/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_ENCODER_ALLOC_H_ #define AOM_AV1_ENCODER_ENCODER_ALLOC_H_ #include "av1/encoder/block.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/ethread.h" #include "av1/encoder/global_motion_facade.h" #include "av1/encoder/intra_mode_search_utils.h" #include "av1/encoder/pickcdef.h" #ifdef __cplusplus extern "C" { #endif static AOM_INLINE void dealloc_context_buffers_ext( MBMIExtFrameBufferInfo *mbmi_ext_info) { aom_free(mbmi_ext_info->frame_base); mbmi_ext_info->frame_base = NULL; mbmi_ext_info->alloc_size = 0; } static AOM_INLINE void alloc_context_buffers_ext( AV1_COMMON *cm, MBMIExtFrameBufferInfo *mbmi_ext_info) { const CommonModeInfoParams *const mi_params = &cm->mi_params; const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; const int mi_alloc_rows = (mi_params->mi_rows + mi_alloc_size_1d - 1) / mi_alloc_size_1d; const int mi_alloc_cols = (mi_params->mi_cols + mi_alloc_size_1d - 1) / mi_alloc_size_1d; const int new_ext_mi_size = mi_alloc_rows * mi_alloc_cols; if (new_ext_mi_size > mbmi_ext_info->alloc_size) { dealloc_context_buffers_ext(mbmi_ext_info); CHECK_MEM_ERROR( cm, mbmi_ext_info->frame_base, aom_malloc(new_ext_mi_size * sizeof(*mbmi_ext_info->frame_base))); mbmi_ext_info->alloc_size = new_ext_mi_size; } // The stride needs to be updated regardless of whether new allocation // happened or not. mbmi_ext_info->stride = mi_alloc_cols; } static AOM_INLINE void alloc_compressor_data(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; CommonModeInfoParams *const mi_params = &cm->mi_params; // Setup mi_params mi_params->set_mb_mi(mi_params, cm->width, cm->height, cpi->sf.part_sf.default_min_partition_size); if (!is_stat_generation_stage(cpi)) av1_alloc_txb_buf(cpi); aom_free(cpi->td.mv_costs_alloc); cpi->td.mv_costs_alloc = NULL; // Avoid the memory allocation of 'mv_costs_alloc' for allintra encoding // mode. if (cpi->oxcf.kf_cfg.key_freq_max != 0) { CHECK_MEM_ERROR(cm, cpi->td.mv_costs_alloc, (MvCosts *)aom_calloc(1, sizeof(*cpi->td.mv_costs_alloc))); cpi->td.mb.mv_costs = cpi->td.mv_costs_alloc; } av1_setup_shared_coeff_buffer(cm->seq_params, &cpi->td.shared_coeff_buf, cm->error); if (av1_setup_sms_tree(cpi, &cpi->td)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate SMS tree"); } cpi->td.firstpass_ctx = av1_alloc_pmc(cpi, BLOCK_16X16, &cpi->td.shared_coeff_buf); if (!cpi->td.firstpass_ctx) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } // Allocate mbmi buffers which are used to store mode information at block // level. static AOM_INLINE void alloc_mb_mode_info_buffers(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; if (av1_alloc_context_buffers(cm, cm->width, cm->height, cpi->sf.part_sf.default_min_partition_size)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } if (!is_stat_generation_stage(cpi)) alloc_context_buffers_ext(cm, &cpi->mbmi_ext_info); } static AOM_INLINE void realloc_segmentation_maps(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; CommonModeInfoParams *const mi_params = &cm->mi_params; // Create the encoder segmentation map and set all entries to 0 aom_free(cpi->enc_seg.map); CHECK_MEM_ERROR(cm, cpi->enc_seg.map, aom_calloc(mi_params->mi_rows * mi_params->mi_cols, 1)); // Create a map used for cyclic background refresh. if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh); CHECK_MEM_ERROR( cm, cpi->cyclic_refresh, av1_cyclic_refresh_alloc(mi_params->mi_rows, mi_params->mi_cols)); // Create a map used to mark inactive areas. aom_free(cpi->active_map.map); CHECK_MEM_ERROR(cm, cpi->active_map.map, aom_calloc(mi_params->mi_rows * mi_params->mi_cols, 1)); } static AOM_INLINE void alloc_obmc_buffers( OBMCBuffer *obmc_buffer, struct aom_internal_error_info *error) { AOM_CHECK_MEM_ERROR( error, obmc_buffer->wsrc, (int32_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*obmc_buffer->wsrc))); AOM_CHECK_MEM_ERROR( error, obmc_buffer->mask, (int32_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*obmc_buffer->mask))); AOM_CHECK_MEM_ERROR( error, obmc_buffer->above_pred, (uint8_t *)aom_memalign( 16, MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*obmc_buffer->above_pred))); AOM_CHECK_MEM_ERROR( error, obmc_buffer->left_pred, (uint8_t *)aom_memalign( 16, MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*obmc_buffer->left_pred))); } static AOM_INLINE void release_obmc_buffers(OBMCBuffer *obmc_buffer) { aom_free(obmc_buffer->mask); aom_free(obmc_buffer->above_pred); aom_free(obmc_buffer->left_pred); aom_free(obmc_buffer->wsrc); obmc_buffer->mask = NULL; obmc_buffer->above_pred = NULL; obmc_buffer->left_pred = NULL; obmc_buffer->wsrc = NULL; } static AOM_INLINE void alloc_compound_type_rd_buffers( struct aom_internal_error_info *error, CompoundTypeRdBuffers *const bufs) { AOM_CHECK_MEM_ERROR( error, bufs->pred0, (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0))); AOM_CHECK_MEM_ERROR( error, bufs->pred1, (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1))); AOM_CHECK_MEM_ERROR( error, bufs->residual1, (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1))); AOM_CHECK_MEM_ERROR( error, bufs->diff10, (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10))); AOM_CHECK_MEM_ERROR(error, bufs->tmp_best_mask_buf, (uint8_t *)aom_malloc(2 * MAX_SB_SQUARE * sizeof(*bufs->tmp_best_mask_buf))); } static AOM_INLINE void release_compound_type_rd_buffers( CompoundTypeRdBuffers *const bufs) { aom_free(bufs->pred0); aom_free(bufs->pred1); aom_free(bufs->residual1); aom_free(bufs->diff10); aom_free(bufs->tmp_best_mask_buf); av1_zero(*bufs); // Set all pointers to NULL for safety. } static AOM_INLINE void dealloc_compressor_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; TokenInfo *token_info = &cpi->token_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; const int num_planes = av1_num_planes(cm); dealloc_context_buffers_ext(&cpi->mbmi_ext_info); aom_free(cpi->tile_data); cpi->tile_data = NULL; cpi->allocated_tiles = 0; enc_row_mt->allocated_tile_cols = 0; enc_row_mt->allocated_tile_rows = 0; // Delete sementation map aom_free(cpi->enc_seg.map); cpi->enc_seg.map = NULL; av1_cyclic_refresh_free(cpi->cyclic_refresh); cpi->cyclic_refresh = NULL; aom_free(cpi->active_map.map); cpi->active_map.map = NULL; aom_free(cpi->ssim_rdmult_scaling_factors); cpi->ssim_rdmult_scaling_factors = NULL; aom_free(cpi->tpl_rdmult_scaling_factors); cpi->tpl_rdmult_scaling_factors = NULL; #if CONFIG_TUNE_VMAF aom_free(cpi->vmaf_info.rdmult_scaling_factors); cpi->vmaf_info.rdmult_scaling_factors = NULL; aom_close_vmaf_model(cpi->vmaf_info.vmaf_model); #endif #if CONFIG_TUNE_BUTTERAUGLI aom_free(cpi->butteraugli_info.rdmult_scaling_factors); cpi->butteraugli_info.rdmult_scaling_factors = NULL; aom_free_frame_buffer(&cpi->butteraugli_info.source); aom_free_frame_buffer(&cpi->butteraugli_info.resized_source); #endif #if CONFIG_SALIENCY_MAP aom_free(cpi->saliency_map); aom_free(cpi->sm_scaling_factor); #endif release_obmc_buffers(&cpi->td.mb.obmc_buffer); aom_free(cpi->td.mv_costs_alloc); cpi->td.mv_costs_alloc = NULL; aom_free(cpi->td.dv_costs_alloc); cpi->td.dv_costs_alloc = NULL; aom_free(cpi->td.mb.sb_stats_cache); cpi->td.mb.sb_stats_cache = NULL; aom_free(cpi->td.mb.sb_fp_stats); cpi->td.mb.sb_fp_stats = NULL; #if CONFIG_PARTITION_SEARCH_ORDER aom_free(cpi->td.mb.rdcost); cpi->td.mb.rdcost = NULL; #endif av1_free_pc_tree_recursive(cpi->td.pc_root, num_planes, 0, 0, cpi->sf.part_sf.partition_search_type); cpi->td.pc_root = NULL; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) { aom_free(cpi->td.mb.intrabc_hash_info.hash_value_buffer[i][j]); cpi->td.mb.intrabc_hash_info.hash_value_buffer[i][j] = NULL; } av1_hash_table_destroy(&cpi->td.mb.intrabc_hash_info.intrabc_hash_table); aom_free(cm->tpl_mvs); cm->tpl_mvs = NULL; aom_free(cpi->td.pixel_gradient_info); cpi->td.pixel_gradient_info = NULL; aom_free(cpi->td.src_var_info_of_4x4_sub_blocks); cpi->td.src_var_info_of_4x4_sub_blocks = NULL; aom_free(cpi->td.vt64x64); cpi->td.vt64x64 = NULL; av1_free_pmc(cpi->td.firstpass_ctx, num_planes); cpi->td.firstpass_ctx = NULL; const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth; // This call ensures that the buffers allocated by tf_alloc_and_reset_data() // in av1_temporal_filter() for single-threaded encode are freed in case an // error is encountered during temporal filtering (due to early termination // tf_dealloc_data() in av1_temporal_filter() would not be invoked). tf_dealloc_data(&cpi->td.tf_data, is_highbitdepth); // This call ensures that tpl_tmp_buffers for single-threaded encode are freed // in case of an error during tpl. tpl_dealloc_temp_buffers(&cpi->td.tpl_tmp_buffers); // This call ensures that the global motion (gm) data buffers for // single-threaded encode are freed in case of an error during gm. gm_dealloc_data(&cpi->td.gm_data); // This call ensures that CDEF search context buffers are deallocated in case // of an error during cdef search. av1_cdef_dealloc_data(cpi->cdef_search_ctx); aom_free(cpi->cdef_search_ctx); cpi->cdef_search_ctx = NULL; av1_dealloc_mb_data(&cpi->td.mb, num_planes); av1_dealloc_mb_wiener_var_pred_buf(&cpi->td); av1_free_txb_buf(cpi); av1_free_context_buffers(cm); aom_free_frame_buffer(&cpi->last_frame_uf); #if !CONFIG_REALTIME_ONLY av1_free_restoration_buffers(cm); av1_free_firstpass_data(&cpi->firstpass_data); #endif if (!is_stat_generation_stage(cpi)) { av1_free_cdef_buffers(cm, &cpi->ppi->p_mt_info.cdef_worker, &cpi->mt_info.cdef_sync); } for (int plane = 0; plane < num_planes; plane++) { aom_free(cpi->pick_lr_ctxt.rusi[plane]); cpi->pick_lr_ctxt.rusi[plane] = NULL; } aom_free(cpi->pick_lr_ctxt.dgd_avg); cpi->pick_lr_ctxt.dgd_avg = NULL; aom_free_frame_buffer(&cpi->trial_frame_rst); aom_free_frame_buffer(&cpi->scaled_source); aom_free_frame_buffer(&cpi->scaled_last_source); aom_free_frame_buffer(&cpi->orig_source); aom_free_frame_buffer(&cpi->svc.source_last_TL0); free_token_info(token_info); av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf); av1_free_sms_tree(&cpi->td); aom_free(cpi->td.mb.palette_buffer); release_compound_type_rd_buffers(&cpi->td.mb.comp_rd_buffer); aom_free(cpi->td.mb.tmp_conv_dst); for (int j = 0; j < 2; ++j) { aom_free(cpi->td.mb.tmp_pred_bufs[j]); } #if CONFIG_DENOISE if (cpi->denoise_and_model) { aom_denoise_and_model_free(cpi->denoise_and_model); cpi->denoise_and_model = NULL; } #endif if (cpi->film_grain_table) { aom_film_grain_table_free(cpi->film_grain_table); aom_free(cpi->film_grain_table); cpi->film_grain_table = NULL; } if (cpi->ppi->use_svc) av1_free_svc_cyclic_refresh(cpi); aom_free(cpi->svc.layer_context); cpi->svc.layer_context = NULL; aom_free(cpi->consec_zero_mv); cpi->consec_zero_mv = NULL; cpi->consec_zero_mv_alloc_size = 0; aom_free(cpi->src_sad_blk_64x64); cpi->src_sad_blk_64x64 = NULL; aom_free(cpi->mb_weber_stats); cpi->mb_weber_stats = NULL; if (cpi->oxcf.enable_rate_guide_deltaq) { aom_free(cpi->prep_rate_estimates); cpi->prep_rate_estimates = NULL; aom_free(cpi->ext_rate_distribution); cpi->ext_rate_distribution = NULL; } aom_free(cpi->mb_delta_q); cpi->mb_delta_q = NULL; } static AOM_INLINE void allocate_gradient_info_for_hog(AV1_COMP *cpi) { if (!is_gradient_caching_for_hog_enabled(cpi)) return; PixelLevelGradientInfo *pixel_gradient_info = cpi->td.pixel_gradient_info; if (!pixel_gradient_info) { const AV1_COMMON *const cm = &cpi->common; const int plane_types = PLANE_TYPES >> cm->seq_params->monochrome; CHECK_MEM_ERROR( cm, pixel_gradient_info, aom_malloc(sizeof(*pixel_gradient_info) * plane_types * MAX_SB_SQUARE)); cpi->td.pixel_gradient_info = pixel_gradient_info; } cpi->td.mb.pixel_gradient_info = pixel_gradient_info; } static AOM_INLINE void allocate_src_var_of_4x4_sub_block_buf(AV1_COMP *cpi) { if (!is_src_var_for_4x4_sub_blocks_caching_enabled(cpi)) return; Block4x4VarInfo *source_variance_info = cpi->td.src_var_info_of_4x4_sub_blocks; if (!source_variance_info) { const AV1_COMMON *const cm = &cpi->common; const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int mi_count_in_sb = mi_size_wide[sb_size] * mi_size_high[sb_size]; CHECK_MEM_ERROR(cm, source_variance_info, aom_malloc(sizeof(*source_variance_info) * mi_count_in_sb)); cpi->td.src_var_info_of_4x4_sub_blocks = source_variance_info; } cpi->td.mb.src_var_info_of_4x4_sub_blocks = source_variance_info; } static AOM_INLINE void variance_partition_alloc(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_64x64_blocks = (cm->seq_params->sb_size == BLOCK_64X64) ? 1 : 4; if (cpi->td.vt64x64) { if (num_64x64_blocks != cpi->td.num_64x64_blocks) { aom_free(cpi->td.vt64x64); cpi->td.vt64x64 = NULL; } } if (!cpi->td.vt64x64) { CHECK_MEM_ERROR(cm, cpi->td.vt64x64, aom_malloc(sizeof(*cpi->td.vt64x64) * num_64x64_blocks)); cpi->td.num_64x64_blocks = num_64x64_blocks; } } static AOM_INLINE YV12_BUFFER_CONFIG *realloc_and_scale_source( AV1_COMP *cpi, int scaled_width, int scaled_height) { AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); if (scaled_width == cpi->unscaled_source->y_crop_width && scaled_height == cpi->unscaled_source->y_crop_height) { return cpi->unscaled_source; } if (aom_realloc_frame_buffer( &cpi->scaled_source, scaled_width, scaled_height, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, cpi->alloc_pyramid, 0)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to reallocate scaled source buffer"); assert(cpi->scaled_source.y_crop_width == scaled_width); assert(cpi->scaled_source.y_crop_height == scaled_height); if (!av1_resize_and_extend_frame_nonnormative( cpi->unscaled_source, &cpi->scaled_source, (int)cm->seq_params->bit_depth, num_planes)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to reallocate buffers during resize"); return &cpi->scaled_source; } // Deallocate allocated thread_data. static AOM_INLINE void free_thread_data(AV1_PRIMARY *ppi) { PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; const int num_tf_workers = AOMMIN(p_mt_info->num_mod_workers[MOD_TF], p_mt_info->num_workers); const int num_tpl_workers = AOMMIN(p_mt_info->num_mod_workers[MOD_TPL], p_mt_info->num_workers); const int is_highbitdepth = ppi->seq_params.use_highbitdepth; const int num_planes = ppi->seq_params.monochrome ? 1 : MAX_MB_PLANE; for (int t = 1; t < p_mt_info->num_workers; ++t) { EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[t]; thread_data->td = thread_data->original_td; ThreadData *const td = thread_data->td; if (!td) continue; aom_free(td->tctx); aom_free(td->palette_buffer); aom_free(td->tmp_conv_dst); release_compound_type_rd_buffers(&td->comp_rd_buffer); for (int j = 0; j < 2; ++j) { aom_free(td->tmp_pred_bufs[j]); } aom_free(td->pixel_gradient_info); aom_free(td->src_var_info_of_4x4_sub_blocks); release_obmc_buffers(&td->obmc_buffer); aom_free(td->vt64x64); for (int x = 0; x < 2; x++) { for (int y = 0; y < 2; y++) { aom_free(td->hash_value_buffer[x][y]); td->hash_value_buffer[x][y] = NULL; } } aom_free(td->mv_costs_alloc); td->mv_costs_alloc = NULL; aom_free(td->dv_costs_alloc); td->dv_costs_alloc = NULL; aom_free(td->counts); av1_free_pmc(td->firstpass_ctx, num_planes); td->firstpass_ctx = NULL; av1_free_shared_coeff_buffer(&td->shared_coeff_buf); av1_free_sms_tree(td); // This call ensures that the buffers allocated by tf_alloc_and_reset_data() // in prepare_tf_workers() for MT encode are freed in case an error is // encountered during temporal filtering (due to early termination // tf_dealloc_thread_data() in av1_tf_do_filtering_mt() would not be // invoked). if (t < num_tf_workers) tf_dealloc_data(&td->tf_data, is_highbitdepth); // This call ensures that tpl_tmp_buffers for MT encode are freed in case of // an error during tpl. if (t < num_tpl_workers) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers); // This call ensures that the buffers in gm_data for MT encode are freed in // case of an error during gm. gm_dealloc_data(&td->gm_data); av1_dealloc_mb_data(&td->mb, num_planes); aom_free(td->mb.sb_stats_cache); td->mb.sb_stats_cache = NULL; aom_free(td->mb.sb_fp_stats); td->mb.sb_fp_stats = NULL; #if CONFIG_PARTITION_SEARCH_ORDER aom_free(td->mb.rdcost); td->mb.rdcost = NULL; #endif av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, SEARCH_PARTITION); td->pc_root = NULL; av1_dealloc_mb_wiener_var_pred_buf(td); aom_free(td); thread_data->td = NULL; thread_data->original_td = NULL; } } #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_ENCODER_ALLOC_H_