/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ /*!\file * \brief Declares top-level encoder structures and functions. */ #ifndef AOM_AV1_ENCODER_ENCODER_H_ #define AOM_AV1_ENCODER_ENCODER_H_ #include #include #include "config/aom_config.h" #include "aom/aomcx.h" #include "av1/common/alloccommon.h" #include "av1/common/av1_common_int.h" #include "av1/common/blockd.h" #include "av1/common/entropymode.h" #include "av1/common/enums.h" #include "av1/common/reconintra.h" #include "av1/common/resize.h" #include "av1/common/thread_common.h" #include "av1/common/timing.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/block.h" #include "av1/encoder/context_tree.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/external_partition.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/global_motion.h" #include "av1/encoder/level.h" #include "av1/encoder/lookahead.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/pickcdef.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/speed_features.h" #include "av1/encoder/svc_layercontext.h" #include "av1/encoder/temporal_filter.h" #include "av1/encoder/thirdpass.h" #include "av1/encoder/tokenize.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/av1_noise_estimate.h" #include "av1/encoder/bitstream.h" #if CONFIG_INTERNAL_STATS #include "aom_dsp/ssim.h" #endif #include "aom_dsp/variance.h" #if CONFIG_DENOISE #include "aom_dsp/noise_model.h" #endif #if CONFIG_TUNE_VMAF #include "av1/encoder/tune_vmaf.h" #endif #if CONFIG_AV1_TEMPORAL_DENOISING #include "av1/encoder/av1_temporal_denoiser.h" #endif #if CONFIG_TUNE_BUTTERAUGLI #include "av1/encoder/tune_butteraugli.h" #endif #include "aom/internal/aom_codec_internal.h" #include "aom_util/aom_thread.h" #ifdef __cplusplus extern "C" { #endif // TODO(yunqing, any): Added suppression tag to quiet Doxygen warnings. Need to // adjust it while we work on documentation. /*!\cond */ // Number of frames required to test for scene cut detection #define SCENE_CUT_KEY_TEST_INTERVAL 16 // Lookahead index threshold to enable temporal filtering for second arf. #define TF_LOOKAHEAD_IDX_THR 7 #define HDR_QP_LEVELS 10 #define CHROMA_CB_QP_SCALE 1.04 #define CHROMA_CR_QP_SCALE 1.04 #define CHROMA_QP_SCALE -0.46 #define CHROMA_QP_OFFSET 9.26 #define QP_SCALE_FACTOR 2.0 #define DISABLE_HDR_LUMA_DELTAQ 1 // Rational number with an int64 numerator // This structure holds a fractional value typedef struct aom_rational64 { int64_t num; // fraction numerator int den; // fraction denominator } aom_rational64_t; // alias for struct aom_rational enum { // Good Quality Fast Encoding. The encoder balances quality with the amount of // time it takes to encode the output. Speed setting controls how fast. GOOD, // Realtime Fast Encoding. Will force some restrictions on bitrate // constraints. REALTIME, // All intra mode. All the frames are coded as intra frames. ALLINTRA } UENUM1BYTE(MODE); enum { FRAMEFLAGS_KEY = 1 << 0, FRAMEFLAGS_GOLDEN = 1 << 1, FRAMEFLAGS_BWDREF = 1 << 2, // TODO(zoeliu): To determine whether a frame flag is needed for ALTREF2_FRAME FRAMEFLAGS_ALTREF = 1 << 3, FRAMEFLAGS_INTRAONLY = 1 << 4, FRAMEFLAGS_SWITCH = 1 << 5, FRAMEFLAGS_ERROR_RESILIENT = 1 << 6, } UENUM1BYTE(FRAMETYPE_FLAGS); #if CONFIG_FPMT_TEST enum { PARALLEL_ENCODE = 0, PARALLEL_SIMULATION_ENCODE, NUM_FPMT_TEST_ENCODES } UENUM1BYTE(FPMT_TEST_ENC_CFG); #endif // CONFIG_FPMT_TEST // 0 level frames are sometimes used for rate control purposes, but for // reference mapping purposes, the minimum level should be 1. #define MIN_PYR_LEVEL 1 static INLINE int get_true_pyr_level(int frame_level, int frame_order, int max_layer_depth) { if (frame_order == 0) { // Keyframe case return MIN_PYR_LEVEL; } else if (frame_level == MAX_ARF_LAYERS) { // Leaves return max_layer_depth; } else if (frame_level == (MAX_ARF_LAYERS + 1)) { // Altrefs return MIN_PYR_LEVEL; } return AOMMAX(MIN_PYR_LEVEL, frame_level); } enum { NO_AQ = 0, VARIANCE_AQ = 1, COMPLEXITY_AQ = 2, CYCLIC_REFRESH_AQ = 3, AQ_MODE_COUNT // This should always be the last member of the enum } UENUM1BYTE(AQ_MODE); enum { NO_DELTA_Q = 0, DELTA_Q_OBJECTIVE = 1, // Modulation to improve objective quality DELTA_Q_PERCEPTUAL = 2, // Modulation to improve video perceptual quality DELTA_Q_PERCEPTUAL_AI = 3, // Perceptual quality opt for all intra mode DELTA_Q_USER_RATING_BASED = 4, // User rating based delta q mode DELTA_Q_HDR = 5, // QP adjustment based on HDR block pixel average DELTA_Q_MODE_COUNT // This should always be the last member of the enum } UENUM1BYTE(DELTAQ_MODE); enum { RESIZE_NONE = 0, // No frame resizing allowed. RESIZE_FIXED = 1, // All frames are coded at the specified scale. RESIZE_RANDOM = 2, // All frames are coded at a random scale. RESIZE_DYNAMIC = 3, // Frames coded at lower scale based on rate control. RESIZE_MODES } UENUM1BYTE(RESIZE_MODE); enum { SS_CFG_SRC = 0, SS_CFG_LOOKAHEAD = 1, SS_CFG_FPF = 2, SS_CFG_TOTAL = 3 } UENUM1BYTE(SS_CFG_OFFSET); enum { DISABLE_SCENECUT, // For LAP, lag_in_frames < 19 ENABLE_SCENECUT_MODE_1, // For LAP, lag_in_frames >=19 and < 33 ENABLE_SCENECUT_MODE_2 // For twopass and LAP - lag_in_frames >=33 } UENUM1BYTE(SCENECUT_MODE); #define MAX_VBR_CORPUS_COMPLEXITY 10000 typedef enum { MOD_FP, // First pass MOD_TF, // Temporal filtering MOD_TPL, // TPL MOD_GME, // Global motion estimation MOD_ENC, // Encode stage MOD_LPF, // Deblocking loop filter MOD_CDEF_SEARCH, // CDEF search MOD_CDEF, // CDEF frame MOD_LR, // Loop restoration filtering MOD_PACK_BS, // Pack bitstream MOD_FRAME_ENC, // Frame Parallel encode MOD_AI, // All intra NUM_MT_MODULES } MULTI_THREADED_MODULES; /*!\endcond */ /*!\enum COST_UPDATE_TYPE * \brief This enum controls how often the entropy costs should be updated. * \warning In case of any modifications/additions done to the enum * COST_UPDATE_TYPE, the enum INTERNAL_COST_UPDATE_TYPE needs to be updated as * well. */ typedef enum { COST_UPD_SB, /*!< Update every sb. */ COST_UPD_SBROW, /*!< Update every sb rows inside a tile. */ COST_UPD_TILE, /*!< Update every tile. */ COST_UPD_OFF, /*!< Turn off cost updates. */ NUM_COST_UPDATE_TYPES, /*!< Number of cost update types. */ } COST_UPDATE_TYPE; /*!\enum LOOPFILTER_CONTROL * \brief This enum controls to which frames loopfilter is applied. */ typedef enum { LOOPFILTER_NONE = 0, /*!< Disable loopfilter on all frames. */ LOOPFILTER_ALL = 1, /*!< Enable loopfilter for all frames. */ LOOPFILTER_REFERENCE = 2, /*!< Disable loopfilter on non reference frames. */ LOOPFILTER_SELECTIVELY = 3, /*!< Disable loopfilter on frames with low motion. */ } LOOPFILTER_CONTROL; /*!\enum SKIP_APPLY_POSTPROC_FILTER * \brief This enum controls the application of post-processing filters on a * reconstructed frame. */ typedef enum { SKIP_APPLY_RESTORATION = 1 << 0, SKIP_APPLY_SUPERRES = 1 << 1, SKIP_APPLY_CDEF = 1 << 2, SKIP_APPLY_LOOPFILTER = 1 << 3, } SKIP_APPLY_POSTPROC_FILTER; /*! * \brief Encoder config related to resize. */ typedef struct { /*! * Indicates the frame resize mode to be used by the encoder. */ RESIZE_MODE resize_mode; /*! * Indicates the denominator for resize of inter frames, assuming 8 as the * numerator. Its value ranges between 8-16. */ uint8_t resize_scale_denominator; /*! * Indicates the denominator for resize of key frames, assuming 8 as the * numerator. Its value ranges between 8-16. */ uint8_t resize_kf_scale_denominator; } ResizeCfg; /*! * \brief Encoder config for coding block partitioning. */ typedef struct { /*! * Flag to indicate if rectanguar partitions should be enabled. */ bool enable_rect_partitions; /*! * Flag to indicate if AB partitions should be enabled. */ bool enable_ab_partitions; /*! * Flag to indicate if 1:4 / 4:1 partitions should be enabled. */ bool enable_1to4_partitions; /*! * Indicates the minimum partition size that should be allowed. Both width and * height of a partition cannot be smaller than the min_partition_size. */ BLOCK_SIZE min_partition_size; /*! * Indicates the maximum partition size that should be allowed. Both width and * height of a partition cannot be larger than the max_partition_size. */ BLOCK_SIZE max_partition_size; } PartitionCfg; /*! * \brief Encoder flags for intra prediction. */ typedef struct { /*! * Flag to indicate if intra edge filtering process should be enabled. */ bool enable_intra_edge_filter; /*! * Flag to indicate if recursive filtering based intra prediction should be * enabled. */ bool enable_filter_intra; /*! * Flag to indicate if smooth intra prediction modes should be enabled. */ bool enable_smooth_intra; /*! * Flag to indicate if PAETH intra prediction mode should be enabled. */ bool enable_paeth_intra; /*! * Flag to indicate if CFL uv intra mode should be enabled. */ bool enable_cfl_intra; /*! * Flag to indicate if directional modes should be enabled. */ bool enable_directional_intra; /*! * Flag to indicate if the subset of directional modes from D45 to D203 intra * should be enabled. Has no effect if directional modes are disabled. */ bool enable_diagonal_intra; /*! * Flag to indicate if delta angles for directional intra prediction should be * enabled. */ bool enable_angle_delta; /*! * Flag to indicate whether to automatically turn off several intral coding * tools. * This flag is only used when "--deltaq-mode=3" is true. * When set to 1, the encoder will analyze the reconstruction quality * as compared to the source image in the preprocessing pass. * If the recontruction quality is considered high enough, we disable * the following intra coding tools, for better encoding speed: * "--enable_smooth_intra", * "--enable_paeth_intra", * "--enable_cfl_intra", * "--enable_diagonal_intra". */ bool auto_intra_tools_off; } IntraModeCfg; /*! * \brief Encoder flags for transform sizes and types. */ typedef struct { /*! * Flag to indicate if 64-pt transform should be enabled. */ bool enable_tx64; /*! * Flag to indicate if flip and identity transform types should be enabled. */ bool enable_flip_idtx; /*! * Flag to indicate if rectangular transform should be enabled. */ bool enable_rect_tx; /*! * Flag to indicate whether or not to use a default reduced set for ext-tx * rather than the potential full set of 16 transforms. */ bool reduced_tx_type_set; /*! * Flag to indicate if transform type for intra blocks should be limited to * DCT_DCT. */ bool use_intra_dct_only; /*! * Flag to indicate if transform type for inter blocks should be limited to * DCT_DCT. */ bool use_inter_dct_only; /*! * Flag to indicate if intra blocks should use default transform type * (mode-dependent) only. */ bool use_intra_default_tx_only; /*! * Flag to indicate if transform size search should be enabled. */ bool enable_tx_size_search; } TxfmSizeTypeCfg; /*! * \brief Encoder flags for compound prediction modes. */ typedef struct { /*! * Flag to indicate if distance-weighted compound type should be enabled. */ bool enable_dist_wtd_comp; /*! * Flag to indicate if masked (wedge/diff-wtd) compound type should be * enabled. */ bool enable_masked_comp; /*! * Flag to indicate if smooth interintra mode should be enabled. */ bool enable_smooth_interintra; /*! * Flag to indicate if difference-weighted compound type should be enabled. */ bool enable_diff_wtd_comp; /*! * Flag to indicate if inter-inter wedge compound type should be enabled. */ bool enable_interinter_wedge; /*! * Flag to indicate if inter-intra wedge compound type should be enabled. */ bool enable_interintra_wedge; } CompoundTypeCfg; /*! * \brief Encoder config related to frame super-resolution. */ typedef struct { /*! * Indicates the qindex based threshold to be used when AOM_SUPERRES_QTHRESH * mode is used for inter frames. */ int superres_qthresh; /*! * Indicates the qindex based threshold to be used when AOM_SUPERRES_QTHRESH * mode is used for key frames. */ int superres_kf_qthresh; /*! * Indicates the denominator of the fraction that specifies the ratio between * the superblock width before and after upscaling for inter frames. The * numerator of this fraction is equal to the constant SCALE_NUMERATOR. */ uint8_t superres_scale_denominator; /*! * Indicates the denominator of the fraction that specifies the ratio between * the superblock width before and after upscaling for key frames. The * numerator of this fraction is equal to the constant SCALE_NUMERATOR. */ uint8_t superres_kf_scale_denominator; /*! * Indicates the Super-resolution mode to be used by the encoder. */ aom_superres_mode superres_mode; /*! * Flag to indicate if super-resolution should be enabled for the sequence. */ bool enable_superres; } SuperResCfg; /*! * \brief Encoder config related to the coding of key frames. */ typedef struct { /*! * Indicates the minimum distance to a key frame. */ int key_freq_min; /*! * Indicates the maximum distance to a key frame. */ int key_freq_max; /*! * Indicates if temporal filtering should be applied on keyframe. */ int enable_keyframe_filtering; /*! * Indicates the number of frames after which a frame may be coded as an * S-Frame. */ int sframe_dist; /*! * Indicates how an S-Frame should be inserted. * 1: the considered frame will be made into an S-Frame only if it is an * altref frame. 2: the next altref frame will be made into an S-Frame. */ int sframe_mode; /*! * Indicates if encoder should autodetect cut scenes and set the keyframes. */ bool auto_key; /*! * Indicates the forward key frame distance. */ int fwd_kf_dist; /*! * Indicates if forward keyframe reference should be enabled. */ bool fwd_kf_enabled; /*! * Indicates if S-Frames should be enabled for the sequence. */ bool enable_sframe; /*! * Indicates if intra block copy prediction mode should be enabled or not. */ bool enable_intrabc; } KeyFrameCfg; /*! * \brief Encoder rate control configuration parameters */ typedef struct { /*!\cond */ // BUFFERING PARAMETERS /*!\endcond */ /*! * Indicates the amount of data that will be buffered by the decoding * application prior to beginning playback, and is expressed in units of * time(milliseconds). */ int64_t starting_buffer_level_ms; /*! * Indicates the amount of data that the encoder should try to maintain in the * decoder's buffer, and is expressed in units of time(milliseconds). */ int64_t optimal_buffer_level_ms; /*! * Indicates the maximum amount of data that may be buffered by the decoding * application, and is expressed in units of time(milliseconds). */ int64_t maximum_buffer_size_ms; /*! * Indicates the bandwidth to be used in bits per second. */ int64_t target_bandwidth; /*! * Indicates average complexity of the corpus in single pass vbr based on * LAP. 0 indicates that corpus complexity vbr mode is disabled. */ unsigned int vbr_corpus_complexity_lap; /*! * Indicates the maximum allowed bitrate for any intra frame as % of bitrate * target. */ unsigned int max_intra_bitrate_pct; /*! * Indicates the maximum allowed bitrate for any inter frame as % of bitrate * target. */ unsigned int max_inter_bitrate_pct; /*! * Indicates the percentage of rate boost for golden frame in CBR mode. */ unsigned int gf_cbr_boost_pct; /*! * min_cr / 100 indicates the target minimum compression ratio for each * frame. */ unsigned int min_cr; /*! * Indicates the frame drop threshold. */ int drop_frames_water_mark; /*! * under_shoot_pct indicates the tolerance of the VBR algorithm to * undershoot and is used as a trigger threshold for more aggressive * adaptation of Q. It's value can range from 0-100. */ int under_shoot_pct; /*! * over_shoot_pct indicates the tolerance of the VBR algorithm to overshoot * and is used as a trigger threshold for more aggressive adaptation of Q. * It's value can range from 0-1000. */ int over_shoot_pct; /*! * Indicates the maximum qindex that can be used by the quantizer i.e. the * worst quality qindex. */ int worst_allowed_q; /*! * Indicates the minimum qindex that can be used by the quantizer i.e. the * best quality qindex. */ int best_allowed_q; /*! * Indicates the Constant/Constrained Quality level. */ int cq_level; /*! * Indicates if the encoding mode is vbr, cbr, constrained quality or * constant quality. */ enum aom_rc_mode mode; /*! * Indicates the bias (expressed on a scale of 0 to 100) for determining * target size for the current frame. The value 0 indicates the optimal CBR * mode value should be used, and 100 indicates the optimal VBR mode value * should be used. */ int vbrbias; /*! * Indicates the minimum bitrate to be used for a single frame as a percentage * of the target bitrate. */ int vbrmin_section; /*! * Indicates the maximum bitrate to be used for a single frame as a percentage * of the target bitrate. */ int vbrmax_section; } RateControlCfg; /*!\cond */ typedef struct { // Indicates the number of frames lag before encoding is started. int lag_in_frames; // Indicates the minimum gf/arf interval to be used. int min_gf_interval; // Indicates the maximum gf/arf interval to be used. int max_gf_interval; // Indicates the minimum height for GF group pyramid structure to be used. int gf_min_pyr_height; // Indicates the maximum height for GF group pyramid structure to be used. int gf_max_pyr_height; // Indicates if automatic set and use of altref frames should be enabled. bool enable_auto_arf; // Indicates if automatic set and use of (b)ackward (r)ef (f)rames should be // enabled. bool enable_auto_brf; } GFConfig; typedef struct { // Indicates the number of tile groups. unsigned int num_tile_groups; // Indicates the MTU size for a tile group. If mtu is non-zero, // num_tile_groups is set to DEFAULT_MAX_NUM_TG. unsigned int mtu; // Indicates the number of tile columns in log2. int tile_columns; // Indicates the number of tile rows in log2. int tile_rows; // Indicates the number of widths in the tile_widths[] array. int tile_width_count; // Indicates the number of heights in the tile_heights[] array. int tile_height_count; // Indicates the tile widths, and may be empty. int tile_widths[MAX_TILE_COLS]; // Indicates the tile heights, and may be empty. int tile_heights[MAX_TILE_ROWS]; // Indicates if large scale tile coding should be used. bool enable_large_scale_tile; // Indicates if single tile decoding mode should be enabled. bool enable_single_tile_decoding; // Indicates if EXT_TILE_DEBUG should be enabled. bool enable_ext_tile_debug; } TileConfig; typedef struct { // Indicates the width of the input frame. int width; // Indicates the height of the input frame. int height; // If forced_max_frame_width is non-zero then it is used to force the maximum // frame width written in write_sequence_header(). int forced_max_frame_width; // If forced_max_frame_width is non-zero then it is used to force the maximum // frame height written in write_sequence_header(). int forced_max_frame_height; // Indicates the frame width after applying both super-resolution and resize // to the coded frame. int render_width; // Indicates the frame height after applying both super-resolution and resize // to the coded frame. int render_height; } FrameDimensionCfg; typedef struct { // Indicates if warped motion should be enabled. bool enable_warped_motion; // Indicates if warped motion should be evaluated or not. bool allow_warped_motion; // Indicates if OBMC motion should be enabled. bool enable_obmc; } MotionModeCfg; typedef struct { // Timing info for each frame. aom_timing_info_t timing_info; // Indicates the number of time units of a decoding clock. uint32_t num_units_in_decoding_tick; // Indicates if decoder model information is present in the coded sequence // header. bool decoder_model_info_present_flag; // Indicates if display model information is present in the coded sequence // header. bool display_model_info_present_flag; // Indicates if timing info for each frame is present. bool timing_info_present; } DecoderModelCfg; typedef struct { // Indicates the update frequency for coeff costs. COST_UPDATE_TYPE coeff; // Indicates the update frequency for mode costs. COST_UPDATE_TYPE mode; // Indicates the update frequency for mv costs. COST_UPDATE_TYPE mv; // Indicates the update frequency for dv costs. COST_UPDATE_TYPE dv; } CostUpdateFreq; typedef struct { // Indicates the maximum number of reference frames allowed per frame. unsigned int max_reference_frames; // Indicates if the reduced set of references should be enabled. bool enable_reduced_reference_set; // Indicates if one-sided compound should be enabled. bool enable_onesided_comp; } RefFrameCfg; typedef struct { // Indicates the color space that should be used. aom_color_primaries_t color_primaries; // Indicates the characteristics of transfer function to be used. aom_transfer_characteristics_t transfer_characteristics; // Indicates the matrix coefficients to be used for the transfer function. aom_matrix_coefficients_t matrix_coefficients; // Indicates the chroma 4:2:0 sample position info. aom_chroma_sample_position_t chroma_sample_position; // Indicates if a limited color range or full color range should be used. aom_color_range_t color_range; } ColorCfg; typedef struct { // Indicates if extreme motion vector unit test should be enabled or not. unsigned int motion_vector_unit_test; // Indicates if superblock multipass unit test should be enabled or not. unsigned int sb_multipass_unit_test; } UnitTestCfg; typedef struct { // Indicates the file path to the VMAF model. const char *vmaf_model_path; // Indicates the path to the film grain parameters. const char *film_grain_table_filename; // Indicates the visual tuning metric. aom_tune_metric tuning; // Indicates if the current content is screen or default type. aom_tune_content content; // Indicates the film grain parameters. int film_grain_test_vector; // Indicates the in-block distortion metric to use. aom_dist_metric dist_metric; } TuneCfg; typedef struct { // Indicates the framerate of the input video. double init_framerate; // Indicates the bit-depth of the input video. unsigned int input_bit_depth; // Indicates the maximum number of frames to be encoded. unsigned int limit; // Indicates the chrome subsampling x value. unsigned int chroma_subsampling_x; // Indicates the chrome subsampling y value. unsigned int chroma_subsampling_y; } InputCfg; typedef struct { // If true, encoder will use fixed QP offsets, that are either: // - Given by the user, and stored in 'fixed_qp_offsets' array, OR // - Picked automatically from cq_level. int use_fixed_qp_offsets; // Indicates the minimum flatness of the quantization matrix. int qm_minlevel; // Indicates the maximum flatness of the quantization matrix. int qm_maxlevel; // Indicates if adaptive quantize_b should be enabled. int quant_b_adapt; // Indicates the Adaptive Quantization mode to be used. AQ_MODE aq_mode; // Indicates the delta q mode to be used. DELTAQ_MODE deltaq_mode; // Indicates the delta q mode strength. DELTAQ_MODE deltaq_strength; // Indicates if delta quantization should be enabled in chroma planes. bool enable_chroma_deltaq; // Indicates if delta quantization should be enabled for hdr video bool enable_hdr_deltaq; // Indicates if encoding with quantization matrices should be enabled. bool using_qm; } QuantizationCfg; /*!\endcond */ /*! * \brief Algorithm configuration parameters. */ typedef struct { /*! * Controls the level at which rate-distortion optimization of transform * coefficients favours sharpness in the block. Has no impact on RD when set * to zero (default). For values 1-7, eob and skip block optimization are * avoided and rdmult is adjusted in favour of block sharpness. */ int sharpness; /*! * Indicates the trellis optimization mode of quantized coefficients. * 0: disabled * 1: enabled * 2: enabled for rd search * 3: true for estimate yrd search */ int disable_trellis_quant; /*! * The maximum number of frames used to create an arf. */ int arnr_max_frames; /*! * The temporal filter strength for arf used when creating ARFs. */ int arnr_strength; /*! * Indicates the CDF update mode * 0: no update * 1: update on every frame(default) * 2: selectively update */ uint8_t cdf_update_mode; /*! * Indicates if RDO based on frame temporal dependency should be enabled. */ bool enable_tpl_model; /*! * Indicates if coding of overlay frames for filtered ALTREF frames is * enabled. */ bool enable_overlay; /*! * Controls loop filtering * 0: Loop filter is disabled for all frames * 1: Loop filter is enabled for all frames * 2: Loop filter is disabled for non-reference frames * 3: Loop filter is disables for the frames with low motion */ LOOPFILTER_CONTROL loopfilter_control; /*! * Indicates if the application of post-processing filters should be skipped * on reconstructed frame. */ bool skip_postproc_filtering; } AlgoCfg; /*!\cond */ typedef struct { // Indicates the codec bit-depth. aom_bit_depth_t bit_depth; // Indicates the superblock size that should be used by the encoder. aom_superblock_size_t superblock_size; // Indicates if loopfilter modulation should be enabled. bool enable_deltalf_mode; // Indicates how CDEF should be applied. CDEF_CONTROL cdef_control; // Indicates if loop restoration filter should be enabled. bool enable_restoration; // When enabled, video mode should be used even for single frame input. bool force_video_mode; // Indicates if the error resiliency features should be enabled. bool error_resilient_mode; // Indicates if frame parallel decoding feature should be enabled. bool frame_parallel_decoding_mode; // Indicates if the input should be encoded as monochrome. bool enable_monochrome; // When enabled, the encoder will use a full header even for still pictures. // When disabled, a reduced header is used for still pictures. bool full_still_picture_hdr; // Indicates if dual interpolation filters should be enabled. bool enable_dual_filter; // Indicates if frame order hint should be enabled or not. bool enable_order_hint; // Indicates if ref_frame_mvs should be enabled at the sequence level. bool ref_frame_mvs_present; // Indicates if ref_frame_mvs should be enabled at the frame level. bool enable_ref_frame_mvs; // Indicates if interintra compound mode is enabled. bool enable_interintra_comp; // Indicates if global motion should be enabled. bool enable_global_motion; // Indicates if palette should be enabled. bool enable_palette; } ToolCfg; /*!\endcond */ /*! * \brief Main encoder configuration data structure. */ typedef struct AV1EncoderConfig { /*!\cond */ // Configuration related to the input video. InputCfg input_cfg; // Configuration related to frame-dimensions. FrameDimensionCfg frm_dim_cfg; /*!\endcond */ /*! * Encoder algorithm configuration. */ AlgoCfg algo_cfg; /*! * Configuration related to key-frames. */ KeyFrameCfg kf_cfg; /*! * Rate control configuration */ RateControlCfg rc_cfg; /*!\cond */ // Configuration related to Quantization. QuantizationCfg q_cfg; // Internal frame size scaling. ResizeCfg resize_cfg; // Frame Super-Resolution size scaling. SuperResCfg superres_cfg; /*!\endcond */ /*! * stats_in buffer contains all of the stats packets produced in the first * pass, concatenated. */ aom_fixed_buf_t twopass_stats_in; /*!\cond */ // Configuration related to encoder toolsets. ToolCfg tool_cfg; // Configuration related to Group of frames. GFConfig gf_cfg; // Tile related configuration parameters. TileConfig tile_cfg; // Configuration related to Tune. TuneCfg tune_cfg; // Configuration related to color. ColorCfg color_cfg; // Configuration related to decoder model. DecoderModelCfg dec_model_cfg; // Configuration related to reference frames. RefFrameCfg ref_frm_cfg; // Configuration related to unit tests. UnitTestCfg unit_test_cfg; // Flags related to motion mode. MotionModeCfg motion_mode_cfg; // Flags related to intra mode search. IntraModeCfg intra_mode_cfg; // Flags related to transform size/type. TxfmSizeTypeCfg txfm_cfg; // Flags related to compound type. CompoundTypeCfg comp_type_cfg; // Partition related information. PartitionCfg part_cfg; // Configuration related to frequency of cost update. CostUpdateFreq cost_upd_freq; #if CONFIG_DENOISE // Indicates the noise level. float noise_level; // Indicates the the denoisers block size. int noise_block_size; // Indicates whether to apply denoising to the frame to be encoded int enable_dnl_denoising; #endif #if CONFIG_AV1_TEMPORAL_DENOISING // Noise sensitivity. int noise_sensitivity; #endif // Bit mask to specify which tier each of the 32 possible operating points // conforms to. unsigned int tier_mask; // Indicates the number of pixels off the edge of a reference frame we're // allowed to go when forming an inter prediction. int border_in_pixels; // Indicates the maximum number of threads that may be used by the encoder. int max_threads; // Indicates the speed preset to be used. int speed; // Indicates the target sequence level index for each operating point(OP). AV1_LEVEL target_seq_level_idx[MAX_NUM_OPERATING_POINTS]; // Indicates the bitstream profile to be used. BITSTREAM_PROFILE profile; /*!\endcond */ /*! * Indicates the current encoder pass : * AOM_RC_ONE_PASS = One pass encode, * AOM_RC_FIRST_PASS = First pass of multiple-pass * AOM_RC_SECOND_PASS = Second pass of multiple-pass * AOM_RC_THIRD_PASS = Third pass of multiple-pass */ enum aom_enc_pass pass; /*!\cond */ // Total number of encoding passes. int passes; // the name of the second pass output file when passes > 2 const char *two_pass_output; // the name of the second pass log file when passes > 2 const char *second_pass_log; // Indicates if the encoding is GOOD or REALTIME. MODE mode; // Indicates if row-based multi-threading should be enabled or not. bool row_mt; // Indicates if frame parallel multi-threading should be enabled or not. bool fp_mt; // Indicates if 16bit frame buffers are to be used i.e., the content is > // 8-bit. bool use_highbitdepth; // Indicates the bitstream syntax mode. 0 indicates bitstream is saved as // Section 5 bitstream, while 1 indicates the bitstream is saved in Annex - B // format. bool save_as_annexb; // The path for partition stats reading and writing, used in the experiment // CONFIG_PARTITION_SEARCH_ORDER. const char *partition_info_path; // The flag that indicates whether we use an external rate distribution to // guide adaptive quantization. It requires --deltaq-mode=3. The rate // distribution map file name is stored in |rate_distribution_info|. unsigned int enable_rate_guide_deltaq; // The input file of rate distribution information used in all intra mode // to determine delta quantization. const char *rate_distribution_info; // Exit the encoder when it fails to encode to a given level. int strict_level_conformance; // Max depth for the GOP after a key frame int kf_max_pyr_height; // A flag to control if we enable the superblock qp sweep for a given lambda int sb_qp_sweep; /*!\endcond */ } AV1EncoderConfig; /*!\cond */ static INLINE int is_lossless_requested(const RateControlCfg *const rc_cfg) { return rc_cfg->best_allowed_q == 0 && rc_cfg->worst_allowed_q == 0; } /*!\endcond */ /*! * \brief Encoder-side probabilities for pruning of various AV1 tools */ typedef struct { /*! * obmc_probs[i][j] is the probability of OBMC being the best motion mode for * jth block size and ith frame update type, averaged over past frames. If * obmc_probs[i][j] < thresh, then OBMC search is pruned. */ int obmc_probs[FRAME_UPDATE_TYPES][BLOCK_SIZES_ALL]; /*! * warped_probs[i] is the probability of warped motion being the best motion * mode for ith frame update type, averaged over past frames. If * warped_probs[i] < thresh, then warped motion search is pruned. */ int warped_probs[FRAME_UPDATE_TYPES]; /*! * tx_type_probs[i][j][k] is the probability of kth tx_type being the best * for jth transform size and ith frame update type, averaged over past * frames. If tx_type_probs[i][j][k] < thresh, then transform search for that * type is pruned. */ int tx_type_probs[FRAME_UPDATE_TYPES][TX_SIZES_ALL][TX_TYPES]; /*! * switchable_interp_probs[i][j][k] is the probability of kth interpolation * filter being the best for jth filter context and ith frame update type, * averaged over past frames. If switchable_interp_probs[i][j][k] < thresh, * then interpolation filter search is pruned for that case. */ int switchable_interp_probs[FRAME_UPDATE_TYPES][SWITCHABLE_FILTER_CONTEXTS] [SWITCHABLE_FILTERS]; } FrameProbInfo; /*!\cond */ typedef struct FRAME_COUNTS { // Note: This structure should only contain 'unsigned int' fields, or // aggregates built solely from 'unsigned int' fields/elements #if CONFIG_ENTROPY_STATS unsigned int kf_y_mode[KF_MODE_CONTEXTS][KF_MODE_CONTEXTS][INTRA_MODES]; unsigned int angle_delta[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1]; unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES]; unsigned int uv_mode[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES]; unsigned int cfl_sign[CFL_JOINT_SIGNS]; unsigned int cfl_alpha[CFL_ALPHA_CONTEXTS][CFL_ALPHABET_SIZE]; unsigned int palette_y_mode[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2]; unsigned int palette_uv_mode[PALETTE_UV_MODE_CONTEXTS][2]; unsigned int palette_y_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; unsigned int palette_uv_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; unsigned int palette_y_color_index[PALETTE_SIZES] [PALETTE_COLOR_INDEX_CONTEXTS] [PALETTE_COLORS]; unsigned int palette_uv_color_index[PALETTE_SIZES] [PALETTE_COLOR_INDEX_CONTEXTS] [PALETTE_COLORS]; unsigned int partition[PARTITION_CONTEXTS][EXT_PARTITION_TYPES]; unsigned int txb_skip[TOKEN_CDF_Q_CTXS][TX_SIZES][TXB_SKIP_CONTEXTS][2]; unsigned int eob_extra[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] [EOB_COEF_CONTEXTS][2]; unsigned int dc_sign[PLANE_TYPES][DC_SIGN_CONTEXTS][2]; unsigned int coeff_lps[TX_SIZES][PLANE_TYPES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS] [2]; unsigned int eob_flag[TX_SIZES][PLANE_TYPES][EOB_COEF_CONTEXTS][2]; unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][5]; unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][6]; unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][7]; unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][8]; unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][9]; unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][10]; unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][11]; unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] [LEVEL_CONTEXTS][BR_CDF_SIZE]; unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] [SIG_COEF_CONTEXTS][NUM_BASE_LEVELS + 2]; unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] [SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1]; unsigned int newmv_mode[NEWMV_MODE_CONTEXTS][2]; unsigned int zeromv_mode[GLOBALMV_MODE_CONTEXTS][2]; unsigned int refmv_mode[REFMV_MODE_CONTEXTS][2]; unsigned int drl_mode[DRL_MODE_CONTEXTS][2]; unsigned int inter_compound_mode[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES]; unsigned int wedge_idx[BLOCK_SIZES_ALL][16]; unsigned int interintra[BLOCK_SIZE_GROUPS][2]; unsigned int interintra_mode[BLOCK_SIZE_GROUPS][INTERINTRA_MODES]; unsigned int wedge_interintra[BLOCK_SIZES_ALL][2]; unsigned int compound_type[BLOCK_SIZES_ALL][MASKED_COMPOUND_TYPES]; unsigned int motion_mode[BLOCK_SIZES_ALL][MOTION_MODES]; unsigned int obmc[BLOCK_SIZES_ALL][2]; unsigned int intra_inter[INTRA_INTER_CONTEXTS][2]; unsigned int comp_inter[COMP_INTER_CONTEXTS][2]; unsigned int comp_ref_type[COMP_REF_TYPE_CONTEXTS][2]; unsigned int uni_comp_ref[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1][2]; unsigned int single_ref[REF_CONTEXTS][SINGLE_REFS - 1][2]; unsigned int comp_ref[REF_CONTEXTS][FWD_REFS - 1][2]; unsigned int comp_bwdref[REF_CONTEXTS][BWD_REFS - 1][2]; unsigned int intrabc[2]; unsigned int txfm_partition[TXFM_PARTITION_CONTEXTS][2]; unsigned int intra_tx_size[MAX_TX_CATS][TX_SIZE_CONTEXTS][MAX_TX_DEPTH + 1]; unsigned int skip_mode[SKIP_MODE_CONTEXTS][2]; unsigned int skip_txfm[SKIP_CONTEXTS][2]; unsigned int compound_index[COMP_INDEX_CONTEXTS][2]; unsigned int comp_group_idx[COMP_GROUP_IDX_CONTEXTS][2]; unsigned int delta_q[DELTA_Q_PROBS][2]; unsigned int delta_lf_multi[FRAME_LF_COUNT][DELTA_LF_PROBS][2]; unsigned int delta_lf[DELTA_LF_PROBS][2]; unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES]; unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES] [TX_TYPES]; unsigned int filter_intra_mode[FILTER_INTRA_MODES]; unsigned int filter_intra[BLOCK_SIZES_ALL][2]; unsigned int switchable_restore[RESTORE_SWITCHABLE_TYPES]; unsigned int wiener_restore[2]; unsigned int sgrproj_restore[2]; #endif // CONFIG_ENTROPY_STATS unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS] [SWITCHABLE_FILTERS]; } FRAME_COUNTS; #define INTER_MODE_RD_DATA_OVERALL_SIZE 6400 typedef struct { int ready; double a; double b; double dist_mean; double ld_mean; double sse_mean; double sse_sse_mean; double sse_ld_mean; int num; double dist_sum; double ld_sum; double sse_sum; double sse_sse_sum; double sse_ld_sum; } InterModeRdModel; typedef struct { int idx; int64_t rd; } RdIdxPair; // TODO(angiebird): This is an estimated size. We still need to figure what is // the maximum number of modes. #define MAX_INTER_MODES 1024 // TODO(any): rename this struct to something else. There is already another // struct called inter_mode_info, which makes this terribly confusing. /*!\endcond */ /*! * \brief Struct used to hold inter mode data for fast tx search. * * This struct is used to perform a full transform search only on winning * candidates searched with an estimate for transform coding RD. */ typedef struct inter_modes_info { /*! * The number of inter modes for which data was stored in each of the * following arrays. */ int num; /*! * Mode info struct for each of the candidate modes. */ MB_MODE_INFO mbmi_arr[MAX_INTER_MODES]; /*! * The rate for each of the candidate modes. */ int mode_rate_arr[MAX_INTER_MODES]; /*! * The sse of the predictor for each of the candidate modes. */ int64_t sse_arr[MAX_INTER_MODES]; /*! * The estimated rd of the predictor for each of the candidate modes. */ int64_t est_rd_arr[MAX_INTER_MODES]; /*! * The rate and mode index for each of the candidate modes. */ RdIdxPair rd_idx_pair_arr[MAX_INTER_MODES]; /*! * The full rd stats for each of the candidate modes. */ RD_STATS rd_cost_arr[MAX_INTER_MODES]; /*! * The full rd stats of luma only for each of the candidate modes. */ RD_STATS rd_cost_y_arr[MAX_INTER_MODES]; /*! * The full rd stats of chroma only for each of the candidate modes. */ RD_STATS rd_cost_uv_arr[MAX_INTER_MODES]; } InterModesInfo; /*!\cond */ typedef struct { // TODO(kyslov): consider changing to 64bit // This struct is used for computing variance in choose_partitioning(), where // the max number of samples within a superblock is 32x32 (with 4x4 avg). // With 8bit bitdepth, uint32_t is enough for sum_square_error (2^8 * 2^8 * 32 // * 32 = 2^26). For high bitdepth we need to consider changing this to 64 bit uint32_t sum_square_error; int32_t sum_error; int log2_count; int variance; } VPartVar; typedef struct { VPartVar none; VPartVar horz[2]; VPartVar vert[2]; } VPVariance; typedef struct { VPVariance part_variances; VPartVar split[4]; } VP4x4; typedef struct { VPVariance part_variances; VP4x4 split[4]; } VP8x8; typedef struct { VPVariance part_variances; VP8x8 split[4]; } VP16x16; typedef struct { VPVariance part_variances; VP16x16 split[4]; } VP32x32; typedef struct { VPVariance part_variances; VP32x32 split[4]; } VP64x64; typedef struct { VPVariance part_variances; VP64x64 *split; } VP128x128; /*!\endcond */ /*! * \brief Thresholds for variance based partitioning. */ typedef struct { /*! * If block variance > threshold, then that block is forced to split. * thresholds[0] - threshold for 128x128; * thresholds[1] - threshold for 64x64; * thresholds[2] - threshold for 32x32; * thresholds[3] - threshold for 16x16; * thresholds[4] - threshold for 8x8; */ int64_t thresholds[5]; /*! * MinMax variance threshold for 8x8 sub blocks of a 16x16 block. If actual * minmax > threshold_minmax, the 16x16 is forced to split. */ int64_t threshold_minmax; } VarBasedPartitionInfo; /*! * \brief Encoder parameters for synchronization of row based multi-threading */ typedef struct { #if CONFIG_MULTITHREAD /** * \name Synchronization objects for top-right dependency. */ /**@{*/ pthread_mutex_t *mutex_; /*!< Mutex lock object */ pthread_cond_t *cond_; /*!< Condition variable */ /**@}*/ #endif // CONFIG_MULTITHREAD /*! * Buffer to store the superblock whose encoding is complete. * num_finished_cols[i] stores the number of superblocks which finished * encoding in the ith superblock row. */ int *num_finished_cols; /*! * Denotes the superblock interval at which conditional signalling should * happen. Also denotes the minimum number of extra superblocks of the top row * to be complete to start encoding the current superblock. A value of 1 * indicates top-right dependency. */ int sync_range; /*! * Denotes the additional number of superblocks in the previous row to be * complete to start encoding the current superblock when intraBC tool is * enabled. This additional top-right delay is required to satisfy the * hardware constraints for intraBC tool when row multithreading is enabled. */ int intrabc_extra_top_right_sb_delay; /*! * Number of superblock rows. */ int rows; /*! * The superblock row (in units of MI blocks) to be processed next. */ int next_mi_row; /*! * Number of threads processing the current tile. */ int num_threads_working; } AV1EncRowMultiThreadSync; /*!\cond */ // TODO(jingning) All spatially adaptive variables should go to TileDataEnc. typedef struct TileDataEnc { TileInfo tile_info; DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx); FRAME_CONTEXT *row_ctx; uint64_t abs_sum_level; uint8_t allow_update_cdf; InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL]; AV1EncRowMultiThreadSync row_mt_sync; MV firstpass_top_mv; } TileDataEnc; typedef struct RD_COUNTS { int compound_ref_used_flag; int skip_mode_used_flag; int tx_type_used[TX_SIZES_ALL][TX_TYPES]; int obmc_used[BLOCK_SIZES_ALL][2]; int warped_used[2]; int newmv_or_intra_blocks; uint64_t seg_tmp_pred_cost[2]; } RD_COUNTS; typedef struct ThreadData { MACROBLOCK mb; MvCosts *mv_costs_alloc; IntraBCMVCosts *dv_costs_alloc; RD_COUNTS rd_counts; FRAME_COUNTS *counts; PC_TREE_SHARED_BUFFERS shared_coeff_buf; SIMPLE_MOTION_DATA_TREE *sms_tree; SIMPLE_MOTION_DATA_TREE *sms_root; uint32_t *hash_value_buffer[2][2]; OBMCBuffer obmc_buffer; PALETTE_BUFFER *palette_buffer; CompoundTypeRdBuffers comp_rd_buffer; CONV_BUF_TYPE *tmp_conv_dst; uint64_t abs_sum_level; uint8_t *tmp_pred_bufs[2]; uint8_t *wiener_tmp_pred_buf; int intrabc_used; int deltaq_used; int coefficient_size; int max_mv_magnitude; int interp_filter_selected[SWITCHABLE]; FRAME_CONTEXT *tctx; VP64x64 *vt64x64; int32_t num_64x64_blocks; PICK_MODE_CONTEXT *firstpass_ctx; TemporalFilterData tf_data; TplBuffers tpl_tmp_buffers; TplTxfmStats tpl_txfm_stats; GlobalMotionData gm_data; // Pointer to the array of structures to store gradient information of each // pixel in a superblock. The buffer constitutes of MAX_SB_SQUARE pixel level // structures for each of the plane types (PLANE_TYPE_Y and PLANE_TYPE_UV). PixelLevelGradientInfo *pixel_gradient_info; // Pointer to the array of structures to store source variance information of // each 4x4 sub-block in a superblock. Block4x4VarInfo structure is used to // store source variance and log of source variance of each 4x4 sub-block // for subsequent retrieval. Block4x4VarInfo *src_var_info_of_4x4_sub_blocks; // Pointer to pc tree root. PC_TREE *pc_root; } ThreadData; struct EncWorkerData; /*!\endcond */ /*! * \brief Encoder data related to row-based multi-threading */ typedef struct { /*! * Number of tile rows for which row synchronization memory is allocated. */ int allocated_tile_rows; /*! * Number of tile cols for which row synchronization memory is allocated. */ int allocated_tile_cols; /*! * Number of rows for which row synchronization memory is allocated * per tile. During first-pass/look-ahead stage this equals the * maximum number of macroblock rows in a tile. During encode stage, * this equals the maximum number of superblock rows in a tile. */ int allocated_rows; /*! * Number of columns for which entropy context memory is allocated * per tile. During encode stage, this equals the maximum number of * superblock columns in a tile minus 1. The entropy context memory * is not allocated during first-pass/look-ahead stage. */ int allocated_cols; /*! * thread_id_to_tile_id[i] indicates the tile id assigned to the ith thread. */ int thread_id_to_tile_id[MAX_NUM_THREADS]; /*! * num_tile_cols_done[i] indicates the number of tile columns whose encoding * is complete in the ith superblock row. */ int *num_tile_cols_done; /*! * Number of superblock rows in a frame for which 'num_tile_cols_done' is * allocated. */ int allocated_sb_rows; /*! * Initialized to false, set to true by the worker thread that encounters an * error in order to abort the processing of other worker threads. */ bool row_mt_exit; /*! * Initialized to false, set to true during first pass encoding by the worker * thread that encounters an error in order to abort the processing of other * worker threads. */ bool firstpass_mt_exit; /*! * Initialized to false, set to true in cal_mb_wiener_var_hook() by the worker * thread that encounters an error in order to abort the processing of other * worker threads. */ bool mb_wiener_mt_exit; #if CONFIG_MULTITHREAD /*! * Mutex lock used while dispatching jobs. */ pthread_mutex_t *mutex_; /*! * Condition variable used to dispatch loopfilter jobs. */ pthread_cond_t *cond_; #endif /** * \name Row synchronization related function pointers. */ /**@{*/ /*! * Reader. */ void (*sync_read_ptr)(AV1EncRowMultiThreadSync *const, int, int); /*! * Writer. */ void (*sync_write_ptr)(AV1EncRowMultiThreadSync *const, int, int, int); /**@}*/ } AV1EncRowMultiThreadInfo; /*! * \brief Encoder data related to multi-threading for allintra deltaq-mode=3 */ typedef struct { #if CONFIG_MULTITHREAD /*! * Mutex lock used while dispatching jobs. */ pthread_mutex_t *mutex_; /*! * Condition variable used to dispatch loopfilter jobs. */ pthread_cond_t *cond_; #endif /** * \name Row synchronization related function pointers for all intra mode */ /**@{*/ /*! * Reader. */ void (*intra_sync_read_ptr)(AV1EncRowMultiThreadSync *const, int, int); /*! * Writer. */ void (*intra_sync_write_ptr)(AV1EncRowMultiThreadSync *const, int, int, int); /**@}*/ } AV1EncAllIntraMultiThreadInfo; /*! * \brief Max number of recodes used to track the frame probabilities. */ #define NUM_RECODES_PER_FRAME 10 /*! * \brief Max number of frames that can be encoded in a parallel encode set. */ #define MAX_PARALLEL_FRAMES 4 /*! * \brief Buffers to be backed up during parallel encode set to be restored * later. */ typedef struct RestoreStateBuffers { /*! * Backup of original CDEF srcbuf. */ uint16_t *cdef_srcbuf; /*! * Backup of original CDEF colbuf. */ uint16_t *cdef_colbuf[MAX_MB_PLANE]; /*! * Backup of original LR rst_tmpbuf. */ int32_t *rst_tmpbuf; /*! * Backup of original LR rlbs. */ RestorationLineBuffers *rlbs; } RestoreStateBuffers; /*! * \brief Parameters related to restoration types. */ typedef struct { /*! * Stores the best coefficients for Wiener restoration. */ WienerInfo wiener; /*! * Stores the best coefficients for Sgrproj restoration. */ SgrprojInfo sgrproj; /*! * The rtype to use for this unit given a frame rtype as index. Indices: * WIENER, SGRPROJ, SWITCHABLE. */ RestorationType best_rtype[RESTORE_TYPES - 1]; } RestUnitSearchInfo; /*! * \brief Structure to hold search parameter per restoration unit and * intermediate buffer of Wiener filter used in pick filter stage of Loop * restoration. */ typedef struct { /*! * Array of pointers to 'RestUnitSearchInfo' which holds data related to * restoration types. */ RestUnitSearchInfo *rusi[MAX_MB_PLANE]; /*! * Buffer used to hold dgd-avg data during SIMD call of Wiener filter. */ int16_t *dgd_avg; } AV1LrPickStruct; /*! * \brief Primary Encoder parameters related to multi-threading. */ typedef struct PrimaryMultiThreadInfo { /*! * Number of workers created for multi-threading. */ int num_workers; /*! * Number of workers used for different MT modules. */ int num_mod_workers[NUM_MT_MODULES]; /*! * Synchronization object used to launch job in the worker thread. */ AVxWorker *workers; /*! * Data specific to each worker in encoder multi-threading. * tile_thr_data[i] stores the worker data of the ith thread. */ struct EncWorkerData *tile_thr_data; /*! * CDEF row multi-threading data. */ AV1CdefWorkerData *cdef_worker; /*! * Primary(Level 1) Synchronization object used to launch job in the worker * thread. */ AVxWorker *p_workers[MAX_PARALLEL_FRAMES]; /*! * Number of primary workers created for multi-threading. */ int p_num_workers; /*! * Tracks the number of workers in encode stage multi-threading. */ int prev_num_enc_workers; } PrimaryMultiThreadInfo; /*! * \brief Encoder parameters related to multi-threading. */ typedef struct MultiThreadInfo { /*! * Number of workers created for multi-threading. */ int num_workers; /*! * Number of workers used for different MT modules. */ int num_mod_workers[NUM_MT_MODULES]; /*! * Synchronization object used to launch job in the worker thread. */ AVxWorker *workers; /*! * Data specific to each worker in encoder multi-threading. * tile_thr_data[i] stores the worker data of the ith thread. */ struct EncWorkerData *tile_thr_data; /*! * When set, indicates that row based multi-threading of the encoder is * enabled. */ bool row_mt_enabled; /*! * When set, indicates that multi-threading for bitstream packing is enabled. */ bool pack_bs_mt_enabled; /*! * Encoder row multi-threading data. */ AV1EncRowMultiThreadInfo enc_row_mt; /*! * Encoder multi-threading data for allintra mode in the preprocessing stage * when --deltaq-mode=3. */ AV1EncAllIntraMultiThreadInfo intra_mt; /*! * Tpl row multi-threading data. */ AV1TplRowMultiThreadInfo tpl_row_mt; /*! * Loop Filter multi-threading object. */ AV1LfSync lf_row_sync; /*! * Loop Restoration multi-threading object. */ AV1LrSync lr_row_sync; /*! * Pack bitstream multi-threading object. */ AV1EncPackBSSync pack_bs_sync; /*! * Global Motion multi-threading object. */ AV1GlobalMotionSync gm_sync; /*! * Temporal Filter multi-threading object. */ AV1TemporalFilterSync tf_sync; /*! * CDEF search multi-threading object. */ AV1CdefSync cdef_sync; /*! * Pointer to CDEF row multi-threading data for the frame. */ AV1CdefWorkerData *cdef_worker; /*! * Buffers to be stored/restored before/after parallel encode. */ RestoreStateBuffers restore_state_buf; /*! * In multi-threaded realtime encoding with row-mt enabled, pipeline * loop-filtering after encoding. */ int pipeline_lpf_mt_with_enc; } MultiThreadInfo; /*!\cond */ typedef struct ActiveMap { int enabled; int update; unsigned char *map; } ActiveMap; /*!\endcond */ /*! * \brief Encoder info used for decision on forcing integer motion vectors. */ typedef struct { /*! * cs_rate_array[i] is the fraction of blocks in a frame which either match * with the collocated block or are smooth, where i is the rate_index. */ double cs_rate_array[32]; /*! * rate_index is used to index cs_rate_array. */ int rate_index; /*! * rate_size is the total number of entries populated in cs_rate_array. */ int rate_size; } ForceIntegerMVInfo; /*!\cond */ #if CONFIG_INTERNAL_STATS // types of stats enum { STAT_Y, STAT_U, STAT_V, STAT_ALL, NUM_STAT_TYPES // This should always be the last member of the enum } UENUM1BYTE(StatType); typedef struct IMAGE_STAT { double stat[NUM_STAT_TYPES]; double worst; } ImageStat; #endif // CONFIG_INTERNAL_STATS typedef struct { int ref_count; YV12_BUFFER_CONFIG buf; } EncRefCntBuffer; /*!\endcond */ /*! * \brief Buffer to store mode information at mi_alloc_bsize (4x4 or 8x8) level * * This is used for bitstream preparation. */ typedef struct { /*! * frame_base[mi_row * stride + mi_col] stores the mode information of * block (mi_row,mi_col). */ MB_MODE_INFO_EXT_FRAME *frame_base; /*! * Size of frame_base buffer. */ int alloc_size; /*! * Stride of frame_base buffer. */ int stride; } MBMIExtFrameBufferInfo; /*!\cond */ #if CONFIG_COLLECT_PARTITION_STATS typedef struct FramePartitionTimingStats { int partition_decisions[6][EXT_PARTITION_TYPES]; int partition_attempts[6][EXT_PARTITION_TYPES]; int64_t partition_times[6][EXT_PARTITION_TYPES]; int partition_redo; } FramePartitionTimingStats; #endif // CONFIG_COLLECT_PARTITION_STATS #if CONFIG_COLLECT_COMPONENT_TIMING #include "aom_ports/aom_timer.h" // Adjust the following to add new components. enum { av1_encode_strategy_time, av1_get_one_pass_rt_params_time, av1_get_second_pass_params_time, denoise_and_encode_time, apply_filtering_time, av1_tpl_setup_stats_time, encode_frame_to_data_rate_time, encode_with_or_without_recode_time, loop_filter_time, cdef_time, loop_restoration_time, av1_pack_bitstream_final_time, av1_encode_frame_time, av1_compute_global_motion_time, av1_setup_motion_field_time, encode_sb_row_time, rd_pick_partition_time, rd_use_partition_time, choose_var_based_partitioning_time, av1_prune_partitions_time, none_partition_search_time, split_partition_search_time, rectangular_partition_search_time, ab_partitions_search_time, rd_pick_4partition_time, encode_sb_time, rd_pick_sb_modes_time, av1_rd_pick_intra_mode_sb_time, av1_rd_pick_inter_mode_sb_time, set_params_rd_pick_inter_mode_time, skip_inter_mode_time, handle_inter_mode_time, evaluate_motion_mode_for_winner_candidates_time, do_tx_search_time, handle_intra_mode_time, refine_winner_mode_tx_time, av1_search_palette_mode_time, handle_newmv_time, compound_type_rd_time, interpolation_filter_search_time, motion_mode_rd_time, nonrd_use_partition_time, pick_sb_modes_nonrd_time, hybrid_intra_mode_search_time, nonrd_pick_inter_mode_sb_time, encode_b_nonrd_time, kTimingComponents, } UENUM1BYTE(TIMING_COMPONENT); static INLINE char const *get_component_name(int index) { switch (index) { case av1_encode_strategy_time: return "av1_encode_strategy_time"; case av1_get_one_pass_rt_params_time: return "av1_get_one_pass_rt_params_time"; case av1_get_second_pass_params_time: return "av1_get_second_pass_params_time"; case denoise_and_encode_time: return "denoise_and_encode_time"; case apply_filtering_time: return "apply_filtering_time"; case av1_tpl_setup_stats_time: return "av1_tpl_setup_stats_time"; case encode_frame_to_data_rate_time: return "encode_frame_to_data_rate_time"; case encode_with_or_without_recode_time: return "encode_with_or_without_recode_time"; case loop_filter_time: return "loop_filter_time"; case cdef_time: return "cdef_time"; case loop_restoration_time: return "loop_restoration_time"; case av1_pack_bitstream_final_time: return "av1_pack_bitstream_final_time"; case av1_encode_frame_time: return "av1_encode_frame_time"; case av1_compute_global_motion_time: return "av1_compute_global_motion_time"; case av1_setup_motion_field_time: return "av1_setup_motion_field_time"; case encode_sb_row_time: return "encode_sb_row_time"; case rd_pick_partition_time: return "rd_pick_partition_time"; case rd_use_partition_time: return "rd_use_partition_time"; case choose_var_based_partitioning_time: return "choose_var_based_partitioning_time"; case av1_prune_partitions_time: return "av1_prune_partitions_time"; case none_partition_search_time: return "none_partition_search_time"; case split_partition_search_time: return "split_partition_search_time"; case rectangular_partition_search_time: return "rectangular_partition_search_time"; case ab_partitions_search_time: return "ab_partitions_search_time"; case rd_pick_4partition_time: return "rd_pick_4partition_time"; case encode_sb_time: return "encode_sb_time"; case rd_pick_sb_modes_time: return "rd_pick_sb_modes_time"; case av1_rd_pick_intra_mode_sb_time: return "av1_rd_pick_intra_mode_sb_time"; case av1_rd_pick_inter_mode_sb_time: return "av1_rd_pick_inter_mode_sb_time"; case set_params_rd_pick_inter_mode_time: return "set_params_rd_pick_inter_mode_time"; case skip_inter_mode_time: return "skip_inter_mode_time"; case handle_inter_mode_time: return "handle_inter_mode_time"; case evaluate_motion_mode_for_winner_candidates_time: return "evaluate_motion_mode_for_winner_candidates_time"; case do_tx_search_time: return "do_tx_search_time"; case handle_intra_mode_time: return "handle_intra_mode_time"; case refine_winner_mode_tx_time: return "refine_winner_mode_tx_time"; case av1_search_palette_mode_time: return "av1_search_palette_mode_time"; case handle_newmv_time: return "handle_newmv_time"; case compound_type_rd_time: return "compound_type_rd_time"; case interpolation_filter_search_time: return "interpolation_filter_search_time"; case motion_mode_rd_time: return "motion_mode_rd_time"; case nonrd_use_partition_time: return "nonrd_use_partition_time"; case pick_sb_modes_nonrd_time: return "pick_sb_modes_nonrd_time"; case hybrid_intra_mode_search_time: return "hybrid_intra_mode_search_time"; case nonrd_pick_inter_mode_sb_time: return "nonrd_pick_inter_mode_sb_time"; case encode_b_nonrd_time: return "encode_b_nonrd_time"; default: assert(0); } return "error"; } #endif // The maximum number of internal ARFs except ALTREF_FRAME #define MAX_INTERNAL_ARFS (REF_FRAMES - BWDREF_FRAME - 1) /*!\endcond */ /*! * \brief Parameters related to global motion search */ typedef struct { /*! * Flag to indicate if global motion search needs to be rerun. */ bool search_done; /*! * Array of pointers to the frame buffers holding the reference frames. * ref_buf[i] stores the pointer to the reference frame of the ith * reference frame type. */ YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES]; /*! * Holds the number of valid reference frames in past and future directions * w.r.t. the current frame. num_ref_frames[i] stores the total number of * valid reference frames in 'i' direction. */ int num_ref_frames[MAX_DIRECTIONS]; /*! * Array of structure which stores the valid reference frames in past and * future directions and their corresponding distance from the source frame. * reference_frames[i][j] holds the jth valid reference frame type in the * direction 'i' and its temporal distance from the source frame . */ FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1]; /** * \name Dimensions for which segment map is allocated. */ /**@{*/ int segment_map_w; /*!< segment map width */ int segment_map_h; /*!< segment map height */ /**@}*/ } GlobalMotionInfo; /*! * \brief Flags related to interpolation filter search */ typedef struct { /*! * Stores the default value of skip flag depending on chroma format * Set as 1 for monochrome and 3 for other color formats */ int default_interp_skip_flags; /*! * Filter mask to allow certain interp_filter type. */ uint16_t interp_filter_search_mask; } InterpSearchFlags; /*! * \brief Parameters for motion vector search process */ typedef struct { /*! * Largest MV component used in a frame. * The value from the previous frame is used to set the full pixel search * range for the current frame. */ int max_mv_magnitude; /*! * Parameter indicating initial search window to be used in full-pixel search. * Range [0, MAX_MVSEARCH_STEPS-2]. Lower value indicates larger window. */ int mv_step_param; /*! * Pointer to sub-pixel search function. * In encoder: av1_find_best_sub_pixel_tree * av1_find_best_sub_pixel_tree_pruned * av1_find_best_sub_pixel_tree_pruned_more * In MV unit test: av1_return_max_sub_pixel_mv * av1_return_min_sub_pixel_mv */ fractional_mv_step_fp *find_fractional_mv_step; /*! * Search site configuration for full-pel MV search. * search_site_cfg[SS_CFG_SRC]: Used in tpl, rd/non-rd inter mode loop, simple * motion search. search_site_cfg[SS_CFG_LOOKAHEAD]: Used in intraBC, temporal * filter search_site_cfg[SS_CFG_FPF]: Used during first pass and lookahead */ search_site_config search_site_cfg[SS_CFG_TOTAL][NUM_DISTINCT_SEARCH_METHODS]; } MotionVectorSearchParams; /*! * \brief Refresh frame flags for different type of frames. * * If the refresh flag is true for a particular reference frame, after the * current frame is encoded, the reference frame gets refreshed (updated) to * be the current frame. Note: Usually at most one flag will be set to true at * a time. But, for key-frames, all flags are set to true at once. */ typedef struct { bool golden_frame; /*!< Refresh flag for golden frame */ bool bwd_ref_frame; /*!< Refresh flag for bwd-ref frame */ bool alt_ref_frame; /*!< Refresh flag for alt-ref frame */ } RefreshFrameInfo; /*! * \brief Desired dimensions for an externally triggered resize. * * When resize is triggered externally, the desired dimensions are stored in * this struct until used in the next frame to be coded. These values are * effective only for one frame and are reset after they are used. */ typedef struct { int width; /*!< Desired resized width */ int height; /*!< Desired resized height */ } ResizePendingParams; /*! * \brief Refrence frame distance related variables. */ typedef struct { /*! * True relative distance of reference frames w.r.t. the current frame. */ int ref_relative_dist[INTER_REFS_PER_FRAME]; /*! * The nearest reference w.r.t. current frame in the past. */ int8_t nearest_past_ref; /*! * The nearest reference w.r.t. current frame in the future. */ int8_t nearest_future_ref; } RefFrameDistanceInfo; /*! * \brief Parameters used for winner mode processing. * * This is a basic two pass approach: in the first pass, we reduce the number of * transform searches based on some thresholds during the rdopt process to find * the "winner mode". In the second pass, we perform a more through tx search * on the winner mode. * There are some arrays in the struct, and their indices are used in the * following manner: * Index 0: Default mode evaluation, Winner mode processing is not applicable * (Eg : IntraBc). * Index 1: Mode evaluation. * Index 2: Winner mode evaluation * Index 1 and 2 are only used when the respective speed feature is on. */ typedef struct { /*! * Threshold to determine if trellis optimization is to be enabled * based on : * 0 : dist threshold * 1 : satd threshold * Corresponds to enable_winner_mode_for_coeff_opt speed feature. */ unsigned int coeff_opt_thresholds[MODE_EVAL_TYPES][2]; /*! * Determines the tx size search method during rdopt. * Corresponds to enable_winner_mode_for_tx_size_srch speed feature. */ TX_SIZE_SEARCH_METHOD tx_size_search_methods[MODE_EVAL_TYPES]; /*! * Controls how often we should approximate prediction error with tx * coefficients. If it's 0, then never. If 1, then it's during the tx_type * search only. If 2, then always. * Corresponds to tx_domain_dist_level speed feature. */ unsigned int use_transform_domain_distortion[MODE_EVAL_TYPES]; /*! * Threshold to approximate pixel domain distortion with transform domain * distortion. This is only used if use_transform_domain_distortion is on. * Corresponds to enable_winner_mode_for_use_tx_domain_dist speed feature. */ unsigned int tx_domain_dist_threshold[MODE_EVAL_TYPES]; /*! * Controls how often we should try to skip the transform process based on * result from dct. * Corresponds to use_skip_flag_prediction speed feature. */ unsigned int skip_txfm_level[MODE_EVAL_TYPES]; /*! * Predict DC only txfm blocks for default, mode and winner mode evaluation. * Index 0: Default mode evaluation, Winner mode processing is not applicable. * Index 1: Mode evaluation, Index 2: Winner mode evaluation */ unsigned int predict_dc_level[MODE_EVAL_TYPES]; } WinnerModeParams; /*! * \brief Frame refresh flags set by the external interface. * * Flags set by external interface to determine which reference buffers are * refreshed by this frame. When set, the encoder will update the particular * reference frame buffer with the contents of the current frame. */ typedef struct { bool last_frame; /*!< Refresh flag for last frame */ bool golden_frame; /*!< Refresh flag for golden frame */ bool bwd_ref_frame; /*!< Refresh flag for bwd-ref frame */ bool alt2_ref_frame; /*!< Refresh flag for alt2-ref frame */ bool alt_ref_frame; /*!< Refresh flag for alt-ref frame */ /*! * Flag indicating if the update of refresh frame flags is pending. */ bool update_pending; } ExtRefreshFrameFlagsInfo; /*! * \brief Flags signalled by the external interface at frame level. */ typedef struct { /*! * Bit mask to disable certain reference frame types. */ int ref_frame_flags; /*! * Frame refresh flags set by the external interface. */ ExtRefreshFrameFlagsInfo refresh_frame; /*! * Flag to enable the update of frame contexts at the end of a frame decode. */ bool refresh_frame_context; /*! * Flag to indicate that update of refresh_frame_context from external * interface is pending. */ bool refresh_frame_context_pending; /*! * Flag to enable temporal MV prediction. */ bool use_ref_frame_mvs; /*! * Indicates whether the current frame is to be coded as error resilient. */ bool use_error_resilient; /*! * Indicates whether the current frame is to be coded as s-frame. */ bool use_s_frame; /*! * Indicates whether the current frame's primary_ref_frame is set to * PRIMARY_REF_NONE. */ bool use_primary_ref_none; } ExternalFlags; /*!\cond */ typedef struct { // Some misc info int high_prec; int q; int order; // MV counters int inter_count; int intra_count; int default_mvs; int mv_joint_count[4]; int last_bit_zero; int last_bit_nonzero; // Keep track of the rates int total_mv_rate; int hp_total_mv_rate; int lp_total_mv_rate; // Texture info int horz_text; int vert_text; int diag_text; // Whether the current struct contains valid data int valid; } MV_STATS; typedef struct WeberStats { int64_t mb_wiener_variance; int64_t src_variance; int64_t rec_variance; int16_t src_pix_max; int16_t rec_pix_max; int64_t distortion; int64_t satd; double max_scale; } WeberStats; typedef struct { struct loopfilter lf; CdefInfo cdef_info; YV12_BUFFER_CONFIG copy_buffer; RATE_CONTROL rc; MV_STATS mv_stats; } CODING_CONTEXT; typedef struct { int frame_width; int frame_height; int mi_rows; int mi_cols; int mb_rows; int mb_cols; int num_mbs; aom_bit_depth_t bit_depth; int subsampling_x; int subsampling_y; } FRAME_INFO; /*! * \brief This structure stores different types of frame indices. */ typedef struct { int show_frame_count; } FRAME_INDEX_SET; /*!\endcond */ /*! * \brief Segmentation related information for the current frame. */ typedef struct { /*! * 3-bit number containing the segment affiliation for each 4x4 block in the * frame. map[y * stride + x] contains the segment id of the 4x4 block at * (x,y) position. */ uint8_t *map; /*! * Flag to indicate if current frame has lossless segments or not. * 1: frame has at least one lossless segment. * 0: frame has no lossless segments. */ bool has_lossless_segment; } EncSegmentationInfo; /*! * \brief Frame time stamps. */ typedef struct { /*! * Start time stamp of the previous frame */ int64_t prev_ts_start; /*! * End time stamp of the previous frame */ int64_t prev_ts_end; /*! * Start time stamp of the first frame */ int64_t first_ts_start; } TimeStamps; /*! * Pointers to the memory allocated for frame level transform coeff related * info. */ typedef struct { /*! * Pointer to the transformed coefficients buffer. */ tran_low_t *tcoeff; /*! * Pointer to the eobs buffer. */ uint16_t *eobs; /*! * Pointer to the entropy_ctx buffer. */ uint8_t *entropy_ctx; } CoeffBufferPool; #if !CONFIG_REALTIME_ONLY /*!\cond */ // DUCKY_ENCODE_FRAME_MODE is c version of EncodeFrameMode enum { DUCKY_ENCODE_FRAME_MODE_NONE, // Let native AV1 determine q index and rdmult DUCKY_ENCODE_FRAME_MODE_QINDEX, // DuckyEncode determines q index and AV1 // determines rdmult DUCKY_ENCODE_FRAME_MODE_QINDEX_RDMULT, // DuckyEncode determines q index and // rdmult } UENUM1BYTE(DUCKY_ENCODE_FRAME_MODE); enum { DUCKY_ENCODE_GOP_MODE_NONE, // native AV1 decides GOP DUCKY_ENCODE_GOP_MODE_RCL, // rate control lib decides GOP } UENUM1BYTE(DUCKY_ENCODE_GOP_MODE); typedef struct DuckyEncodeFrameInfo { DUCKY_ENCODE_FRAME_MODE qp_mode; DUCKY_ENCODE_GOP_MODE gop_mode; int q_index; int rdmult; // These two arrays are equivalent to std::vector int *superblock_encode_qindex; int *superblock_encode_rdmult; int delta_q_enabled; } DuckyEncodeFrameInfo; typedef struct DuckyEncodeFrameResult { int global_order_idx; int q_index; int rdmult; int rate; int64_t dist; double psnr; } DuckyEncodeFrameResult; typedef struct DuckyEncodeInfo { DuckyEncodeFrameInfo frame_info; DuckyEncodeFrameResult frame_result; } DuckyEncodeInfo; /*!\endcond */ #endif /*!\cond */ typedef struct RTC_REF { /*! * LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), * BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). */ int reference[INTER_REFS_PER_FRAME]; int ref_idx[INTER_REFS_PER_FRAME]; int refresh[REF_FRAMES]; int set_ref_frame_config; int non_reference_frame; int ref_frame_comp[3]; int gld_idx_1layer; /*! * Frame number of the last frame that refreshed the buffer slot. */ unsigned int buffer_time_index[REF_FRAMES]; /*! * Spatial layer id of the last frame that refreshed the buffer slot. */ unsigned char buffer_spatial_layer[REF_FRAMES]; /*! * Flag to indicate whether closest reference was the previous frame. */ bool reference_was_previous_frame; /*! * Flag to indicate this frame is based on longer term reference only, * for recovery from past loss, and it should be biased for improved coding. */ bool bias_recovery_frame; } RTC_REF; /*!\endcond */ /*! * \brief Structure to hold data corresponding to an encoded frame. */ typedef struct AV1_COMP_DATA { /*! * Buffer to store packed bitstream data of a frame. */ unsigned char *cx_data; /*! * Allocated size of the cx_data buffer. */ size_t cx_data_sz; /*! * Size of data written in the cx_data buffer. */ size_t frame_size; /*! * Flags for the frame. */ unsigned int lib_flags; /*! * Time stamp for start of frame. */ int64_t ts_frame_start; /*! * Time stamp for end of frame. */ int64_t ts_frame_end; /*! * Flag to indicate flush call. */ int flush; /*! * Time base for sequence. */ const aom_rational64_t *timestamp_ratio; /*! * Decide to pop the source for this frame from input buffer queue. */ int pop_lookahead; /*! * Display order hint of frame whose packed data is in cx_data buffer. */ int frame_display_order_hint; } AV1_COMP_DATA; /*! * \brief Top level primary encoder structure */ typedef struct AV1_PRIMARY { /*! * Array of frame level encoder stage top level structures */ struct AV1_COMP *parallel_cpi[MAX_PARALLEL_FRAMES]; /*! * Array of structures to hold data of frames encoded in a given parallel * encode set. */ struct AV1_COMP_DATA parallel_frames_data[MAX_PARALLEL_FRAMES - 1]; #if CONFIG_FPMT_TEST /*! * Flag which enables/disables simulation path for fpmt unit test. * 0 - FPMT integration * 1 - FPMT simulation */ FPMT_TEST_ENC_CFG fpmt_unit_test_cfg; /*! * Temporary variable simulating the delayed frame_probability update. */ FrameProbInfo temp_frame_probs; /*! * Temporary variable holding the updated frame probability across * frames. Copy its value to temp_frame_probs for frame_parallel_level 0 * frames or last frame in parallel encode set. */ FrameProbInfo temp_frame_probs_simulation; /*! * Temporary variable simulating the delayed update of valid global motion * model across frames. */ int temp_valid_gm_model_found[FRAME_UPDATE_TYPES]; #endif // CONFIG_FPMT_TEST /*! * Copy of cm->ref_frame_map maintained to facilitate sequential update of * ref_frame_map by lower layer depth frames encoded ahead of time in a * parallel encode set. */ RefCntBuffer *ref_frame_map_copy[REF_FRAMES]; /*! * Start time stamp of the last encoded show frame */ int64_t ts_start_last_show_frame; /*! * End time stamp of the last encoded show frame */ int64_t ts_end_last_show_frame; /*! * Number of frame level contexts(cpis) */ int num_fp_contexts; /*! * Loopfilter levels of the previous encoded frame. */ int filter_level[2]; /*! * Chrominance component loopfilter level of the previous encoded frame. */ int filter_level_u; /*! * Chrominance component loopfilter level of the previous encoded frame. */ int filter_level_v; /*! * Encode stage top level structure * During frame parallel encode, this is the same as parallel_cpi[0] */ struct AV1_COMP *cpi; /*! * Lookahead processing stage top level structure */ struct AV1_COMP *cpi_lap; /*! * Look-ahead context. */ struct lookahead_ctx *lookahead; /*! * Sequence parameters have been transmitted already and locked * or not. Once locked av1_change_config cannot change the seq * parameters. */ int seq_params_locked; /*! * Pointer to internal utility functions that manipulate aom_codec_* data * structures. */ struct aom_codec_pkt_list *output_pkt_list; /*! * When set, indicates that internal ARFs are enabled. */ int internal_altref_allowed; /*! * Tell if OVERLAY frame shows existing alt_ref frame. */ int show_existing_alt_ref; /*! * Information related to a gf group. */ GF_GROUP gf_group; /*! * Track prior gf group state. */ GF_STATE gf_state; /*! * Flag indicating whether look ahead processing (LAP) is enabled. */ int lap_enabled; /*! * Parameters for AV1 bitstream levels. */ AV1LevelParams level_params; /*! * Calculates PSNR on each frame when set to 1. */ int b_calculate_psnr; /*! * Number of frames left to be encoded, is 0 if limit is not set. */ int frames_left; /*! * Information related to two pass encoding. */ TWO_PASS twopass; /*! * Rate control related parameters. */ PRIMARY_RATE_CONTROL p_rc; /*! * Info and resources used by temporal filtering. */ TEMPORAL_FILTER_INFO tf_info; /*! * Elements part of the sequence header, that are applicable for all the * frames in the video. */ SequenceHeader seq_params; /*! * Indicates whether to use SVC. */ int use_svc; /*! * If true, buffer removal times are present. */ bool buffer_removal_time_present; /*! * Number of temporal layers: may be > 1 for SVC (scalable vector coding). */ unsigned int number_temporal_layers; /*! * Number of spatial layers: may be > 1 for SVC (scalable vector coding). */ unsigned int number_spatial_layers; /*! * Code and details about current error status. */ struct aom_internal_error_info error; /*! * Function pointers to variants of sse/sad/variance computation functions. * fn_ptr[i] indicates the list of function pointers corresponding to block * size i. */ aom_variance_fn_ptr_t fn_ptr[BLOCK_SIZES_ALL]; /*! * tpl_sb_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of * the ith 16 x 16 block in raster scan order. */ double *tpl_sb_rdmult_scaling_factors; /*! * Parameters related to tpl. */ TplParams tpl_data; /*! * Motion vector stats of the previous encoded frame. */ MV_STATS mv_stats; #if CONFIG_INTERNAL_STATS /*!\cond */ uint64_t total_time_receive_data; uint64_t total_time_compress_data; unsigned int total_mode_chosen_counts[MAX_MODES]; int count[2]; uint64_t total_sq_error[2]; uint64_t total_samples[2]; ImageStat psnr[2]; double total_blockiness; double worst_blockiness; int total_bytes; double summed_quality; double summed_weights; double summed_quality_hbd; double summed_weights_hbd; unsigned int total_recode_hits; double worst_ssim; double worst_ssim_hbd; ImageStat fastssim; ImageStat psnrhvs; int b_calculate_blockiness; int b_calculate_consistency; double total_inconsistency; double worst_consistency; Ssimv *ssim_vars; Metrics metrics; /*!\endcond */ #endif #if CONFIG_ENTROPY_STATS /*! * Aggregates frame counts for the sequence. */ FRAME_COUNTS aggregate_fc; #endif // CONFIG_ENTROPY_STATS /*! * For each type of reference frame, this contains the index of a reference * frame buffer for a reference frame of the same type. We use this to * choose our primary reference frame (which is the most recent reference * frame of the same type as the current frame). */ int fb_of_context_type[REF_FRAMES]; /*! * Primary Multi-threading parameters. */ PrimaryMultiThreadInfo p_mt_info; /*! * Probabilities for pruning of various AV1 tools. */ FrameProbInfo frame_probs; /*! * Indicates if a valid global motion model has been found in the different * frame update types of a GF group. * valid_gm_model_found[i] indicates if valid global motion model has been * found in the frame update type with enum value equal to i */ int valid_gm_model_found[FRAME_UPDATE_TYPES]; /*! * Struct for the reference structure for RTC. */ RTC_REF rtc_ref; /*! * Struct for all intra mode row multi threading in the preprocess stage * when --deltaq-mode=3. */ AV1EncRowMultiThreadSync intra_row_mt_sync; } AV1_PRIMARY; /*! * \brief Top level encoder structure. */ typedef struct AV1_COMP { /*! * Pointer to top level primary encoder structure */ AV1_PRIMARY *ppi; /*! * Quantization and dequantization parameters for internal quantizer setup * in the encoder. */ EncQuantDequantParams enc_quant_dequant_params; /*! * Structure holding thread specific variables. */ ThreadData td; /*! * Statistics collected at frame level. */ FRAME_COUNTS counts; /*! * Holds buffer storing mode information at 4x4/8x8 level. */ MBMIExtFrameBufferInfo mbmi_ext_info; /*! * Buffer holding the transform block related information. * coeff_buffer_base[i] stores the transform block related information of the * ith superblock in raster scan order. */ CB_COEFF_BUFFER *coeff_buffer_base; /*! * Structure holding pointers to frame level memory allocated for transform * block related information. */ CoeffBufferPool coeff_buffer_pool; /*! * Structure holding variables common to encoder and decoder. */ AV1_COMMON common; /*! * Encoder configuration related parameters. */ AV1EncoderConfig oxcf; /*! * Stores the trellis optimization type at segment level. * optimize_seg_arr[i] stores the trellis opt type for ith segment. */ TRELLIS_OPT_TYPE optimize_seg_arr[MAX_SEGMENTS]; /*! * Pointer to the frame buffer holding the source frame to be used during the * current stage of encoding. It can be the raw input, temporally filtered * input or scaled input. */ YV12_BUFFER_CONFIG *source; /*! * Pointer to the frame buffer holding the last raw source frame. * last_source is NULL for the following cases: * 1) First frame * 2) Alt-ref frames * 3) All frames for all-intra frame encoding. */ YV12_BUFFER_CONFIG *last_source; /*! * Pointer to the frame buffer holding the unscaled source frame. * It can be either the raw input or temporally filtered input. */ YV12_BUFFER_CONFIG *unscaled_source; /*! * Frame buffer holding the resized source frame (cropping / superres). */ YV12_BUFFER_CONFIG scaled_source; /*! * Pointer to the frame buffer holding the unscaled last source frame. */ YV12_BUFFER_CONFIG *unscaled_last_source; /*! * Frame buffer holding the resized last source frame. */ YV12_BUFFER_CONFIG scaled_last_source; /*! * Pointer to the original source frame. This is used to determine if the * content is screen. */ YV12_BUFFER_CONFIG *unfiltered_source; /*! * Frame buffer holding the orig source frame for PSNR calculation in rtc tf * case. */ YV12_BUFFER_CONFIG orig_source; /*! * Skip tpl setup when tpl data from gop length decision can be reused. */ int skip_tpl_setup_stats; /*! * Scaling factors used in the RD multiplier modulation. * TODO(sdeng): consider merge the following arrays. * tpl_rdmult_scaling_factors is a temporary buffer used to store the * intermediate scaling factors which are used in the calculation of * tpl_sb_rdmult_scaling_factors. tpl_rdmult_scaling_factors[i] stores the * intermediate scaling factor of the ith 16 x 16 block in raster scan order. */ double *tpl_rdmult_scaling_factors; /*! * Temporal filter context. */ TemporalFilterCtx tf_ctx; /*! * Pointer to CDEF search context. */ CdefSearchCtx *cdef_search_ctx; /*! * Variables related to forcing integer mv decisions for the current frame. */ ForceIntegerMVInfo force_intpel_info; /*! * Pointer to the buffer holding the scaled reference frames. * scaled_ref_buf[i] holds the scaled reference frame of type i. */ RefCntBuffer *scaled_ref_buf[INTER_REFS_PER_FRAME]; /*! * Pointer to the buffer holding the last show frame. */ RefCntBuffer *last_show_frame_buf; /*! * Refresh frame flags for golden, bwd-ref and alt-ref frames. */ RefreshFrameInfo refresh_frame; /*! * Flag to reduce the number of reference frame buffers used in rt. */ int rt_reduce_num_ref_buffers; /*! * Flags signalled by the external interface at frame level. */ ExternalFlags ext_flags; /*! * Temporary frame buffer used to store the non-loop filtered reconstructed * frame during the search of loop filter level. */ YV12_BUFFER_CONFIG last_frame_uf; /*! * Temporary frame buffer used to store the loop restored frame during loop * restoration search. */ YV12_BUFFER_CONFIG trial_frame_rst; /*! * Ambient reconstruction err target for force key frames. */ int64_t ambient_err; /*! * Parameters related to rate distortion optimization. */ RD_OPT rd; /*! * Temporary coding context used to save and restore when encoding with and * without super-resolution. */ CODING_CONTEXT coding_context; /*! * Parameters related to global motion search. */ GlobalMotionInfo gm_info; /*! * Parameters related to winner mode processing. */ WinnerModeParams winner_mode_params; /*! * Frame time stamps. */ TimeStamps time_stamps; /*! * Rate control related parameters. */ RATE_CONTROL rc; /*! * Frame rate of the video. */ double framerate; /*! * Bitmask indicating which reference buffers may be referenced by this frame. */ int ref_frame_flags; /*! * speed is passed as a per-frame parameter into the encoder. */ int speed; /*! * sf contains fine-grained config set internally based on speed. */ SPEED_FEATURES sf; /*! * Parameters for motion vector search process. */ MotionVectorSearchParams mv_search_params; /*! * When set, indicates that all reference frames are forward references, * i.e., all the reference frames are output before the current frame. */ int all_one_sided_refs; /*! * Segmentation related information for current frame. */ EncSegmentationInfo enc_seg; /*! * Parameters related to cyclic refresh aq-mode. */ CYCLIC_REFRESH *cyclic_refresh; /*! * Parameters related to active map. Active maps indicate * if there is any activity on a 4x4 block basis. */ ActiveMap active_map; /*! * The frame processing order within a GOP. */ unsigned char gf_frame_index; #if CONFIG_INTERNAL_STATS /*!\cond */ uint64_t time_compress_data; unsigned int mode_chosen_counts[MAX_MODES]; int bytes; unsigned int frame_recode_hits; /*!\endcond */ #endif #if CONFIG_SPEED_STATS /*! * For debugging: number of transform searches we have performed. */ unsigned int tx_search_count; #endif // CONFIG_SPEED_STATS /*! * When set, indicates that the frame is droppable, i.e., this frame * does not update any reference buffers. */ int droppable; /*! * Stores the frame parameters during encoder initialization. */ FRAME_INFO frame_info; /*! * Stores different types of frame indices. */ FRAME_INDEX_SET frame_index_set; /*! * Stores the cm->width in the last call of alloc_compressor_data(). Helps * determine whether compressor data should be reallocated when cm->width * changes. */ int data_alloc_width; /*! * Stores the cm->height in the last call of alloc_compressor_data(). Helps * determine whether compressor data should be reallocated when cm->height * changes. */ int data_alloc_height; /*! * Number of MBs in the full-size frame; to be used to * normalize the firstpass stats. This will differ from the * number of MBs in the current frame when the frame is * scaled. */ int initial_mbs; /*! * Flag to indicate whether the frame size inforamation has been * setup and propagated to associated allocations. */ bool frame_size_related_setup_done; /*! * The width of the frame that is lastly encoded. * It is updated in the function "encoder_encode()". */ int last_coded_width; /*! * The height of the frame that is lastly encoded. * It is updated in the function "encoder_encode()". */ int last_coded_height; /*! * Resize related parameters. */ ResizePendingParams resize_pending_params; /*! * Pointer to struct holding adaptive data/contexts/models for the tile during * encoding. */ TileDataEnc *tile_data; /*! * Number of tiles for which memory has been allocated for tile_data. */ int allocated_tiles; /*! * Structure to store the palette token related information. */ TokenInfo token_info; /*! * VARIANCE_AQ segment map refresh. */ int vaq_refresh; /*! * Thresholds for variance based partitioning. */ VarBasedPartitionInfo vbp_info; /*! * Number of recodes in the frame. */ int num_frame_recode; /*! * Current frame probability of parallel frames, across recodes. */ FrameProbInfo frame_new_probs[NUM_RECODES_PER_FRAME]; /*! * Retain condition for transform type frame_probability calculation */ int do_update_frame_probs_txtype[NUM_RECODES_PER_FRAME]; /*! * Retain condition for obmc frame_probability calculation */ int do_update_frame_probs_obmc[NUM_RECODES_PER_FRAME]; /*! * Retain condition for warped motion frame_probability calculation */ int do_update_frame_probs_warp[NUM_RECODES_PER_FRAME]; /*! * Retain condition for interpolation filter frame_probability calculation */ int do_update_frame_probs_interpfilter[NUM_RECODES_PER_FRAME]; #if CONFIG_FPMT_TEST /*! * Temporary variable for simulation. * Previous frame's framerate. */ double temp_framerate; #endif /*! * Updated framerate for the current parallel frame. * cpi->framerate is updated with new_framerate during * post encode updates for parallel frames. */ double new_framerate; /*! * Retain condition for fast_extra_bits calculation. */ int do_update_vbr_bits_off_target_fast; /*! * Multi-threading parameters. */ MultiThreadInfo mt_info; /*! * Specifies the frame to be output. It is valid only if show_existing_frame * is 1. When show_existing_frame is 0, existing_fb_idx_to_show is set to * INVALID_IDX. */ int existing_fb_idx_to_show; /*! * A flag to indicate if intrabc is ever used in current frame. */ int intrabc_used; /*! * Mark which ref frames can be skipped for encoding current frame during RDO. */ int prune_ref_frame_mask; /*! * Loop Restoration context. */ AV1LrStruct lr_ctxt; /*! * Loop Restoration context used during pick stage. */ AV1LrPickStruct pick_lr_ctxt; /*! * Pointer to list of tables with film grain parameters. */ aom_film_grain_table_t *film_grain_table; #if CONFIG_DENOISE /*! * Pointer to structure holding the denoised image buffers and the helper * noise models. */ struct aom_denoise_and_model_t *denoise_and_model; #endif /*! * Flags related to interpolation filter search. */ InterpSearchFlags interp_search_flags; /*! * Turn on screen content tools flag. * Note that some videos are not screen content videos, but * screen content tools could also improve coding efficiency. * For example, videos with large flat regions, gaming videos that look * like natural videos. */ int use_screen_content_tools; /*! * A flag to indicate "real" screen content videos. * For example, screen shares, screen editing. * This type is true indicates |use_screen_content_tools| must be true. * In addition, rate control strategy is adjusted when this flag is true. */ int is_screen_content_type; #if CONFIG_COLLECT_PARTITION_STATS /*! * Accumulates the partition timing stat over the whole frame. */ FramePartitionTimingStats partition_stats; #endif // CONFIG_COLLECT_PARTITION_STATS #if CONFIG_COLLECT_COMPONENT_TIMING /*! * component_time[] are initialized to zero while encoder starts. */ uint64_t component_time[kTimingComponents]; /*! * Stores timing for individual components between calls of start_timing() * and end_timing(). */ struct aom_usec_timer component_timer[kTimingComponents]; /*! * frame_component_time[] are initialized to zero at beginning of each frame. */ uint64_t frame_component_time[kTimingComponents]; #endif /*! * Count the number of OBU_FRAME and OBU_FRAME_HEADER for level calculation. */ int frame_header_count; /*! * Whether any no-zero delta_q was actually used. */ int deltaq_used; /*! * Refrence frame distance related variables. */ RefFrameDistanceInfo ref_frame_dist_info; /*! * ssim_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of * the ith 16 x 16 block in raster scan order. This scaling factor is used for * RD multiplier modulation when SSIM tuning is enabled. */ double *ssim_rdmult_scaling_factors; #if CONFIG_TUNE_VMAF /*! * Parameters for VMAF tuning. */ TuneVMAFInfo vmaf_info; #endif #if CONFIG_TUNE_BUTTERAUGLI /*! * Parameters for Butteraugli tuning. */ TuneButteraugliInfo butteraugli_info; #endif /*! * Parameters for scalable video coding. */ SVC svc; /*! * Indicates whether current processing stage is encode stage or LAP stage. */ COMPRESSOR_STAGE compressor_stage; /*! * Frame type of the last frame. May be used in some heuristics for speeding * up the encoding. */ FRAME_TYPE last_frame_type; /*! * Number of tile-groups. */ int num_tg; /*! * Super-resolution mode currently being used by the encoder. * This may / may not be same as user-supplied mode in oxcf->superres_mode * (when we are recoding to try multiple options for example). */ aom_superres_mode superres_mode; /*! * First pass related data. */ FirstPassData firstpass_data; /*! * Temporal Noise Estimate */ NOISE_ESTIMATE noise_estimate; #if CONFIG_AV1_TEMPORAL_DENOISING /*! * Temporal Denoiser */ AV1_DENOISER denoiser; #endif /*! * Count on how many consecutive times a block uses small/zeromv for encoding * in a scale of 8x8 block. */ uint8_t *consec_zero_mv; /*! * Allocated memory size for |consec_zero_mv|. */ int consec_zero_mv_alloc_size; /*! * Block size of first pass encoding */ BLOCK_SIZE fp_block_size; /*! * The counter of encoded super block, used to differentiate block names. * This number starts from 0 and increases whenever a super block is encoded. */ int sb_counter; /*! * Available bitstream buffer size in bytes */ size_t available_bs_size; /*! * The controller of the external partition model. * It is used to do partition type selection based on external models. */ ExtPartController ext_part_controller; /*! * Motion vector stats of the current encoded frame, used to update the * ppi->mv_stats during postencode. */ MV_STATS mv_stats; /*! * Stores the reference refresh index for the current frame. */ int ref_refresh_index; /*! * A flag to indicate if the reference refresh index is available for the * current frame. */ bool refresh_idx_available; /*! * Reference frame index corresponding to the frame to be excluded from being * used as a reference by frame_parallel_level 2 frame in a parallel * encode set of lower layer frames. */ int ref_idx_to_skip; #if CONFIG_FPMT_TEST /*! * Stores the wanted frame buffer index for choosing primary ref frame by a * frame_parallel_level 2 frame in a parallel encode set of lower layer * frames. */ int wanted_fb; #endif // CONFIG_FPMT_TEST /*! * A flag to indicate frames that will update their data to the primary * context at the end of the encode. It is set for non-parallel frames and the * last frame in encode order in a given parallel encode set. */ bool do_frame_data_update; #if CONFIG_RD_COMMAND /*! * A structure for assigning external q_index / rdmult for experiments */ RD_COMMAND rd_command; #endif // CONFIG_RD_COMMAND /*! * Buffer to store MB variance after Wiener filter. */ WeberStats *mb_weber_stats; /*! * Buffer to store rate cost estimates for each macro block (8x8) in the * preprocessing stage used in allintra mode. */ int *prep_rate_estimates; /*! * Buffer to store rate cost estimates for each 16x16 block read * from an external file, used in allintra mode. */ double *ext_rate_distribution; /*! * The scale that equals sum_rate_uniform_quantizer / sum_ext_rate. */ double ext_rate_scale; /*! * Buffer to store MB variance after Wiener filter. */ BLOCK_SIZE weber_bsize; /*! * Frame level Wiener filter normalization. */ int64_t norm_wiener_variance; /*! * Buffer to store delta-q values for delta-q mode 4. */ int *mb_delta_q; /*! * Flag to indicate that current frame is dropped. */ bool is_dropped_frame; #if CONFIG_BITRATE_ACCURACY /*! * Structure stores information needed for bitrate accuracy experiment. */ VBR_RATECTRL_INFO vbr_rc_info; #endif #if CONFIG_RATECTRL_LOG /*! * Structure stores information of rate control decisions. */ RATECTRL_LOG rc_log; #endif // CONFIG_RATECTRL_LOG /*! * Frame level twopass status and control data */ TWO_PASS_FRAME twopass_frame; /*! * Context needed for third pass encoding. */ THIRD_PASS_DEC_CTX *third_pass_ctx; /*! * File pointer to second pass log */ FILE *second_pass_log_stream; /*! * Buffer to store 64x64 SAD */ uint64_t *src_sad_blk_64x64; /*! * SSE between the current frame and the reconstructed last frame * It is only used for CBR mode. * It is not used if the reference frame has a different frame size. */ uint64_t rec_sse; /*! * A flag to indicate whether the encoder is controlled by DuckyEncode or not. * 1:yes 0:no */ int use_ducky_encode; #if !CONFIG_REALTIME_ONLY /*! A structure that facilitates the communication between DuckyEncode and AV1 * encoder. */ DuckyEncodeInfo ducky_encode_info; #endif // CONFIG_REALTIME_ONLY // /*! * Frames since last frame with cdf update. */ int frames_since_last_update; /*! * Block level thresholds to force zeromv-skip at partition level. */ unsigned int zeromv_skip_thresh_exit_part[BLOCK_SIZES_ALL]; /*! * Number of downsampling pyramid levels to allocate for each frame * This is currently only used for global motion */ int image_pyramid_levels; #if CONFIG_SALIENCY_MAP /*! * Pixel level saliency map for each frame. */ uint8_t *saliency_map; /*! * Superblock level rdmult scaling factor driven by saliency map. */ double *sm_scaling_factor; #endif /*! * Number of pixels that choose palette mode for luma in the * fast encoding pass in av1_determine_sc_tools_with_encoding(). */ int palette_pixel_num; /*! * Flag to indicate scaled_last_source is available, * so scaling is not needed for last_source. */ int scaled_last_source_available; } AV1_COMP; /*! * \brief Input frames and last input frame */ typedef struct EncodeFrameInput { /*!\cond */ YV12_BUFFER_CONFIG *source; YV12_BUFFER_CONFIG *last_source; int64_t ts_duration; /*!\endcond */ } EncodeFrameInput; /*! * \brief contains per-frame encoding parameters decided upon by * av1_encode_strategy() and passed down to av1_encode(). */ typedef struct EncodeFrameParams { /*! * Is error resilient mode enabled */ int error_resilient_mode; /*! * Frame type (eg KF vs inter frame etc) */ FRAME_TYPE frame_type; /*!\cond */ int primary_ref_frame; int order_offset; /*!\endcond */ /*! * Should the current frame be displayed after being decoded */ int show_frame; /*!\cond */ int refresh_frame_flags; int show_existing_frame; int existing_fb_idx_to_show; /*!\endcond */ /*! * Bitmask of which reference buffers may be referenced by this frame. */ int ref_frame_flags; /*! * Reference buffer assignment for this frame. */ int remapped_ref_idx[REF_FRAMES]; /*! * Flags which determine which reference buffers are refreshed by this * frame. */ RefreshFrameInfo refresh_frame; /*! * Speed level to use for this frame: Bigger number means faster. */ int speed; } EncodeFrameParams; /*!\cond */ // EncodeFrameResults contains information about the result of encoding a // single frame typedef struct { size_t size; // Size of resulting bitstream } EncodeFrameResults; void av1_initialize_enc(unsigned int usage, enum aom_rc_mode end_usage); struct AV1_COMP *av1_create_compressor(AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf, BufferPool *const pool, COMPRESSOR_STAGE stage, int lap_lag_in_frames); struct AV1_PRIMARY *av1_create_primary_compressor( struct aom_codec_pkt_list *pkt_list_head, int num_lap_buffers, const AV1EncoderConfig *oxcf); void av1_remove_compressor(AV1_COMP *cpi); void av1_remove_primary_compressor(AV1_PRIMARY *ppi); #if CONFIG_ENTROPY_STATS void print_entropy_stats(AV1_PRIMARY *const ppi); #endif #if CONFIG_INTERNAL_STATS void print_internal_stats(AV1_PRIMARY *ppi); #endif void av1_change_config_seq(AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf, bool *sb_size_changed); void av1_change_config(AV1_COMP *cpi, const AV1EncoderConfig *oxcf, bool sb_size_changed); aom_codec_err_t av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth, int subsampling_x, int subsampling_y); void av1_init_seq_coding_tools(AV1_PRIMARY *const ppi, const AV1EncoderConfig *oxcf, int use_svc); void av1_post_encode_updates(AV1_COMP *const cpi, const AV1_COMP_DATA *const cpi_data); void av1_scale_references_fpmt(AV1_COMP *cpi, int *ref_buffers_used_map); void av1_increment_scaled_ref_counts_fpmt(BufferPool *buffer_pool, int ref_buffers_used_map); void av1_release_scaled_references_fpmt(AV1_COMP *cpi); void av1_decrement_ref_counts_fpmt(BufferPool *buffer_pool, int ref_buffers_used_map); void av1_init_sc_decisions(AV1_PRIMARY *const ppi); AV1_COMP *av1_get_parallel_frame_enc_data(AV1_PRIMARY *const ppi, AV1_COMP_DATA *const first_cpi_data); int av1_init_parallel_frame_context(const AV1_COMP_DATA *const first_cpi_data, AV1_PRIMARY *const ppi, int *ref_buffers_used_map); /*!\endcond */ /*!\brief Obtain the raw frame data * * \ingroup high_level_algo * This function receives the raw frame data from input. * * \param[in] cpi Top-level encoder structure * \param[in] frame_flags Flags to decide how to encoding the frame * \param[in,out] sd Contain raw frame data * \param[in] time_stamp Time stamp of the frame * \param[in] end_time_stamp End time stamp * * \return Returns a value to indicate if the frame data is received * successfully. * \note The caller can assume that a copy of this frame is made and not just a * copy of the pointer. */ int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time_stamp); /*!\brief Encode a frame * * \ingroup high_level_algo * \callgraph * \callergraph * This function encodes the raw frame data, and outputs the frame bit stream * to the designated buffer. The caller should use the output parameters * cpi_data->ts_frame_start and cpi_data->ts_frame_end only when this function * returns AOM_CODEC_OK. * * \param[in] cpi Top-level encoder structure * \param[in,out] cpi_data Data corresponding to a frame encode * * \return Returns a value to indicate if the encoding is done successfully. * \retval #AOM_CODEC_OK * \retval -1 * No frame encoded; more input is required. * \retval "A nonzero (positive) aom_codec_err_t code" * The encoding failed with the error. Sets the error code and error message * in \c cpi->common.error. */ int av1_get_compressed_data(AV1_COMP *cpi, AV1_COMP_DATA *const cpi_data); /*!\brief Run 1-pass/2-pass encoding * * \ingroup high_level_algo * \callgraph * \callergraph */ int av1_encode(AV1_COMP *const cpi, uint8_t *const dest, const EncodeFrameInput *const frame_input, const EncodeFrameParams *const frame_params, EncodeFrameResults *const frame_results); /*!\cond */ int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest); int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame); aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm, YV12_BUFFER_CONFIG *new_frame, YV12_BUFFER_CONFIG *sd); int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags); int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd); int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd); void av1_set_frame_size(AV1_COMP *cpi, int width, int height); void av1_set_mv_search_params(AV1_COMP *cpi); int av1_set_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols); int av1_get_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols); int av1_set_internal_size(AV1EncoderConfig *const oxcf, ResizePendingParams *resize_pending_params, AOM_SCALING_MODE horiz_mode, AOM_SCALING_MODE vert_mode); int av1_get_quantizer(struct AV1_COMP *cpi); int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *input_size); void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td); void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td); // Set screen content options. // This function estimates whether to use screen content tools, by counting // the portion of blocks that have few luma colors. // Modifies: // cpi->commom.features.allow_screen_content_tools // cpi->common.features.allow_intrabc // cpi->use_screen_content_tools // cpi->is_screen_content_type // However, the estimation is not accurate and may misclassify videos. // A slower but more accurate approach that determines whether to use screen // content tools is employed later. See av1_determine_sc_tools_with_encoding(). void av1_set_screen_content_options(struct AV1_COMP *cpi, FeatureFlags *features); void av1_update_frame_size(AV1_COMP *cpi); typedef struct { int pyr_level; int disp_order; } RefFrameMapPair; static INLINE void init_ref_map_pair( AV1_COMP *cpi, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]) { if (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == KF_UPDATE) { memset(ref_frame_map_pairs, -1, sizeof(*ref_frame_map_pairs) * REF_FRAMES); return; } memset(ref_frame_map_pairs, 0, sizeof(*ref_frame_map_pairs) * REF_FRAMES); for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { // Get reference frame buffer. const RefCntBuffer *const buf = cpi->common.ref_frame_map[map_idx]; if (ref_frame_map_pairs[map_idx].disp_order == -1) continue; if (buf == NULL) { ref_frame_map_pairs[map_idx].disp_order = -1; ref_frame_map_pairs[map_idx].pyr_level = -1; continue; } else if (buf->ref_count > 1) { // Once the keyframe is coded, the slots in ref_frame_map will all // point to the same frame. In that case, all subsequent pointers // matching the current are considered "free" slots. This will find // the next occurrence of the current pointer if ref_count indicates // there are multiple instances of it and mark it as free. for (int idx2 = map_idx + 1; idx2 < REF_FRAMES; ++idx2) { const RefCntBuffer *const buf2 = cpi->common.ref_frame_map[idx2]; if (buf2 == buf) { ref_frame_map_pairs[idx2].disp_order = -1; ref_frame_map_pairs[idx2].pyr_level = -1; } } } ref_frame_map_pairs[map_idx].disp_order = (int)buf->display_order_hint; ref_frame_map_pairs[map_idx].pyr_level = buf->pyramid_level; } } #if CONFIG_FPMT_TEST static AOM_INLINE void calc_frame_data_update_flag( GF_GROUP *const gf_group, int gf_frame_index, bool *const do_frame_data_update) { *do_frame_data_update = true; // Set the flag to false for all frames in a given parallel encode set except // the last frame in the set with frame_parallel_level = 2. if (gf_group->frame_parallel_level[gf_frame_index] == 1) { *do_frame_data_update = false; } else if (gf_group->frame_parallel_level[gf_frame_index] == 2) { // Check if this is the last frame in the set with frame_parallel_level = 2. for (int i = gf_frame_index + 1; i < gf_group->size; i++) { if ((gf_group->frame_parallel_level[i] == 0 && (gf_group->update_type[i] == ARF_UPDATE || gf_group->update_type[i] == INTNL_ARF_UPDATE)) || gf_group->frame_parallel_level[i] == 1) { break; } else if (gf_group->frame_parallel_level[i] == 2) { *do_frame_data_update = false; break; } } } } #endif // av1 uses 10,000,000 ticks/second as time stamp #define TICKS_PER_SEC 10000000LL static INLINE int64_t timebase_units_to_ticks(const aom_rational64_t *timestamp_ratio, int64_t n) { return n * timestamp_ratio->num / timestamp_ratio->den; } static INLINE int64_t ticks_to_timebase_units(const aom_rational64_t *timestamp_ratio, int64_t n) { int64_t round = timestamp_ratio->num / 2; if (round > 0) --round; return (n * timestamp_ratio->den + round) / timestamp_ratio->num; } static INLINE int frame_is_kf_gf_arf(const AV1_COMP *cpi) { const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const FRAME_UPDATE_TYPE update_type = gf_group->update_type[cpi->gf_frame_index]; return frame_is_intra_only(&cpi->common) || update_type == ARF_UPDATE || update_type == GF_UPDATE; } // TODO(huisu@google.com, youzhou@microsoft.com): enable hash-me for HBD. static INLINE int av1_use_hash_me(const AV1_COMP *const cpi) { return (cpi->common.features.allow_screen_content_tools && cpi->common.features.allow_intrabc && frame_is_intra_only(&cpi->common)); } static INLINE const YV12_BUFFER_CONFIG *get_ref_frame_yv12_buf( const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); return buf != NULL ? &buf->buf : NULL; } static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, RefCntBuffer *buf) { assert(buf != NULL); ensure_mv_buffer(buf, cm); buf->width = cm->width; buf->height = cm->height; } // Get the allocated token size for a tile. It does the same calculation as in // the frame token allocation. static INLINE unsigned int allocated_tokens(const TileInfo *tile, int sb_size_log2, int num_planes) { int tile_mb_rows = ROUND_POWER_OF_TWO(tile->mi_row_end - tile->mi_row_start, 2); int tile_mb_cols = ROUND_POWER_OF_TWO(tile->mi_col_end - tile->mi_col_start, 2); return get_token_alloc(tile_mb_rows, tile_mb_cols, sb_size_log2, num_planes); } static INLINE void get_start_tok(AV1_COMP *cpi, int tile_row, int tile_col, int mi_row, TokenExtra **tok, int sb_size_log2, int num_planes) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; const int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; const int tile_mb_row = (mi_row - tile_info->mi_row_start + 2) >> 2; *tok = cpi->token_info.tile_tok[tile_row][tile_col] + get_token_alloc(tile_mb_row, tile_mb_cols, sb_size_log2, num_planes); } void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags); #define ALT_MIN_LAG 3 static INLINE int is_altref_enabled(int lag_in_frames, bool enable_auto_arf) { return lag_in_frames >= ALT_MIN_LAG && enable_auto_arf; } static AOM_INLINE int can_disable_altref(const GFConfig *gf_cfg) { return is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) && (gf_cfg->gf_min_pyr_height == 0); } // Helper function to compute number of blocks on either side of the frame. static INLINE int get_num_blocks(const int frame_length, const int mb_length) { return (frame_length + mb_length - 1) / mb_length; } // Check if statistics generation stage static INLINE int is_stat_generation_stage(const AV1_COMP *const cpi) { assert(IMPLIES(cpi->compressor_stage == LAP_STAGE, cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->ppi->lap_enabled)); return (cpi->oxcf.pass == AOM_RC_FIRST_PASS || (cpi->compressor_stage == LAP_STAGE)); } // Check if statistics consumption stage static INLINE int is_stat_consumption_stage_twopass(const AV1_COMP *const cpi) { return (cpi->oxcf.pass >= AOM_RC_SECOND_PASS); } // Check if statistics consumption stage static INLINE int is_stat_consumption_stage(const AV1_COMP *const cpi) { return (is_stat_consumption_stage_twopass(cpi) || (cpi->oxcf.pass == AOM_RC_ONE_PASS && (cpi->compressor_stage == ENCODE_STAGE) && cpi->ppi->lap_enabled)); } // Decide whether 'dv_costs' need to be allocated/stored during the encoding. static AOM_INLINE bool av1_need_dv_costs(const AV1_COMP *const cpi) { return !cpi->sf.rt_sf.use_nonrd_pick_mode && av1_allow_intrabc(&cpi->common) && !is_stat_generation_stage(cpi); } /*!\endcond */ /*!\brief Check if the current stage has statistics * *\ingroup two_pass_algo * * \param[in] cpi Top - level encoder instance structure * * \return 0 if no stats for current stage else 1 */ static INLINE int has_no_stats_stage(const AV1_COMP *const cpi) { assert( IMPLIES(!cpi->ppi->lap_enabled, cpi->compressor_stage == ENCODE_STAGE)); return (cpi->oxcf.pass == AOM_RC_ONE_PASS && !cpi->ppi->lap_enabled); } /*!\cond */ static INLINE int is_one_pass_rt_params(const AV1_COMP *cpi) { return has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && cpi->oxcf.gf_cfg.lag_in_frames == 0; } // Use default/internal reference structure for single-layer RTC. static INLINE int use_rtc_reference_structure_one_layer(const AV1_COMP *cpi) { return is_one_pass_rt_params(cpi) && cpi->ppi->number_spatial_layers == 1 && cpi->ppi->number_temporal_layers == 1 && !cpi->ppi->rtc_ref.set_ref_frame_config; } // Function return size of frame stats buffer static INLINE int get_stats_buf_size(int num_lap_buffer, int num_lag_buffer) { /* if lookahead is enabled return num_lap_buffers else num_lag_buffers */ return (num_lap_buffer > 0 ? num_lap_buffer + 1 : num_lag_buffer); } // TODO(zoeliu): To set up cpi->oxcf.gf_cfg.enable_auto_brf static INLINE void set_ref_ptrs(const AV1_COMMON *cm, MACROBLOCKD *xd, MV_REFERENCE_FRAME ref0, MV_REFERENCE_FRAME ref1) { xd->block_ref_scale_factors[0] = get_ref_scale_factors_const(cm, ref0 >= LAST_FRAME ? ref0 : 1); xd->block_ref_scale_factors[1] = get_ref_scale_factors_const(cm, ref1 >= LAST_FRAME ? ref1 : 1); } static INLINE int get_chessboard_index(int frame_index) { return frame_index & 0x1; } static INLINE const int *cond_cost_list_const(const struct AV1_COMP *cpi, const int *cost_list) { const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE && cpi->sf.mv_sf.use_fullpel_costlist; return use_cost_list ? cost_list : NULL; } static INLINE int *cond_cost_list(const struct AV1_COMP *cpi, int *cost_list) { const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE && cpi->sf.mv_sf.use_fullpel_costlist; return use_cost_list ? cost_list : NULL; } // Compression ratio of current frame. double av1_get_compression_ratio(const AV1_COMMON *const cm, size_t encoded_frame_size); void av1_new_framerate(AV1_COMP *cpi, double framerate); void av1_setup_frame_size(AV1_COMP *cpi); #define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl)) // Returns 1 if a frame is scaled and 0 otherwise. static INLINE int av1_resize_scaled(const AV1_COMMON *cm) { return cm->superres_upscaled_width != cm->render_width || cm->superres_upscaled_height != cm->render_height; } static INLINE int av1_frame_scaled(const AV1_COMMON *cm) { return av1_superres_scaled(cm) || av1_resize_scaled(cm); } // Don't allow a show_existing_frame to coincide with an error resilient // frame. An exception can be made for a forward keyframe since it has no // previous dependencies. static INLINE int encode_show_existing_frame(const AV1_COMMON *cm) { return cm->show_existing_frame && (!cm->features.error_resilient_mode || cm->current_frame.frame_type == KEY_FRAME); } // Get index into the 'cpi->mbmi_ext_info.frame_base' array for the given // 'mi_row' and 'mi_col'. static INLINE int get_mi_ext_idx(const int mi_row, const int mi_col, const BLOCK_SIZE mi_alloc_bsize, const int mbmi_ext_stride) { const int mi_ext_size_1d = mi_size_wide[mi_alloc_bsize]; const int mi_ext_row = mi_row / mi_ext_size_1d; const int mi_ext_col = mi_col / mi_ext_size_1d; return mi_ext_row * mbmi_ext_stride + mi_ext_col; } // Lighter version of set_offsets that only sets the mode info // pointers. static INLINE void set_mode_info_offsets( const CommonModeInfoParams *const mi_params, const MBMIExtFrameBufferInfo *const mbmi_ext_info, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col) { set_mi_offsets(mi_params, xd, mi_row, mi_col); const int ext_idx = get_mi_ext_idx(mi_row, mi_col, mi_params->mi_alloc_bsize, mbmi_ext_info->stride); x->mbmi_ext_frame = mbmi_ext_info->frame_base + ext_idx; } // Check to see if the given partition size is allowed for a specified number // of mi block rows and columns remaining in the image. // If not then return the largest allowed partition size static INLINE BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { int int_size = (int)bsize; if (rows_left <= 0 || cols_left <= 0) { return AOMMIN(bsize, BLOCK_8X8); } else { for (; int_size > 0; int_size -= 3) { *bh = mi_size_high[int_size]; *bw = mi_size_wide[int_size]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return (BLOCK_SIZE)int_size; } static const uint8_t av1_ref_frame_flag_list[REF_FRAMES] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG }; // When more than 'max_allowed_refs' are available, we reduce the number of // reference frames one at a time based on this order. static const MV_REFERENCE_FRAME disable_order[] = { LAST3_FRAME, LAST2_FRAME, ALTREF2_FRAME, BWDREF_FRAME, }; static const MV_REFERENCE_FRAME ref_frame_priority_order[INTER_REFS_PER_FRAME] = { LAST_FRAME, ALTREF_FRAME, BWDREF_FRAME, GOLDEN_FRAME, ALTREF2_FRAME, LAST2_FRAME, LAST3_FRAME, }; static INLINE int get_ref_frame_flags(const SPEED_FEATURES *const sf, const int use_one_pass_rt_params, const YV12_BUFFER_CONFIG **ref_frames, const int ext_ref_frame_flags) { // cpi->ext_flags.ref_frame_flags allows certain reference types to be // disabled by the external interface. These are set by // av1_apply_encoding_flags(). Start with what the external interface allows, // then suppress any reference types which we have found to be duplicates. int flags = ext_ref_frame_flags; for (int i = 1; i < INTER_REFS_PER_FRAME; ++i) { const YV12_BUFFER_CONFIG *const this_ref = ref_frames[i]; // If this_ref has appeared before, mark the corresponding ref frame as // invalid. For one_pass_rt mode, only disable GOLDEN_FRAME if it's the // same as LAST_FRAME or ALTREF_FRAME (if ALTREF is being used in nonrd). int index = (use_one_pass_rt_params && ref_frame_priority_order[i] == GOLDEN_FRAME) ? (1 + sf->rt_sf.use_nonrd_altref_frame) : i; for (int j = 0; j < index; ++j) { // If this_ref has appeared before (same as the reference corresponding // to lower index j), remove it as a reference only if that reference // (for index j) is actually used as a reference. if (this_ref == ref_frames[j] && (flags & (1 << (ref_frame_priority_order[j] - 1)))) { flags &= ~(1 << (ref_frame_priority_order[i] - 1)); break; } } } return flags; } // Returns a Sequence Header OBU stored in an aom_fixed_buf_t, or NULL upon // failure. When a non-NULL aom_fixed_buf_t pointer is returned by this // function, the memory must be freed by the caller. Both the buf member of the // aom_fixed_buf_t, and the aom_fixed_buf_t pointer itself must be freed. Memory // returned must be freed via call to free(). // // Note: The OBU returned is in Low Overhead Bitstream Format. Specifically, // the obu_has_size_field bit is set, and the buffer contains the obu_size // field. aom_fixed_buf_t *av1_get_global_headers(AV1_PRIMARY *ppi); #define MAX_GFUBOOST_FACTOR 10.0 #define MIN_GFUBOOST_FACTOR 4.0 static INLINE int is_frame_tpl_eligible(const GF_GROUP *const gf_group, uint8_t index) { const FRAME_UPDATE_TYPE update_type = gf_group->update_type[index]; return update_type == ARF_UPDATE || update_type == GF_UPDATE || update_type == KF_UPDATE; } static INLINE int is_frame_eligible_for_ref_pruning(const GF_GROUP *gf_group, int selective_ref_frame, int prune_ref_frames, int gf_index) { return (selective_ref_frame > 0) && (prune_ref_frames > 0) && !is_frame_tpl_eligible(gf_group, gf_index); } // Get update type of the current frame. static INLINE FRAME_UPDATE_TYPE get_frame_update_type(const GF_GROUP *gf_group, int gf_frame_index) { return gf_group->update_type[gf_frame_index]; } static INLINE int av1_pixels_to_mi(int pixels) { return ALIGN_POWER_OF_TWO(pixels, 3) >> MI_SIZE_LOG2; } static AOM_INLINE int is_psnr_calc_enabled(const AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; return cpi->ppi->b_calculate_psnr && !is_stat_generation_stage(cpi) && cm->show_frame; } static INLINE int is_frame_resize_pending(const AV1_COMP *const cpi) { const ResizePendingParams *const resize_pending_params = &cpi->resize_pending_params; return (resize_pending_params->width && resize_pending_params->height && (cpi->common.width != resize_pending_params->width || cpi->common.height != resize_pending_params->height)); } // Check if loop filter is used. static INLINE int is_loopfilter_used(const AV1_COMMON *const cm) { return !cm->features.coded_lossless && !cm->tiles.large_scale; } // Check if CDEF is used. static INLINE int is_cdef_used(const AV1_COMMON *const cm) { return cm->seq_params->enable_cdef && !cm->features.coded_lossless && !cm->tiles.large_scale; } // Check if loop restoration filter is used. static INLINE int is_restoration_used(const AV1_COMMON *const cm) { return cm->seq_params->enable_restoration && !cm->features.all_lossless && !cm->tiles.large_scale; } // Checks if post-processing filters need to be applied. // NOTE: This function decides if the application of different post-processing // filters on the reconstructed frame can be skipped at the encoder side. // However the computation of different filter parameters that are signaled in // the bitstream is still required. static INLINE unsigned int derive_skip_apply_postproc_filters( const AV1_COMP *cpi, int use_loopfilter, int use_cdef, int use_superres, int use_restoration) { // Though CDEF parameter selection should be dependent on // deblocked/loop-filtered pixels for cdef_pick_method <= // CDEF_FAST_SEARCH_LVL5, CDEF strength values are calculated based on the // pixel values that are not loop-filtered in svc real-time encoding mode. // Hence this case is handled separately using the condition below. if (cpi->ppi->rtc_ref.non_reference_frame) return (SKIP_APPLY_LOOPFILTER | SKIP_APPLY_CDEF); if (!cpi->oxcf.algo_cfg.skip_postproc_filtering || cpi->ppi->b_calculate_psnr) return 0; assert(cpi->oxcf.mode == ALLINTRA); // The post-processing filters are applied one after the other in the // following order: deblocking->cdef->superres->restoration. In case of // ALLINTRA encoding, the reconstructed frame is not used as a reference // frame. Hence, the application of these filters can be skipped when // 1. filter parameters of the subsequent stages are not dependent on the // filtered output of the current stage or // 2. subsequent filtering stages are disabled if (use_restoration) return SKIP_APPLY_RESTORATION; if (use_superres) return SKIP_APPLY_SUPERRES; if (use_cdef) { // CDEF parameter selection is not dependent on the deblocked frame if // cdef_pick_method is CDEF_PICK_FROM_Q. Hence the application of deblocking // filters and cdef filters can be skipped in this case. return (cpi->sf.lpf_sf.cdef_pick_method == CDEF_PICK_FROM_Q && use_loopfilter) ? (SKIP_APPLY_LOOPFILTER | SKIP_APPLY_CDEF) : SKIP_APPLY_CDEF; } if (use_loopfilter) return SKIP_APPLY_LOOPFILTER; // If we reach here, all post-processing stages are disabled, so none need to // be skipped. return 0; } static INLINE void set_postproc_filter_default_params(AV1_COMMON *cm) { struct loopfilter *const lf = &cm->lf; CdefInfo *const cdef_info = &cm->cdef_info; RestorationInfo *const rst_info = cm->rst_info; lf->filter_level[0] = 0; lf->filter_level[1] = 0; cdef_info->cdef_bits = 0; cdef_info->cdef_strengths[0] = 0; cdef_info->nb_cdef_strengths = 1; cdef_info->cdef_uv_strengths[0] = 0; rst_info[0].frame_restoration_type = RESTORE_NONE; rst_info[1].frame_restoration_type = RESTORE_NONE; rst_info[2].frame_restoration_type = RESTORE_NONE; } static INLINE int is_inter_tx_size_search_level_one( const TX_SPEED_FEATURES *tx_sf) { return (tx_sf->inter_tx_size_search_init_depth_rect >= 1 && tx_sf->inter_tx_size_search_init_depth_sqr >= 1); } static INLINE int get_lpf_opt_level(const SPEED_FEATURES *sf) { int lpf_opt_level = 0; if (is_inter_tx_size_search_level_one(&sf->tx_sf)) lpf_opt_level = (sf->lpf_sf.lpf_pick == LPF_PICK_FROM_Q) ? 2 : 1; return lpf_opt_level; } // Enable switchable motion mode only if warp and OBMC tools are allowed static INLINE bool is_switchable_motion_mode_allowed(bool allow_warped_motion, bool enable_obmc) { return (allow_warped_motion || enable_obmc); } #if CONFIG_AV1_TEMPORAL_DENOISING static INLINE int denoise_svc(const struct AV1_COMP *const cpi) { return (!cpi->ppi->use_svc || (cpi->ppi->use_svc && cpi->svc.spatial_layer_id >= cpi->svc.first_layer_denoise)); } #endif #if CONFIG_COLLECT_PARTITION_STATS == 2 static INLINE void av1_print_fr_partition_timing_stats( const FramePartitionTimingStats *part_stats, const char *filename) { FILE *f = fopen(filename, "w"); if (!f) { return; } fprintf(f, "bsize,redo,"); for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "decision_%d,", part); } for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "attempt_%d,", part); } for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "time_%d,", part); } fprintf(f, "\n"); static const int bsizes[6] = { 128, 64, 32, 16, 8, 4 }; for (int bsize_idx = 0; bsize_idx < 6; bsize_idx++) { fprintf(f, "%d,%d,", bsizes[bsize_idx], part_stats->partition_redo); for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "%d,", part_stats->partition_decisions[bsize_idx][part]); } for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "%d,", part_stats->partition_attempts[bsize_idx][part]); } for (int part = 0; part < EXT_PARTITION_TYPES; part++) { fprintf(f, "%ld,", part_stats->partition_times[bsize_idx][part]); } fprintf(f, "\n"); } fclose(f); } #endif // CONFIG_COLLECT_PARTITION_STATS == 2 #if CONFIG_COLLECT_PARTITION_STATS static INLINE int av1_get_bsize_idx_for_part_stats(BLOCK_SIZE bsize) { assert(bsize == BLOCK_128X128 || bsize == BLOCK_64X64 || bsize == BLOCK_32X32 || bsize == BLOCK_16X16 || bsize == BLOCK_8X8 || bsize == BLOCK_4X4); switch (bsize) { case BLOCK_128X128: return 0; case BLOCK_64X64: return 1; case BLOCK_32X32: return 2; case BLOCK_16X16: return 3; case BLOCK_8X8: return 4; case BLOCK_4X4: return 5; default: assert(0 && "Invalid bsize for partition_stats."); return -1; } } #endif // CONFIG_COLLECT_PARTITION_STATS #if CONFIG_COLLECT_COMPONENT_TIMING static INLINE void start_timing(AV1_COMP *cpi, int component) { aom_usec_timer_start(&cpi->component_timer[component]); } static INLINE void end_timing(AV1_COMP *cpi, int component) { aom_usec_timer_mark(&cpi->component_timer[component]); cpi->frame_component_time[component] += aom_usec_timer_elapsed(&cpi->component_timer[component]); } static INLINE char const *get_frame_type_enum(int type) { switch (type) { case 0: return "KEY_FRAME"; case 1: return "INTER_FRAME"; case 2: return "INTRA_ONLY_FRAME"; case 3: return "S_FRAME"; default: assert(0); } return "error"; } #endif /*!\endcond */ #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_ENCODER_H_