY_FRAME && ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { av1_init_level_info(cpi); } av1_update_level_info(cpi, cpi_data->frame_size, cpi_data->ts_frame_start, cpi_data->ts_frame_end); } if (!is_stat_generation_stage(cpi)) { #if !CONFIG_REALTIME_ONLY if (!has_no_stats_stage(cpi)) av1_twopass_postencode_update(cpi); #endif update_fb_of_context_type(cpi, ppi->fb_of_context_type); update_rc_counts(cpi); update_end_of_frame_stats(cpi); } if (cpi->oxcf.pass == AOM_RC_THIRD_PASS && cpi->third_pass_ctx) { av1_pop_third_pass_info(cpi->third_pass_ctx); } if (ppi->rtc_ref.set_ref_frame_config) { av1_svc_update_buffer_slot_refreshed(cpi); av1_svc_set_reference_was_previous(cpi); } if (ppi->use_svc) av1_save_layer_context(cpi); // Note *size = 0 indicates a dropped frame for which psnr is not calculated if (ppi->b_calculate_psnr && cpi_data->frame_size > 0) { if (cm->show_existing_frame || (!is_stat_generation_stage(cpi) && cm->show_frame)) { generate_psnr_packet(cpi); } } #if CONFIG_INTERNAL_STATS if (!is_stat_generation_stage(cpi)) { compute_internal_stats(cpi, (int)cpi_data->frame_size); } #endif // CONFIG_INTERNAL_STATS // Write frame info. Subtract 1 from frame index since if was incremented in // update_rc_counts. av1_write_second_pass_per_frame_info(cpi, cpi->gf_frame_index - 1); } int av1_get_compressed_data(AV1_COMP *cpi, AV1_COMP_DATA *const cpi_data) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; AV1_COMMON *const cm = &cpi->common; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(cm->error->jmp)) { cm->error->setjmp = 0; return cm->error->error_code; } cm->error->setjmp = 1; #if CONFIG_INTERNAL_STATS cpi->frame_recode_hits = 0; cpi->time_compress_data = 0; cpi->bytes = 0; #endif #if CONFIG_ENTROPY_STATS if (cpi->compressor_stage == ENCODE_STAGE) { av1_zero(cpi->counts); } #endif #if CONFIG_BITSTREAM_DEBUG assert(cpi->oxcf.max_threads <= 1 && "bitstream debug tool does not support multithreading"); bitstream_queue_record_write(); if (cm->seq_params->order_hint_info.enable_order_hint) { aom_bitstream_queue_set_frame_write(cm->current_frame.order_hint * 2 + cm->show_frame); } else { // This is currently used in RTC encoding. cm->show_frame is always 1. aom_bitstream_queue_set_frame_write(cm->current_frame.frame_number); } #endif if (cpi->ppi->use_svc) { av1_one_pass_cbr_svc_start_layer(cpi); } cpi->is_dropped_frame = false; cm->showable_frame = 0; cpi_data->frame_size = 0; cpi->available_bs_size = cpi_data->cx_data_sz; #if CONFIG_INTERNAL_STATS struct aom_usec_timer cmptimer; aom_usec_timer_start(&cmptimer); #endif av1_set_high_precision_mv(cpi, 1, 0); // Normal defaults cm->features.refresh_frame_context = oxcf->tool_cfg.frame_parallel_decoding_mode ? REFRESH_FRAME_CONTEXT_DISABLED : REFRESH_FRAME_CONTEXT_BACKWARD; if (oxcf->tile_cfg.enable_large_scale_tile) cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; if (assign_cur_frame_new_fb(cm) == NULL) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Failed to allocate new cur_frame"); } #if CONFIG_COLLECT_COMPONENT_TIMING // Accumulate 2nd pass time in 2-pass case or 1 pass time in 1-pass case. if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) start_timing(cpi, av1_encode_strategy_time); #endif const int result = av1_encode_strategy( cpi, &cpi_data->frame_size, cpi_data->cx_data, &cpi_data->lib_flags, &cpi_data->ts_frame_start, &cpi_data->ts_frame_end, cpi_data->timestamp_ratio, &cpi_data->pop_lookahead, cpi_data->flush); #if CONFIG_COLLECT_COMPONENT_TIMING if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) end_timing(cpi, av1_encode_strategy_time); // Print out timing information. // Note: Use "cpi->frame_component_time[0] > 100 us" to avoid showing of // show_existing_frame and lag-in-frames. if ((cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) && cpi->frame_component_time[0] > 100) { int i; uint64_t frame_total = 0, total = 0; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; FRAME_UPDATE_TYPE frame_update_type = get_frame_update_type(gf_group, cpi->gf_frame_index); fprintf(stderr, "\n Frame number: %d, Frame type: %s, Show Frame: %d, Frame Update " "Type: %d, Q: %d\n", cm->current_frame.frame_number, get_frame_type_enum(cm->current_frame.frame_type), cm->show_frame, frame_update_type, cm->quant_params.base_qindex); for (i = 0; i < kTimingComponents; i++) { cpi->component_time[i] += cpi->frame_component_time[i]; // Use av1_encode_strategy_time (i = 0) as the total time. if (i == 0) { frame_total = cpi->frame_component_time[0]; total = cpi->component_time[0]; } fprintf(stderr, " %50s: %15" PRId64 " us [%6.2f%%] (total: %15" PRId64 " us [%6.2f%%])\n", get_component_name(i), cpi->frame_component_time[i], (float)((float)cpi->frame_component_time[i] * 100.0 / (float)frame_total), cpi->component_time[i], (float)((float)cpi->component_time[i] * 100.0 / (float)total)); cpi->frame_component_time[i] = 0; } } #endif // Reset the flag to 0 afer encoding. cpi->rc.use_external_qp_one_pass = 0; if (result == -1) { cm->error->setjmp = 0; // Returning -1 indicates no frame encoded; more input is required return -1; } if (result != AOM_CODEC_OK) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Failed to encode frame"); } #if CONFIG_INTERNAL_STATS aom_usec_timer_mark(&cmptimer); cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer); #endif // CONFIG_INTERNAL_STATS #if CONFIG_SPEED_STATS if (!is_stat_generation_stage(cpi) && !cm->show_existing_frame) { cpi->tx_search_count += cpi->td.mb.txfm_search_info.tx_search_count; cpi->td.mb.txfm_search_info.tx_search_count = 0; } #endif // CONFIG_SPEED_STATS cm->error->setjmp = 0; return AOM_CODEC_OK; } // Populates cpi->scaled_ref_buf corresponding to frames in a parallel encode // set. Also sets the bitmask 'ref_buffers_used_map'. void av1_scale_references_fpmt(AV1_COMP *cpi, int *ref_buffers_used_map) { AV1_COMMON *cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1). if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { const YV12_BUFFER_CONFIG *const ref = get_ref_frame_yv12_buf(cm, ref_frame); if (ref == NULL) { cpi->scaled_ref_buf[ref_frame - 1] = NULL; continue; } // FPMT does not support scaling yet. assert(ref->y_crop_width == cm->width && ref->y_crop_height == cm->height); RefCntBuffer *buf = get_ref_frame_buf(cm, ref_frame); cpi->scaled_ref_buf[ref_frame - 1] = buf; for (int i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) { if (&cm->buffer_pool->frame_bufs[i] == buf) { *ref_buffers_used_map |= (1 << i); } } } else { if (!has_no_stats_stage(cpi)) cpi->scaled_ref_buf[ref_frame - 1] = NULL; } } } // Increments the ref_count of frame buffers referenced by cpi->scaled_ref_buf // corresponding to frames in a parallel encode set. void av1_increment_scaled_ref_counts_fpmt(BufferPool *buffer_pool, int ref_buffers_used_map) { for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) { if (ref_buffers_used_map & (1 << i)) { ++buffer_pool->frame_bufs[i].ref_count; } } } // Releases cpi->scaled_ref_buf corresponding to frames in a parallel encode // set. void av1_release_scaled_references_fpmt(AV1_COMP *cpi) { // TODO(isbs): only refresh the necessary frames, rather than all of them for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefCntBuffer *const buf = cpi->scaled_ref_buf[i]; if (buf != NULL) { cpi->scaled_ref_buf[i] = NULL; } } } // Decrements the ref_count of frame buffers referenced by cpi->scaled_ref_buf // corresponding to frames in a parallel encode set. void av1_decrement_ref_counts_fpmt(BufferPool *buffer_pool, int ref_buffers_used_map) { for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) { if (ref_buffers_used_map & (1 << i)) { --buffer_pool->frame_bufs[i].ref_count; } } } // Initialize parallel frame contexts with screen content decisions. void av1_init_sc_decisions(AV1_PRIMARY *const ppi) { AV1_COMP *const first_cpi = ppi->cpi; for (int i = 1; i < ppi->num_fp_contexts; ++i) { AV1_COMP *cur_cpi = ppi->parallel_cpi[i]; cur_cpi->common.features.allow_screen_content_tools = first_cpi->common.features.allow_screen_content_tools; cur_cpi->common.features.allow_intrabc = first_cpi->common.features.allow_intrabc; cur_cpi->use_screen_content_tools = first_cpi->use_screen_content_tools; cur_cpi->is_screen_content_type = first_cpi->is_screen_content_type; } } AV1_COMP *av1_get_parallel_frame_enc_data(AV1_PRIMARY *const ppi, AV1_COMP_DATA *const first_cpi_data) { int cpi_idx = 0; // Loop over parallel_cpi to find the cpi that processed the current // gf_frame_index ahead of time. for (int i = 1; i < ppi->num_fp_contexts; i++) { if (ppi->cpi->gf_frame_index == ppi->parallel_cpi[i]->gf_frame_index) { cpi_idx = i; break; } } assert(cpi_idx > 0); assert(!ppi->parallel_cpi[cpi_idx]->common.show_existing_frame); // Release the previously-used frame-buffer. if (ppi->cpi->common.cur_frame != NULL) { --ppi->cpi->common.cur_frame->ref_count; ppi->cpi->common.cur_frame = NULL; } // Swap the appropriate parallel_cpi with the parallel_cpi[0]. ppi->cpi = ppi->parallel_cpi[cpi_idx]; ppi->parallel_cpi[cpi_idx] = ppi->parallel_cpi[0]; ppi->parallel_cpi[0] = ppi->cpi; // Copy appropriate parallel_frames_data to local data. { AV1_COMP_DATA *data = &ppi->parallel_frames_data[cpi_idx - 1]; assert(data->frame_size > 0); assert(first_cpi_data->cx_data_sz > data->frame_size); first_cpi_data->lib_flags = data->lib_flags; first_cpi_data->ts_frame_start = data->ts_frame_start; first_cpi_data->ts_frame_end = data->ts_frame_end; memcpy(first_cpi_data->cx_data, data->cx_data, data->frame_size); first_cpi_data->frame_size = data->frame_size; if (ppi->cpi->common.show_frame) { first_cpi_data->pop_lookahead = 1; } } return ppi->cpi; } // Initialises frames belonging to a parallel encode set. int av1_init_parallel_frame_context(const AV1_COMP_DATA *const first_cpi_data, AV1_PRIMARY *const ppi, int *ref_buffers_used_map) { AV1_COMP *const first_cpi = ppi->cpi; GF_GROUP *const gf_group = &ppi->gf_group; int gf_index_start = first_cpi->gf_frame_index; assert(gf_group->frame_parallel_level[gf_index_start] == 1); int parallel_frame_count = 0; int cur_frame_num = first_cpi->common.current_frame.frame_number; int show_frame_count = first_cpi->frame_index_set.show_frame_count; int frames_since_key = first_cpi->rc.frames_since_key; int frames_to_key = first_cpi->rc.frames_to_key; int frames_to_fwd_kf = first_cpi->rc.frames_to_fwd_kf; int cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[gf_index_start]; const FIRSTPASS_STATS *stats_in = first_cpi->twopass_frame.stats_in; assert(*ref_buffers_used_map == 0); // Release the previously used frame-buffer by a frame_parallel_level 1 frame. if (first_cpi->common.cur_frame != NULL) { --first_cpi->common.cur_frame->ref_count; first_cpi->common.cur_frame = NULL; } RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; RefFrameMapPair first_ref_frame_map_pairs[REF_FRAMES]; init_ref_map_pair(first_cpi, first_ref_frame_map_pairs); memcpy(ref_frame_map_pairs, first_ref_frame_map_pairs, sizeof(RefFrameMapPair) * REF_FRAMES); // Store the reference refresh index of frame_parallel_level 1 frame in a // parallel encode set of lower layer frames. if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) { first_cpi->ref_refresh_index = av1_calc_refresh_idx_for_intnl_arf( first_cpi, ref_frame_map_pairs, gf_index_start); assert(first_cpi->ref_refresh_index != INVALID_IDX && first_cpi->ref_refresh_index < REF_FRAMES); first_cpi->refresh_idx_available = true; // Update ref_frame_map_pairs. ref_frame_map_pairs[first_cpi->ref_refresh_index].disp_order = gf_group->display_idx[gf_index_start]; ref_frame_map_pairs[first_cpi->ref_refresh_index].pyr_level = gf_group->layer_depth[gf_index_start]; } // Set do_frame_data_update flag as false for frame_parallel_level 1 frame. first_cpi->do_frame_data_update = false; if (gf_group->arf_src_offset[gf_index_start] == 0) { first_cpi->time_stamps.prev_ts_start = ppi->ts_start_last_show_frame; first_cpi->time_stamps.prev_ts_end = ppi->ts_end_last_show_frame; } av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, first_cpi, gf_index_start, 1, first_cpi->common.remapped_ref_idx); av1_scale_references_fpmt(first_cpi, ref_buffers_used_map); parallel_frame_count++; // Iterate through the GF_GROUP to find the remaining frame_parallel_level 2 // frames which are part of the current parallel encode set and initialize the // required cpi elements. for (int i = gf_index_start + 1; i < gf_group->size; i++) { // Update frame counters if previous frame was show frame or show existing // frame. if (gf_group->arf_src_offset[i - 1] == 0) { cur_frame_num++; show_frame_count++; if (frames_to_fwd_kf <= 0) frames_to_fwd_kf = first_cpi->oxcf.kf_cfg.fwd_kf_dist; if (frames_to_key) { frames_since_key++; frames_to_key--; frames_to_fwd_kf--; } stats_in++; } cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[i]; if (gf_group->frame_parallel_level[i] == 2) { AV1_COMP *cur_cpi = ppi->parallel_cpi[parallel_frame_count]; AV1_COMP_DATA *cur_cpi_data = &ppi->parallel_frames_data[parallel_frame_count - 1]; cur_cpi->gf_frame_index = i; cur_cpi->framerate = first_cpi->framerate; cur_cpi->common.current_frame.frame_number = cur_frame_num; cur_cpi->common.current_frame.frame_type = gf_group->frame_type[i]; cur_cpi->frame_index_set.show_frame_count = show_frame_count; cur_cpi->rc.frames_since_key = frames_since_key; cur_cpi->rc.frames_to_key = frames_to_key; cur_cpi->rc.frames_to_fwd_kf = frames_to_fwd_kf; cur_cpi->rc.active_worst_quality = first_cpi->rc.active_worst_quality; cur_cpi->rc.avg_frame_bandwidth = first_cpi->rc.avg_frame_bandwidth; cur_cpi->rc.max_frame_bandwidth = first_cpi->rc.max_frame_bandwidth; cur_cpi->rc.min_frame_bandwidth = first_cpi->rc.min_frame_bandwidth; cur_cpi->rc.intervals_till_gf_calculate_due = first_cpi->rc.intervals_till_gf_calculate_due; cur_cpi->mv_search_params.max_mv_magnitude = first_cpi->mv_search_params.max_mv_magnitude; if (gf_group->update_type[cur_cpi->gf_frame_index] == INTNL_ARF_UPDATE) { cur_cpi->common.lf.mode_ref_delta_enabled = 1; } cur_cpi->do_frame_data_update = false; // Initialize prev_ts_start and prev_ts_end for show frame(s) and show // existing frame(s). if (gf_group->arf_src_offset[i] == 0) { // Choose source of prev frame. int src_index = gf_group->src_offset[i]; struct lookahead_entry *prev_source = av1_lookahead_peek( ppi->lookahead, src_index - 1, cur_cpi->compressor_stage); // Save timestamps of prev frame. cur_cpi->time_stamps.prev_ts_start = prev_source->ts_start; cur_cpi->time_stamps.prev_ts_end = prev_source->ts_end; } cur_cpi->time_stamps.first_ts_start = first_cpi->time_stamps.first_ts_start; memcpy(cur_cpi->common.ref_frame_map, first_cpi->common.ref_frame_map, sizeof(first_cpi->common.ref_frame_map)); cur_cpi_data->lib_flags = 0; cur_cpi_data->timestamp_ratio = first_cpi_data->timestamp_ratio; cur_cpi_data->flush = first_cpi_data->flush; cur_cpi_data->frame_size = 0; if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) { // If the first frame in a parallel encode set is INTNL_ARF_UPDATE // frame, initialize lib_flags of frame_parallel_level 2 frame in the // set with that of frame_parallel_level 1 frame. cur_cpi_data->lib_flags = first_cpi_data->lib_flags; // Store the reference refresh index of frame_parallel_level 2 frame in // a parallel encode set of lower layer frames. cur_cpi->ref_refresh_index = av1_calc_refresh_idx_for_intnl_arf(cur_cpi, ref_frame_map_pairs, i); cur_cpi->refresh_idx_available = true; // Skip the reference frame which will be refreshed by // frame_parallel_level 1 frame in a parallel encode set of lower layer // frames. cur_cpi->ref_idx_to_skip = first_cpi->ref_refresh_index; } else { cur_cpi->ref_idx_to_skip = INVALID_IDX; cur_cpi->ref_refresh_index = INVALID_IDX; cur_cpi->refresh_idx_available = false; } cur_cpi->twopass_frame.stats_in = stats_in; av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, cur_cpi, i, 1, cur_cpi->common.remapped_ref_idx); av1_scale_references_fpmt(cur_cpi, ref_buffers_used_map); parallel_frame_count++; } // Set do_frame_data_update to true for the last frame_parallel_level 2 // frame in the current parallel encode set. if (i == (gf_group->size - 1) || (gf_group->frame_parallel_level[i + 1] == 0 && (gf_group->update_type[i + 1] == ARF_UPDATE || gf_group->update_type[i + 1] == INTNL_ARF_UPDATE)) || gf_group->frame_parallel_level[i + 1] == 1) { ppi->parallel_cpi[parallel_frame_count - 1]->do_frame_data_update = true; break; } } av1_increment_scaled_ref_counts_fpmt(first_cpi->common.buffer_pool, *ref_buffers_used_map); // Return the number of frames in the parallel encode set. return parallel_frame_count; } int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) { AV1_COMMON *cm = &cpi->common; if (!cm->show_frame) { return -1; } else { int ret; if (cm->cur_frame != NULL && !cpi->oxcf.algo_cfg.skip_postproc_filtering) { *dest = cm->cur_frame->buf; dest->y_width = cm->width; dest->y_height = cm->height; dest->uv_width = cm->width >> cm->seq_params->subsampling_x; dest->uv_height = cm->height >> cm->seq_params->subsampling_y; ret = 0; } else { ret = -1; } return ret; } } int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) { if (cpi->last_show_frame_buf == NULL || cpi->oxcf.algo_cfg.skip_postproc_filtering) return -1; *frame = cpi->last_show_frame_buf->buf; return 0; } aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm, YV12_BUFFER_CONFIG *new_frame, YV12_BUFFER_CONFIG *sd) { const int num_planes = av1_num_planes(cm); if (!equal_dimensions_and_border(new_frame, sd)) aom_internal_error(cm->error, AOM_CODEC_ERROR, "Incorrect buffer dimensions"); else aom_yv12_copy_frame(new_frame, sd, num_planes); return cm->error->error_code; } int av1_set_internal_size(AV1EncoderConfig *const oxcf, ResizePendingParams *resize_pending_params, AOM_SCALING_MODE horiz_mode, AOM_SCALING_MODE vert_mode) { int hr = 0, hs = 0, vr = 0, vs = 0; // Checks for invalid AOM_SCALING_MODE values. if (horiz_mode > AOME_ONETHREE || vert_mode > AOME_ONETHREE) return -1; Scale2Ratio(horiz_mode, &hr, &hs); Scale2Ratio(vert_mode, &vr, &vs); // always go to the next whole number resize_pending_params->width = (hs - 1 + oxcf->frm_dim_cfg.width * hr) / hs; resize_pending_params->height = (vs - 1 + oxcf->frm_dim_cfg.height * vr) / vs; if (horiz_mode != AOME_NORMAL || vert_mode != AOME_NORMAL) { oxcf->resize_cfg.resize_mode = RESIZE_FIXED; oxcf->algo_cfg.enable_tpl_model = 0; } return 0; } int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.quant_params.base_qindex; } int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *frame_size) { size_t output_size = 0; size_t total_bytes_read = 0; size_t remaining_size = *frame_size; uint8_t *buff_ptr = buffer; // go through each OBUs while (total_bytes_read < *frame_size) { uint8_t saved_obu_header[2]; uint64_t obu_payload_size; size_t length_of_payload_size; size_t length_of_obu_size; uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1; size_t obu_bytes_read = obu_header_size; // bytes read for current obu // save the obu header (1 or 2 bytes) memmove(saved_obu_header, buff_ptr, obu_header_size); // clear the obu_has_size_field saved_obu_header[0] = saved_obu_header[0] & (~0x2); // get the payload_size and length of payload_size if (aom_uleb_decode(buff_ptr + obu_header_size, remaining_size, &obu_payload_size, &length_of_payload_size) != 0) { return AOM_CODEC_ERROR; } obu_bytes_read += length_of_payload_size; // calculate the length of size of the obu header plus payload length_of_obu_size = aom_uleb_size_in_bytes((uint64_t)(obu_header_size + obu_payload_size)); // move the rest of data to new location memmove(buff_ptr + length_of_obu_size + obu_header_size, buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read); obu_bytes_read += (size_t)obu_payload_size; // write the new obu size const uint64_t obu_size = obu_header_size + obu_payload_size; size_t coded_obu_size; if (aom_uleb_encode(obu_size, sizeof(obu_size), buff_ptr, &coded_obu_size) != 0) { return AOM_CODEC_ERROR; } // write the saved (modified) obu_header following obu size memmove(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size); total_bytes_read += obu_bytes_read; remaining_size -= obu_bytes_read; buff_ptr += length_of_obu_size + obu_size; output_size += length_of_obu_size + (size_t)obu_size; } *frame_size = output_size; return AOM_CODEC_OK; } static void rtc_set_updates_ref_frame_config( ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags, RTC_REF *const rtc_ref) { ext_refresh_frame_flags->update_pending = 1; ext_refresh_frame_flags->last_frame = rtc_ref->refresh[rtc_ref->ref_idx[0]]; ext_refresh_frame_flags->golden_frame = rtc_ref->refresh[rtc_ref->ref_idx[3]]; ext_refresh_frame_flags->bwd_ref_frame = rtc_ref->refresh[rtc_ref->ref_idx[4]]; ext_refresh_frame_flags->alt2_ref_frame = rtc_ref->refresh[rtc_ref->ref_idx[5]]; ext_refresh_frame_flags->alt_ref_frame = rtc_ref->refresh[rtc_ref->ref_idx[6]]; rtc_ref->non_reference_frame = 1; for (int i = 0; i < REF_FRAMES; i++) { if (rtc_ref->refresh[i] == 1) { rtc_ref->non_reference_frame = 0; break; } } } static int rtc_set_references_external_ref_frame_config(AV1_COMP *cpi) { // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). int ref = AOM_REFFRAME_ALL; for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { if (!cpi->ppi->rtc_ref.reference[i]) ref ^= (1 << i); } return ref; } void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) { // TODO(yunqingwang): For what references to use, external encoding flags // should be consistent with internal reference frame selection. Need to // ensure that there is not conflict between the two. In AV1 encoder, the // priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3, // GOLDEN, BWDREF, ALTREF2. ExternalFlags *const ext_flags = &cpi->ext_flags; ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = &ext_flags->refresh_frame; ext_flags->ref_frame_flags = AOM_REFFRAME_ALL; if (flags & (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 | AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD | AOM_EFLAG_NO_REF_ARF2)) { int ref = AOM_REFFRAME_ALL; if (flags & AOM_EFLAG_NO_REF_LAST) ref ^= AOM_LAST_FLAG; if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG; if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG; if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG; if (flags & AOM_EFLAG_NO_REF_ARF) { ref ^= AOM_ALT_FLAG; ref ^= AOM_BWD_FLAG; ref ^= AOM_ALT2_FLAG; } else { if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG; if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG; } av1_use_as_reference(&ext_flags->ref_frame_flags, ref); } else { if (cpi->ppi->rtc_ref.set_ref_frame_config) { int ref = rtc_set_references_external_ref_frame_config(cpi); av1_use_as_reference(&ext_flags->ref_frame_flags, ref); } } if (flags & (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) { int upd = AOM_REFFRAME_ALL; // Refreshing LAST/LAST2/LAST3 is handled by 1 common flag. if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG; if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG; if (flags & AOM_EFLAG_NO_UPD_ARF) { upd ^= AOM_ALT_FLAG; upd ^= AOM_BWD_FLAG; upd ^= AOM_ALT2_FLAG; } ext_refresh_frame_flags->last_frame = (upd & AOM_LAST_FLAG) != 0; ext_refresh_frame_flags->golden_frame = (upd & AOM_GOLD_FLAG) != 0; ext_refresh_frame_flags->alt_ref_frame = (upd & AOM_ALT_FLAG) != 0; ext_refresh_frame_flags->bwd_ref_frame = (upd & AOM_BWD_FLAG) != 0; ext_refresh_frame_flags->alt2_ref_frame = (upd & AOM_ALT2_FLAG) != 0; ext_refresh_frame_flags->update_pending = 1; } else { if (cpi->ppi->rtc_ref.set_ref_frame_config) rtc_set_updates_ref_frame_config(ext_refresh_frame_flags, &cpi->ppi->rtc_ref); else ext_refresh_frame_flags->update_pending = 0; } ext_flags->use_ref_frame_mvs = cpi->oxcf.tool_cfg.enable_ref_frame_mvs & ((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0); ext_flags->use_error_resilient = cpi->oxcf.tool_cfg.error_resilient_mode | ((flags & AOM_EFLAG_ERROR_RESILIENT) != 0); ext_flags->use_s_frame = cpi->oxcf.kf_cfg.enable_sframe | ((flags & AOM_EFLAG_SET_S_FRAME) != 0); ext_flags->use_primary_ref_none = (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0; if (flags & AOM_EFLAG_NO_UPD_ENTROPY) { update_entropy(&ext_flags->refresh_frame_context, &ext_flags->refresh_frame_context_pending, 0); } } aom_fixed_buf_t *av1_get_global_headers(AV1_PRIMARY *ppi) { if (!ppi) return NULL; uint8_t header_buf[512] = { 0 }; const uint32_t sequence_header_size = av1_write_sequence_header_obu(&ppi->seq_params, &header_buf[0]); assert(sequence_header_size <= sizeof(header_buf)); if (sequence_header_size == 0) return NULL; const size_t obu_header_size = 1; const size_t size_field_size = aom_uleb_size_in_bytes(sequence_header_size); const size_t payload_offset = obu_header_size + size_field_size; if (payload_offset + sequence_header_size > sizeof(header_buf)) return NULL; memmove(&header_buf[payload_offset], &header_buf[0], sequence_header_size); if (av1_write_obu_header(&ppi->level_params, &ppi->cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, &header_buf[0]) != obu_header_size) { return NULL; } size_t coded_size_field_size = 0; if (aom_uleb_encode(sequence_header_size, size_field_size, &header_buf[obu_header_size], &coded_size_field_size) != 0) { return NULL; } assert(coded_size_field_size == size_field_size); aom_fixed_buf_t *global_headers = (aom_fixed_buf_t *)malloc(sizeof(*global_headers)); if (!global_headers) return NULL; const size_t global_header_buf_size = obu_header_size + size_field_size + sequence_header_size; global_headers->buf = malloc(global_header_buf_size); if (!global_headers->buf) { free(global_headers); return NULL; } memcpy(global_headers->buf, &header_buf[0], global_header_buf_size); global_headers->sz = global_header_buf_size; return global_headers; }