/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom/aomcx.h" #include "av1/common/av1_common_int.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_alloc.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/grain_test_vectors.h" #include "av1/encoder/mv_prec.h" #include "av1/encoder/rc_utils.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/superres_scale.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/var_based_part.h" #if CONFIG_TUNE_VMAF #include "av1/encoder/tune_vmaf.h" #endif #define MIN_BOOST_COMBINE_FACTOR 4.0 #define MAX_BOOST_COMBINE_FACTOR 12.0 const int default_tx_type_probs[FRAME_UPDATE_TYPES][TX_SIZES_ALL][TX_TYPES] = { { { 221, 189, 214, 292, 0, 0, 0, 0, 0, 2, 38, 68, 0, 0, 0, 0 }, { 262, 203, 216, 239, 0, 0, 0, 0, 0, 1, 37, 66, 0, 0, 0, 0 }, { 315, 231, 239, 226, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 222, 188, 214, 287, 0, 0, 0, 0, 0, 2, 50, 61, 0, 0, 0, 0 }, { 256, 182, 205, 282, 0, 0, 0, 0, 0, 2, 21, 76, 0, 0, 0, 0 }, { 281, 214, 217, 222, 0, 0, 0, 0, 0, 1, 48, 41, 0, 0, 0, 0 }, { 263, 194, 225, 225, 0, 0, 0, 0, 0, 2, 15, 100, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 170, 192, 242, 293, 0, 0, 0, 0, 0, 1, 68, 58, 0, 0, 0, 0 }, { 199, 210, 213, 291, 0, 0, 0, 0, 0, 1, 14, 96, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 106, 69, 107, 278, 9, 15, 20, 45, 49, 23, 23, 88, 36, 74, 25, 57 }, { 105, 72, 81, 98, 45, 49, 47, 50, 56, 72, 30, 81, 33, 95, 27, 83 }, { 211, 105, 109, 120, 57, 62, 43, 49, 52, 58, 42, 116, 0, 0, 0, 0 }, { 1008, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 131, 57, 98, 172, 19, 40, 37, 64, 69, 22, 41, 52, 51, 77, 35, 59 }, { 176, 83, 93, 202, 22, 24, 28, 47, 50, 16, 12, 93, 26, 76, 17, 59 }, { 136, 72, 89, 95, 46, 59, 47, 56, 61, 68, 35, 51, 32, 82, 26, 69 }, { 122, 80, 87, 105, 49, 47, 46, 46, 57, 52, 13, 90, 19, 103, 15, 93 }, { 1009, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0 }, { 1011, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 202, 20, 84, 114, 14, 60, 41, 79, 99, 21, 41, 15, 50, 84, 34, 66 }, { 196, 44, 23, 72, 30, 22, 28, 57, 67, 13, 4, 165, 15, 148, 9, 131 }, { 882, 0, 0, 0, 0, 0, 0, 0, 0, 142, 0, 0, 0, 0, 0, 0 }, { 840, 0, 0, 0, 0, 0, 0, 0, 0, 184, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 } }, { { 213, 110, 141, 269, 12, 16, 15, 19, 21, 11, 38, 68, 22, 29, 16, 24 }, { 216, 119, 128, 143, 38, 41, 26, 30, 31, 30, 42, 70, 23, 36, 19, 32 }, { 367, 149, 154, 154, 38, 35, 17, 21, 21, 10, 22, 36, 0, 0, 0, 0 }, { 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 219, 96, 127, 191, 21, 40, 25, 32, 34, 18, 45, 45, 33, 39, 26, 33 }, { 296, 99, 122, 198, 23, 21, 19, 24, 25, 13, 20, 64, 23, 32, 18, 27 }, { 275, 128, 142, 143, 35, 48, 23, 30, 29, 18, 42, 36, 18, 23, 14, 20 }, { 239, 132, 166, 175, 36, 27, 19, 21, 24, 14, 13, 85, 9, 31, 8, 25 }, { 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, { 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 309, 25, 79, 59, 25, 80, 34, 53, 61, 25, 49, 23, 43, 64, 36, 59 }, { 270, 57, 40, 54, 50, 42, 41, 53, 56, 28, 17, 81, 45, 86, 34, 70 }, { 1005, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0 }, { 992, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 133, 63, 55, 83, 57, 87, 58, 72, 68, 16, 24, 35, 29, 105, 25, 114 }, { 131, 75, 74, 60, 71, 77, 65, 66, 73, 33, 21, 79, 20, 83, 18, 78 }, { 276, 95, 82, 58, 86, 93, 63, 60, 64, 17, 38, 92, 0, 0, 0, 0 }, { 1006, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 147, 49, 75, 78, 50, 97, 60, 67, 76, 17, 42, 35, 31, 93, 27, 80 }, { 157, 49, 58, 75, 61, 52, 56, 67, 69, 12, 15, 79, 24, 119, 11, 120 }, { 178, 69, 83, 77, 69, 85, 72, 77, 77, 20, 35, 40, 25, 48, 23, 46 }, { 174, 55, 64, 57, 73, 68, 62, 61, 75, 15, 12, 90, 17, 99, 16, 86 }, { 1008, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0 }, { 1018, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 266, 31, 63, 64, 21, 52, 39, 54, 63, 30, 52, 31, 48, 89, 46, 75 }, { 272, 26, 32, 44, 29, 31, 32, 53, 51, 13, 13, 88, 22, 153, 16, 149 }, { 923, 0, 0, 0, 0, 0, 0, 0, 0, 101, 0, 0, 0, 0, 0, 0 }, { 969, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 } }, { { 158, 92, 125, 298, 12, 15, 20, 29, 31, 12, 29, 67, 34, 44, 23, 35 }, { 147, 94, 103, 123, 45, 48, 38, 41, 46, 48, 37, 78, 33, 63, 27, 53 }, { 268, 126, 125, 136, 54, 53, 31, 38, 38, 33, 35, 87, 0, 0, 0, 0 }, { 1018, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 159, 72, 103, 194, 20, 35, 37, 50, 56, 21, 39, 40, 51, 61, 38, 48 }, { 259, 86, 95, 188, 32, 20, 25, 34, 37, 13, 12, 85, 25, 53, 17, 43 }, { 189, 99, 113, 123, 45, 59, 37, 46, 48, 44, 39, 41, 31, 47, 26, 37 }, { 175, 110, 113, 128, 58, 38, 33, 33, 43, 29, 13, 100, 14, 68, 12, 57 }, { 1017, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0 }, { 1019, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 208, 22, 84, 101, 21, 59, 44, 70, 90, 25, 59, 13, 64, 67, 49, 48 }, { 277, 52, 32, 63, 43, 26, 33, 48, 54, 11, 6, 130, 18, 119, 11, 101 }, { 963, 0, 0, 0, 0, 0, 0, 0, 0, 61, 0, 0, 0, 0, 0, 0 }, { 979, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }; const int default_obmc_probs[FRAME_UPDATE_TYPES][BLOCK_SIZES_ALL] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 106, 90, 90, 97, 67, 59, 70, 28, 30, 38, 16, 16, 16, 0, 0, 44, 50, 26, 25 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 98, 93, 97, 68, 82, 85, 33, 30, 33, 16, 16, 16, 16, 0, 0, 43, 37, 26, 16 }, { 0, 0, 0, 91, 80, 76, 78, 55, 49, 24, 16, 16, 16, 16, 16, 16, 0, 0, 29, 45, 16, 38 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 103, 89, 89, 89, 62, 63, 76, 34, 35, 32, 19, 16, 16, 0, 0, 49, 55, 29, 19 } }; const int default_warped_probs[FRAME_UPDATE_TYPES] = { 64, 64, 64, 64, 64, 64, 64 }; // TODO(yunqing): the default probs can be trained later from better // performance. const int default_switchable_interp_probs[FRAME_UPDATE_TYPES] [SWITCHABLE_FILTER_CONTEXTS] [SWITCHABLE_FILTERS] = { { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } }, { { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 }, { 512, 512, 512 } } }; static void configure_static_seg_features(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; struct segmentation *const seg = &cm->seg; double avg_q; #if CONFIG_FPMT_TEST avg_q = ((cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) && (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE)) ? cpi->ppi->p_rc.temp_avg_q : cpi->ppi->p_rc.avg_q; #else avg_q = cpi->ppi->p_rc.avg_q; #endif int high_q = (int)(avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->current_frame.frame_type == KEY_FRAME) { // Clear down the global segmentation map memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); seg->update_map = 0; seg->update_data = 0; // Disable segmentation av1_disable_segmentation(seg); // Clear down the segment features. av1_clearall_segfeatures(seg); } else if (cpi->refresh_frame.alt_ref_frame) { // If this is an alt ref frame // Clear down the global segmentation map memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); seg->update_map = 0; seg->update_data = 0; // Disable segmentation and individual segment features by default av1_disable_segmentation(seg); av1_clearall_segfeatures(seg); // If segmentation was enabled set those features needed for the // arf itself. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; qi_delta = av1_compute_qdelta(rc, avg_q, avg_q * 0.875, cm->seq_params->bit_depth); av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); } } else if (seg->enabled) { // All other frames if segmentation has been enabled // First normal frame in a valid gf or alt ref group if (rc->frames_since_golden == 0) { // Set up segment features for normal frames in an arf group // Disable segmentation and clear down features if alt ref // is not active for this group av1_disable_segmentation(seg); memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); seg->update_map = 0; seg->update_data = 0; av1_clearall_segfeatures(seg); } else if (rc->is_src_frame_alt_ref) { // Special case where we are coding over the top of a previous // alt ref frame. // Segment coding disabled for compred testing // Enable ref frame features for segment 0 as well av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); // All mbs should use ALTREF_FRAME av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); // Skip all MBs if high Q (0,0 mv and skip coeffs) if (high_q) { av1_enable_segfeature(seg, 0, SEG_LVL_SKIP); av1_enable_segfeature(seg, 1, SEG_LVL_SKIP); } // Enable data update seg->update_data = 1; } else { // All other frames. // No updates.. leave things as they are. seg->update_map = 0; seg->update_data = 0; } } } void av1_apply_active_map(AV1_COMP *cpi) { struct segmentation *const seg = &cpi->common.seg; unsigned char *const seg_map = cpi->enc_seg.map; const unsigned char *const active_map = cpi->active_map.map; assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE); // Disable the active_maps on intra_only frames or if the // input map for the current frame has no inactive blocks. if (frame_is_intra_only(&cpi->common) || cpi->rc.percent_blocks_inactive == 0) { cpi->active_map.enabled = 0; cpi->active_map.update = 1; } if (cpi->active_map.update) { if (cpi->active_map.enabled) { const int num_mis = cpi->common.mi_params.mi_rows * cpi->common.mi_params.mi_cols; memcpy(seg_map, active_map, sizeof(active_map[0]) * num_mis); av1_enable_segmentation(seg); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V); av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H, -MAX_LOOP_FILTER); av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V, -MAX_LOOP_FILTER); av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U, -MAX_LOOP_FILTER); av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V, -MAX_LOOP_FILTER); } else { av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H); av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V); av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U); av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V); if (seg->enabled) { seg->update_data = 1; seg->update_map = 1; } } cpi->active_map.update = 0; } } #if !CONFIG_REALTIME_ONLY static void process_tpl_stats_frame(AV1_COMP *cpi) { const GF_GROUP *const gf_group = &cpi->ppi->gf_group; AV1_COMMON *const cm = &cpi->common; assert(IMPLIES(gf_group->size > 0, cpi->gf_frame_index < gf_group->size)); const int tpl_idx = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; if (tpl_frame->is_valid) { int tpl_stride = tpl_frame->stride; double intra_cost_base = 0; double mc_dep_cost_base = 0; double cbcmp_base = 1; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; const int row_step = step; const int col_step_sr = coded_to_superres_mi(step, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); for (int row = 0; row < cm->mi_params.mi_rows; row += row_step) { for (int col = 0; col < mi_cols_sr; col += col_step_sr) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; double cbcmp = (double)(this_stats->srcrf_dist); int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); intra_cost_base += log(dist_scaled) * cbcmp; mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp; cbcmp_base += cbcmp; } } if (mc_dep_cost_base == 0) { tpl_frame->is_valid = 0; } else { cpi->rd.r0 = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base); if (is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { if (cpi->ppi->lap_enabled) { double min_boost_factor = sqrt(cpi->ppi->p_rc.baseline_gf_interval); const int gfu_boost = get_gfu_boost_from_r0_lap( min_boost_factor, MAX_GFUBOOST_FACTOR, cpi->rd.r0, cpi->ppi->p_rc.num_stats_required_for_gfu_boost); // printf("old boost %d new boost %d\n", cpi->rc.gfu_boost, // gfu_boost); cpi->ppi->p_rc.gfu_boost = combine_prior_with_tpl_boost( min_boost_factor, MAX_BOOST_COMBINE_FACTOR, cpi->ppi->p_rc.gfu_boost, gfu_boost, cpi->ppi->p_rc.num_stats_used_for_gfu_boost); } else { // TPL may only look at a subset of frame in the gf group when the // speed feature 'reduce_num_frames' is on, which affects the r0 // calcuation. Thus, to compensate for TPL not using all frames a // factor to adjust r0 is used. const int gfu_boost = (int)(200.0 * cpi->ppi->tpl_data.r0_adjust_factor / cpi->rd.r0); cpi->ppi->p_rc.gfu_boost = combine_prior_with_tpl_boost( MIN_BOOST_COMBINE_FACTOR, MAX_BOOST_COMBINE_FACTOR, cpi->ppi->p_rc.gfu_boost, gfu_boost, cpi->rc.frames_to_key); } } } } } #endif // !CONFIG_REALTIME_ONLY void av1_set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index, int *top_index) { AV1_COMMON *const cm = &cpi->common; // Setup variables that depend on the dimensions of the frame. av1_set_speed_features_framesize_dependent(cpi, cpi->speed); #if !CONFIG_REALTIME_ONLY GF_GROUP *gf_group = &cpi->ppi->gf_group; if (cpi->oxcf.algo_cfg.enable_tpl_model && av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) { process_tpl_stats_frame(cpi); av1_tpl_rdmult_setup(cpi); } #endif // Decide q and q bounds. *q = av1_rc_pick_q_and_bounds(cpi, cm->width, cm->height, cpi->gf_frame_index, bottom_index, top_index); #if !CONFIG_REALTIME_ONLY if (cpi->oxcf.rc_cfg.mode == AOM_Q && cpi->ppi->tpl_data.tpl_frame[cpi->gf_frame_index].is_valid && !is_lossless_requested(&cpi->oxcf.rc_cfg)) { const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; const int tpl_q = av1_tpl_get_q_index( &cpi->ppi->tpl_data, cpi->gf_frame_index, cpi->rc.active_worst_quality, cm->seq_params->bit_depth); *q = clamp(tpl_q, rc_cfg->best_allowed_q, rc_cfg->worst_allowed_q); *top_index = *bottom_index = *q; if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE) cpi->ppi->p_rc.arf_q = *q; } if (cpi->oxcf.q_cfg.use_fixed_qp_offsets && cpi->oxcf.rc_cfg.mode == AOM_Q) { if (is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { const double qratio_grad = cpi->ppi->p_rc.baseline_gf_interval > 20 ? 0.2 : 0.3; const double qstep_ratio = 0.2 + (1.0 - (double)cpi->rc.active_worst_quality / MAXQ) * qratio_grad; *q = av1_get_q_index_from_qstep_ratio( cpi->rc.active_worst_quality, qstep_ratio, cm->seq_params->bit_depth); *top_index = *bottom_index = *q; if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE || gf_group->update_type[cpi->gf_frame_index] == KF_UPDATE || gf_group->update_type[cpi->gf_frame_index] == GF_UPDATE) cpi->ppi->p_rc.arf_q = *q; } else if (gf_group->layer_depth[cpi->gf_frame_index] < gf_group->max_layer_depth) { int this_height = gf_group->layer_depth[cpi->gf_frame_index]; int arf_q = cpi->ppi->p_rc.arf_q; while (this_height > 1) { arf_q = (arf_q + cpi->oxcf.rc_cfg.cq_level + 1) / 2; --this_height; } *top_index = *bottom_index = *q = arf_q; } } #endif // Configure experimental use of segmentation for enhanced coding of // static regions if indicated. // Only allowed in the second pass of a two pass encode, as it requires // lagged coding, and if the relevant speed feature flag is set. if (is_stat_consumption_stage_twopass(cpi) && cpi->sf.hl_sf.static_segmentation) configure_static_seg_features(cpi); } static void reset_film_grain_chroma_params(aom_film_grain_t *pars) { pars->num_cr_points = 0; pars->cr_mult = 0; pars->cr_luma_mult = 0; memset(pars->scaling_points_cr, 0, sizeof(pars->scaling_points_cr)); memset(pars->ar_coeffs_cr, 0, sizeof(pars->ar_coeffs_cr)); pars->num_cb_points = 0; pars->cb_mult = 0; pars->cb_luma_mult = 0; pars->chroma_scaling_from_luma = 0; memset(pars->scaling_points_cb, 0, sizeof(pars->scaling_points_cb)); memset(pars->ar_coeffs_cb, 0, sizeof(pars->ar_coeffs_cb)); } void av1_update_film_grain_parameters_seq(struct AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf) { SequenceHeader *const seq_params = &ppi->seq_params; const TuneCfg *const tune_cfg = &oxcf->tune_cfg; if (tune_cfg->film_grain_test_vector || tune_cfg->film_grain_table_filename || tune_cfg->content == AOM_CONTENT_FILM) { seq_params->film_grain_params_present = 1; } else { #if CONFIG_DENOISE seq_params->film_grain_params_present = (oxcf->noise_level > 0); #else seq_params->film_grain_params_present = 0; #endif } } void av1_update_film_grain_parameters(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) { AV1_COMMON *const cm = &cpi->common; const TuneCfg *const tune_cfg = &oxcf->tune_cfg; if (cpi->film_grain_table) { aom_film_grain_table_free(cpi->film_grain_table); aom_free(cpi->film_grain_table); cpi->film_grain_table = NULL; } if (tune_cfg->film_grain_test_vector) { if (cm->current_frame.frame_type == KEY_FRAME) { memcpy(&cm->film_grain_params, film_grain_test_vectors + tune_cfg->film_grain_test_vector - 1, sizeof(cm->film_grain_params)); if (oxcf->tool_cfg.enable_monochrome) reset_film_grain_chroma_params(&cm->film_grain_params); cm->film_grain_params.bit_depth = cm->seq_params->bit_depth; if (cm->seq_params->color_range == AOM_CR_FULL_RANGE) { cm->film_grain_params.clip_to_restricted_range = 0; } } } else if (tune_cfg->film_grain_table_filename) { CHECK_MEM_ERROR(cm, cpi->film_grain_table, aom_calloc(1, sizeof(*cpi->film_grain_table))); aom_film_grain_table_read(cpi->film_grain_table, tune_cfg->film_grain_table_filename, cm->error); } else if (tune_cfg->content == AOM_CONTENT_FILM) { cm->film_grain_params.bit_depth = cm->seq_params->bit_depth; if (oxcf->tool_cfg.enable_monochrome) reset_film_grain_chroma_params(&cm->film_grain_params); if (cm->seq_params->color_range == AOM_CR_FULL_RANGE) cm->film_grain_params.clip_to_restricted_range = 0; } else { memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); } } void av1_scale_references(AV1_COMP *cpi, const InterpFilter filter, const int phase, const int use_optimized_scaler) { AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1). if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { BufferPool *const pool = cm->buffer_pool; const YV12_BUFFER_CONFIG *const ref = get_ref_frame_yv12_buf(cm, ref_frame); if (ref == NULL) { cpi->scaled_ref_buf[ref_frame - 1] = NULL; continue; } // For RTC-SVC: if force_zero_mode_spatial_ref is enabled, check if the // motion search can be skipped for the references: last, golden, altref. // If so, we can skip scaling that reference. if (cpi->ppi->use_svc && cpi->svc.force_zero_mode_spatial_ref && cpi->ppi->rtc_ref.set_ref_frame_config) { if (ref_frame == LAST_FRAME && cpi->svc.skip_mvsearch_last) continue; if (ref_frame == GOLDEN_FRAME && cpi->svc.skip_mvsearch_gf) continue; if (ref_frame == ALTREF_FRAME && cpi->svc.skip_mvsearch_altref) continue; } // For RTC with superres on: golden reference only needs to be scaled // if it was refreshed in previous frame. if (is_one_pass_rt_params(cpi) && cpi->oxcf.superres_cfg.enable_superres && ref_frame == GOLDEN_FRAME && cpi->rc.frame_num_last_gf_refresh < (int)cm->current_frame.frame_number - 1) { continue; } if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { // Replace the reference buffer with a copy having a thicker border, // if the reference buffer is higher resolution than the current // frame, and the border is thin. if ((ref->y_crop_width > cm->width || ref->y_crop_height > cm->height) && ref->border < AOM_BORDER_IN_PIXELS) { RefCntBuffer *ref_fb = get_ref_frame_buf(cm, ref_frame); if (aom_yv12_realloc_with_new_border( &ref_fb->buf, AOM_BORDER_IN_PIXELS, cm->features.byte_alignment, cpi->alloc_pyramid, num_planes) != 0) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } } int force_scaling = 0; RefCntBuffer *new_fb = cpi->scaled_ref_buf[ref_frame - 1]; if (new_fb == NULL) { const int new_fb_idx = get_free_fb(cm); if (new_fb_idx == INVALID_IDX) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Unable to find free frame buffer"); } force_scaling = 1; new_fb = &pool->frame_bufs[new_fb_idx]; } if (force_scaling || new_fb->buf.y_crop_width != cm->width || new_fb->buf.y_crop_height != cm->height) { if (aom_realloc_frame_buffer( &new_fb->buf, cm->width, cm->height, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) { if (force_scaling) { // Release the reference acquired in the get_free_fb() call above. --new_fb->ref_count; } aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } bool has_optimized_scaler = av1_has_optimized_scaler( ref->y_crop_width, ref->y_crop_height, new_fb->buf.y_crop_width, new_fb->buf.y_crop_height); if (num_planes > 1) { has_optimized_scaler = has_optimized_scaler && av1_has_optimized_scaler( ref->uv_crop_width, ref->uv_crop_height, new_fb->buf.uv_crop_width, new_fb->buf.uv_crop_height); } #if CONFIG_AV1_HIGHBITDEPTH if (use_optimized_scaler && has_optimized_scaler && cm->seq_params->bit_depth == AOM_BITS_8) { av1_resize_and_extend_frame(ref, &new_fb->buf, filter, phase, num_planes); } else if (!av1_resize_and_extend_frame_nonnormative( ref, &new_fb->buf, (int)cm->seq_params->bit_depth, num_planes)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate buffer during resize"); } #else if (use_optimized_scaler && has_optimized_scaler) { av1_resize_and_extend_frame(ref, &new_fb->buf, filter, phase, num_planes); } else if (!av1_resize_and_extend_frame_nonnormative( ref, &new_fb->buf, (int)cm->seq_params->bit_depth, num_planes)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate buffer during resize"); } #endif cpi->scaled_ref_buf[ref_frame - 1] = new_fb; alloc_frame_mvs(cm, new_fb); } } else { RefCntBuffer *buf = get_ref_frame_buf(cm, ref_frame); buf->buf.y_crop_width = ref->y_crop_width; buf->buf.y_crop_height = ref->y_crop_height; cpi->scaled_ref_buf[ref_frame - 1] = buf; ++buf->ref_count; } } else { if (!has_no_stats_stage(cpi)) cpi->scaled_ref_buf[ref_frame - 1] = NULL; } } } BLOCK_SIZE av1_select_sb_size(const AV1EncoderConfig *const oxcf, int width, int height, int number_spatial_layers) { if (oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_64X64) { return BLOCK_64X64; } if (oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_128X128) { return BLOCK_128X128; } #if CONFIG_TFLITE if (oxcf->q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) return BLOCK_64X64; #endif // Force 64x64 superblock size to increase resolution in perceptual // AQ mode. if (oxcf->mode == ALLINTRA && (oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI || oxcf->q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED)) { return BLOCK_64X64; } assert(oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC); if (number_spatial_layers > 1 || oxcf->resize_cfg.resize_mode != RESIZE_NONE) { // Use the configured size (top resolution) for spatial layers or // on resize. return AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) > 720 ? BLOCK_128X128 : BLOCK_64X64; } else if (oxcf->mode == REALTIME) { if (oxcf->tune_cfg.content == AOM_CONTENT_SCREEN) { const TileConfig *const tile_cfg = &oxcf->tile_cfg; const int num_tiles = (1 << tile_cfg->tile_columns) * (1 << tile_cfg->tile_rows); // For multi-thread encode: if the number of (128x128) superblocks // per tile is low use 64X64 superblock. if (oxcf->row_mt == 1 && oxcf->max_threads >= 4 && oxcf->max_threads >= num_tiles && AOMMIN(width, height) > 720 && (width * height) / (128 * 128 * num_tiles) <= 38) return BLOCK_64X64; else return AOMMIN(width, height) >= 720 ? BLOCK_128X128 : BLOCK_64X64; } else { return AOMMIN(width, height) > 720 ? BLOCK_128X128 : BLOCK_64X64; } } // TODO(any): Possibly could improve this with a heuristic. // When superres / resize is on, 'cm->width / height' can change between // calls, so we don't apply this heuristic there. // Things break if superblock size changes between the first pass and second // pass encoding, which is why this heuristic is not configured as a // speed-feature. if (oxcf->superres_cfg.superres_mode == AOM_SUPERRES_NONE && oxcf->resize_cfg.resize_mode == RESIZE_NONE) { int is_480p_or_lesser = AOMMIN(width, height) <= 480; if (oxcf->speed >= 1 && is_480p_or_lesser) return BLOCK_64X64; // For 1080p and lower resolutions, choose SB size adaptively based on // resolution and speed level for multi-thread encode. int is_1080p_or_lesser = AOMMIN(width, height) <= 1080; if (!is_480p_or_lesser && is_1080p_or_lesser && oxcf->mode == GOOD && oxcf->row_mt == 1 && oxcf->max_threads > 1 && oxcf->speed >= 5) return BLOCK_64X64; // For allintra encode, since the maximum partition size is set to 32X32 for // speed>=6, superblock size is set to 64X64 instead of 128X128. This // improves the multithread performance due to reduction in top right delay // and thread sync wastage. Currently, this setting is selectively enabled // only for speed>=9 and resolutions less than 4k since cost update // frequency is set to INTERNAL_COST_UPD_OFF in these cases. const int is_4k_or_larger = AOMMIN(width, height) >= 2160; if (oxcf->mode == ALLINTRA && oxcf->speed >= 9 && !is_4k_or_larger) return BLOCK_64X64; } return BLOCK_128X128; } void av1_setup_frame(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; // Set up entropy context depending on frame type. The decoder mandates // the use of the default context, index 0, for keyframes and inter // frames where the error_resilient_mode or intra_only flag is set. For // other inter-frames the encoder currently uses only two contexts; // context 1 for ALTREF frames and context 0 for the others. if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || cpi->ext_flags.use_primary_ref_none) { av1_setup_past_independence(cm); } if ((cm->current_frame.frame_type == KEY_FRAME && cm->show_frame) || frame_is_sframe(cm)) { if (!cpi->ppi->seq_params_locked) { set_sb_size(cm->seq_params, av1_select_sb_size(&cpi->oxcf, cm->width, cm->height, cpi->ppi->number_spatial_layers)); } } else { const RefCntBuffer *const primary_ref_buf = get_primary_ref_frame_buf(cm); if (primary_ref_buf == NULL) { av1_setup_past_independence(cm); cm->seg.update_map = 1; cm->seg.update_data = 1; } else { *cm->fc = primary_ref_buf->frame_context; } } av1_zero(cm->cur_frame->interp_filter_selected); cm->prev_frame = get_primary_ref_frame_buf(cm); cpi->vaq_refresh = 0; } #if !CONFIG_REALTIME_ONLY static int get_interp_filter_selected(const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref, InterpFilter ifilter) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); if (buf == NULL) return 0; return buf->interp_filter_selected[ifilter]; } uint16_t av1_setup_interp_filter_search_mask(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; int ref_total[REF_FRAMES] = { 0 }; uint16_t mask = ALLOW_ALL_INTERP_FILT_MASK; if (cpi->last_frame_type == KEY_FRAME || cpi->refresh_frame.alt_ref_frame) return mask; for (MV_REFERENCE_FRAME ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { for (InterpFilter ifilter = EIGHTTAP_REGULAR; ifilter <= MULTITAP_SHARP; ++ifilter) { ref_total[ref] += get_interp_filter_selected(cm, ref, ifilter); } } int ref_total_total = (ref_total[LAST2_FRAME] + ref_total[LAST3_FRAME] + ref_total[GOLDEN_FRAME] + ref_total[BWDREF_FRAME] + ref_total[ALTREF2_FRAME] + ref_total[ALTREF_FRAME]); for (InterpFilter ifilter = EIGHTTAP_REGULAR; ifilter <= MULTITAP_SHARP; ++ifilter) { int last_score = get_interp_filter_selected(cm, LAST_FRAME, ifilter) * 30; if (ref_total[LAST_FRAME] && last_score <= ref_total[LAST_FRAME]) { int filter_score = get_interp_filter_selected(cm, LAST2_FRAME, ifilter) * 20 + get_interp_filter_selected(cm, LAST3_FRAME, ifilter) * 20 + get_interp_filter_selected(cm, GOLDEN_FRAME, ifilter) * 20 + get_interp_filter_selected(cm, BWDREF_FRAME, ifilter) * 10 + get_interp_filter_selected(cm, ALTREF2_FRAME, ifilter) * 10 + get_interp_filter_selected(cm, ALTREF_FRAME, ifilter) * 10; if (filter_score < ref_total_total) { DUAL_FILTER_TYPE filt_type = ifilter + SWITCHABLE_FILTERS * ifilter; reset_interp_filter_allowed_mask(&mask, filt_type); } } } return mask; } #define STRICT_PSNR_DIFF_THRESH 0.9 // Encode key frame with/without screen content tools to determine whether // screen content tools should be enabled for this key frame group or not. // The first encoding is without screen content tools. // The second encoding is with screen content tools. // We compare the psnr and frame size to make the decision. static void screen_content_tools_determination( AV1_COMP *cpi, const int allow_screen_content_tools_orig_decision, const int allow_intrabc_orig_decision, const int use_screen_content_tools_orig_decision, const int is_screen_content_type_orig_decision, const int pass, int *projected_size_pass, PSNR_STATS *psnr) { AV1_COMMON *const cm = &cpi->common; FeatureFlags *const features = &cm->features; #if CONFIG_FPMT_TEST projected_size_pass[pass] = ((cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) && (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE)) ? cpi->ppi->p_rc.temp_projected_frame_size : cpi->rc.projected_frame_size; #else projected_size_pass[pass] = cpi->rc.projected_frame_size; #endif #if CONFIG_AV1_HIGHBITDEPTH const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; aom_calc_highbd_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr[pass], bit_depth, in_bit_depth); #else aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr[pass]); #endif if (pass != 1) return; const double psnr_diff = psnr[1].psnr[0] - psnr[0].psnr[0]; // Calculate % of palette mode to be chosen in a frame from mode decision. const double palette_ratio = (double)cpi->palette_pixel_num / (double)(cm->height * cm->width); const int psnr_diff_is_large = (psnr_diff > STRICT_PSNR_DIFF_THRESH); const int ratio_is_large = ((palette_ratio >= 0.0001) && ((psnr_diff / palette_ratio) > 4)); const int is_sc_encoding_much_better = (psnr_diff_is_large || ratio_is_large); if (is_sc_encoding_much_better) { // Use screen content tools, if we get coding gain. features->allow_screen_content_tools = 1; features->allow_intrabc = cpi->intrabc_used; cpi->use_screen_content_tools = 1; cpi->is_screen_content_type = 1; } else { // Use original screen content decision. features->allow_screen_content_tools = allow_screen_content_tools_orig_decision; features->allow_intrabc = allow_intrabc_orig_decision; cpi->use_screen_content_tools = use_screen_content_tools_orig_decision; cpi->is_screen_content_type = is_screen_content_type_orig_decision; } } // Set some encoding parameters to make the encoding process fast. // A fixed block partition size, and a large q is used. static void set_encoding_params_for_screen_content(AV1_COMP *cpi, const int pass) { AV1_COMMON *const cm = &cpi->common; if (pass == 0) { // In the first pass, encode without screen content tools. // Use a high q, and a fixed block size for fast encoding. cm->features.allow_screen_content_tools = 0; cm->features.allow_intrabc = 0; cpi->use_screen_content_tools = 0; cpi->sf.part_sf.partition_search_type = FIXED_PARTITION; cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32; return; } assert(pass == 1); // In the second pass, encode with screen content tools. // Use a high q, and a fixed block size for fast encoding. cm->features.allow_screen_content_tools = 1; // TODO(chengchen): turn intrabc on could lead to data race issue. // cm->allow_intrabc = 1; cpi->use_screen_content_tools = 1; cpi->sf.part_sf.partition_search_type = FIXED_PARTITION; cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32; } // Determines whether to use screen content tools for the key frame group. // This function modifies "cm->features.allow_screen_content_tools", // "cm->features.allow_intrabc" and "cpi->use_screen_content_tools". void av1_determine_sc_tools_with_encoding(AV1_COMP *cpi, const int q_orig) { AV1_COMMON *const cm = &cpi->common; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const QuantizationCfg *const q_cfg = &oxcf->q_cfg; // Variables to help determine if we should allow screen content tools. int projected_size_pass[3] = { 0 }; PSNR_STATS psnr[3]; const int is_key_frame = cm->current_frame.frame_type == KEY_FRAME; const int allow_screen_content_tools_orig_decision = cm->features.allow_screen_content_tools; const int allow_intrabc_orig_decision = cm->features.allow_intrabc; const int use_screen_content_tools_orig_decision = cpi->use_screen_content_tools; const int is_screen_content_type_orig_decision = cpi->is_screen_content_type; // Turn off the encoding trial for forward key frame and superres. if (cpi->sf.rt_sf.use_nonrd_pick_mode || oxcf->kf_cfg.fwd_kf_enabled || cpi->superres_mode != AOM_SUPERRES_NONE || oxcf->mode == REALTIME || use_screen_content_tools_orig_decision || !is_key_frame) { return; } // TODO(chengchen): multiple encoding for the lossless mode is time consuming. // Find a better way to determine whether screen content tools should be used // for lossless coding. // Use a high q and a fixed partition to do quick encoding. const int q_for_screen_content_quick_run = is_lossless_requested(&oxcf->rc_cfg) ? q_orig : AOMMAX(q_orig, 244); const int partition_search_type_orig = cpi->sf.part_sf.partition_search_type; const BLOCK_SIZE fixed_partition_block_size_orig = cpi->sf.part_sf.fixed_partition_size; // Setup necessary params for encoding, including frame source, etc. cpi->source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); if (cpi->unscaled_last_source != NULL) { cpi->last_source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_last_source, &cpi->scaled_last_source, cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); } av1_setup_frame(cpi); if (cm->seg.enabled) { if (!cm->seg.update_data && cm->prev_frame) { segfeatures_copy(&cm->seg, &cm->prev_frame->seg); cm->seg.enabled = cm->prev_frame->seg.enabled; } else { av1_calculate_segdata(&cm->seg); } } else { memset(&cm->seg, 0, sizeof(cm->seg)); } segfeatures_copy(&cm->cur_frame->seg, &cm->seg); cm->cur_frame->seg.enabled = cm->seg.enabled; // The two encoding passes aim to help determine whether to use screen // content tools, with a high q and fixed partition. for (int pass = 0; pass < 2; ++pass) { set_encoding_params_for_screen_content(cpi, pass); av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q_for_screen_content_quick_run, q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); av1_set_speed_features_qindex_dependent(cpi, oxcf->speed); av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_set_variance_partition_thresholds(cpi, q_for_screen_content_quick_run, 0); // transform / motion compensation build reconstruction frame av1_encode_frame(cpi); // Screen content decision screen_content_tools_determination( cpi, allow_screen_content_tools_orig_decision, allow_intrabc_orig_decision, use_screen_content_tools_orig_decision, is_screen_content_type_orig_decision, pass, projected_size_pass, psnr); } // Set partition speed feature back. cpi->sf.part_sf.partition_search_type = partition_search_type_orig; cpi->sf.part_sf.fixed_partition_size = fixed_partition_block_size_orig; // Free token related info if screen content coding tools are not enabled. if (!cm->features.allow_screen_content_tools) free_token_info(&cpi->token_info); } #endif // CONFIG_REALTIME_ONLY static void fix_interp_filter(InterpFilter *const interp_filter, const FRAME_COUNTS *const counts) { if (*interp_filter == SWITCHABLE) { // Check to see if only one of the filters is actually used int count[SWITCHABLE_FILTERS] = { 0 }; int num_filters_used = 0; for (int i = 0; i < SWITCHABLE_FILTERS; ++i) { for (int j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) count[i] += counts->switchable_interp[j][i]; num_filters_used += (count[i] > 0); } if (num_filters_used == 1) { // Only one filter is used. So set the filter at frame level for (int i = 0; i < SWITCHABLE_FILTERS; ++i) { if (count[i]) { *interp_filter = i; break; } } } } } void av1_finalize_encoded_frame(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; CurrentFrame *const current_frame = &cm->current_frame; if (!cm->seq_params->reduced_still_picture_hdr && encode_show_existing_frame(cm)) { RefCntBuffer *const frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; if (frame_to_show == NULL) { aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Buffer does not contain a reconstructed frame"); } assert(frame_to_show->ref_count > 0); assign_frame_buffer_p(&cm->cur_frame, frame_to_show); } if (!encode_show_existing_frame(cm) && cm->seq_params->film_grain_params_present && (cm->show_frame || cm->showable_frame)) { // Copy the current frame's film grain params to the its corresponding // RefCntBuffer slot. cm->cur_frame->film_grain_params = cm->film_grain_params; // We must update the parameters if this is not an INTER_FRAME if (current_frame->frame_type != INTER_FRAME) cm->cur_frame->film_grain_params.update_parameters = 1; // Iterate the random seed for the next frame. cm->film_grain_params.random_seed += 3381; if (cm->film_grain_params.random_seed == 0) cm->film_grain_params.random_seed = 7391; } // Initialise all tiles' contexts from the global frame context for (int tile_col = 0; tile_col < cm->tiles.cols; tile_col++) { for (int tile_row = 0; tile_row < cm->tiles.rows; tile_row++) { const int tile_idx = tile_row * cm->tiles.cols + tile_col; cpi->tile_data[tile_idx].tctx = *cm->fc; } } if (!frame_is_intra_only(cm)) fix_interp_filter(&cm->features.interp_filter, cpi->td.counts); } int av1_is_integer_mv(const YV12_BUFFER_CONFIG *cur_picture, const YV12_BUFFER_CONFIG *last_picture, ForceIntegerMVInfo *const force_intpel_info) { // check use hash ME int k; const int block_size = FORCE_INT_MV_DECISION_BLOCK_SIZE; const double threshold_current = 0.8; const double threshold_average = 0.95; const int max_history_size = 32; int T = 0; // total block int C = 0; // match with collocated block int S = 0; // smooth region but not match with collocated block const int pic_width = cur_picture->y_width; const int pic_height = cur_picture->y_height; for (int i = 0; i + block_size <= pic_height; i += block_size) { for (int j = 0; j + block_size <= pic_width; j += block_size) { const int x_pos = j; const int y_pos = i; int match = 1; T++; // check whether collocated block match with current uint8_t *p_cur = cur_picture->y_buffer; uint8_t *p_ref = last_picture->y_buffer; int stride_cur = cur_picture->y_stride; int stride_ref = last_picture->y_stride; p_cur += (y_pos * stride_cur + x_pos); p_ref += (y_pos * stride_ref + x_pos); if (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *p16_cur = CONVERT_TO_SHORTPTR(p_cur); uint16_t *p16_ref = CONVERT_TO_SHORTPTR(p_ref); for (int tmpY = 0; tmpY < block_size && match; tmpY++) { for (int tmpX = 0; tmpX < block_size && match; tmpX++) { if (p16_cur[tmpX] != p16_ref[tmpX]) { match = 0; } } p16_cur += stride_cur; p16_ref += stride_ref; } } else { for (int tmpY = 0; tmpY < block_size && match; tmpY++) { for (int tmpX = 0; tmpX < block_size && match; tmpX++) { if (p_cur[tmpX] != p_ref[tmpX]) { match = 0; } } p_cur += stride_cur; p_ref += stride_ref; } } if (match) { C++; continue; } if (av1_hash_is_horizontal_perfect(cur_picture, block_size, x_pos, y_pos) || av1_hash_is_vertical_perfect(cur_picture, block_size, x_pos, y_pos)) { S++; continue; } } } assert(T > 0); double cs_rate = ((double)(C + S)) / ((double)(T)); force_intpel_info->cs_rate_array[force_intpel_info->rate_index] = cs_rate; force_intpel_info->rate_index = (force_intpel_info->rate_index + 1) % max_history_size; force_intpel_info->rate_size++; force_intpel_info->rate_size = AOMMIN(force_intpel_info->rate_size, max_history_size); if (cs_rate < threshold_current) { return 0; } if (C == T) { return 1; } double cs_average = 0.0; for (k = 0; k < force_intpel_info->rate_size; k++) { cs_average += force_intpel_info->cs_rate_array[k]; } cs_average /= force_intpel_info->rate_size; if (cs_average < threshold_average) { return 0; } if ((T - C - S) < 0) { return 1; } if (cs_average > 1.01) { return 1; } return 0; } void av1_set_mb_ssim_rdmult_scaling(AV1_COMP *cpi) { const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; uint8_t *y_buffer = cpi->source->y_buffer; const int y_stride = cpi->source->y_stride; const int block_size = BLOCK_16X16; const int num_mi_w = mi_size_wide[block_size]; const int num_mi_h = mi_size_high[block_size]; const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w; const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h; double log_sum = 0.0; // Loop through each 16x16 block. for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { double var = 0.0, num_of_var = 0.0; const int index = row * num_cols + col; // Loop through each 8x8 block. for (int mi_row = row * num_mi_h; mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h; mi_row += 2) { for (int mi_col = col * num_mi_w; mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w; mi_col += 2) { struct buf_2d buf; const int row_offset_y = mi_row << 2; const int col_offset_y = mi_col << 2; buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y; buf.stride = y_stride; var += av1_get_perpixel_variance_facade(cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y); num_of_var += 1.0; } } var = var / num_of_var; // Curve fitting with an exponential model on all 16x16 blocks from the // midres dataset. var = 67.035434 * (1 - exp(-0.0021489 * var)) + 17.492222; // As per the above computation, var will be in the range of // [17.492222, 84.527656], assuming the data type is of infinite // precision. The following assert conservatively checks if var is in the // range of [17.0, 85.0] to avoid any issues due to the precision of the // relevant data type. assert(var > 17.0 && var < 85.0); cpi->ssim_rdmult_scaling_factors[index] = var; log_sum += log(var); } } // As log_sum holds the geometric mean, it will be in the range // [17.492222, 84.527656]. Hence, in the below loop, the value of // cpi->ssim_rdmult_scaling_factors[index] would be in the range // [0.2069, 4.8323]. log_sum = exp(log_sum / (double)(num_rows * num_cols)); for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; cpi->ssim_rdmult_scaling_factors[index] /= log_sum; } } } // Coding context that only needs to be saved when recode loop includes // filtering (deblocking, CDEF, superres post-encode upscale and/or loop // restoraton). static void save_extra_coding_context(AV1_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; AV1_COMMON *cm = &cpi->common; cc->lf = cm->lf; cc->cdef_info = cm->cdef_info; cc->rc = cpi->rc; cc->mv_stats = cpi->ppi->mv_stats; } void av1_save_all_coding_context(AV1_COMP *cpi) { save_extra_coding_context(cpi); if (!frame_is_intra_only(&cpi->common)) release_scaled_references(cpi); } #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. void av1_dump_filtered_recon_frames(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const CurrentFrame *const current_frame = &cm->current_frame; const YV12_BUFFER_CONFIG *recon_buf = &cm->cur_frame->buf; if (recon_buf == NULL) { printf("Frame %d is not ready.\n", current_frame->frame_number); return; } static const int flag_list[REF_FRAMES] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG }; printf( "\n***Frame=%d (frame_offset=%d, show_frame=%d, " "show_existing_frame=%d) " "[LAST LAST2 LAST3 GOLDEN BWD ALT2 ALT]=[", current_frame->frame_number, current_frame->order_hint, cm->show_frame, cm->show_existing_frame); for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); const int ref_offset = buf != NULL ? (int)buf->order_hint : -1; printf(" %d(%c)", ref_offset, (cpi->ref_frame_flags & flag_list[ref_frame]) ? 'Y' : 'N'); } printf(" ]\n"); if (!cm->show_frame) { printf("Frame %d is a no show frame, so no image dump.\n", current_frame->frame_number); return; } int h; char file_name[256] = "/tmp/enc_filtered_recon.yuv"; FILE *f_recon = NULL; if (current_frame->frame_number == 0) { if ((f_recon = fopen(file_name, "wb")) == NULL) { printf("Unable to open file %s to write.\n", file_name); return; } } else { if ((f_recon = fopen(file_name, "ab")) == NULL) { printf("Unable to open file %s to append.\n", file_name); return; } } printf( "\nFrame=%5d, encode_update_type[%5d]=%1d, frame_offset=%d, " "show_frame=%d, show_existing_frame=%d, source_alt_ref_active=%d, " "refresh_alt_ref_frame=%d, " "y_stride=%4d, uv_stride=%4d, cm->width=%4d, cm->height=%4d\n\n", current_frame->frame_number, cpi->gf_frame_index, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], current_frame->order_hint, cm->show_frame, cm->show_existing_frame, cpi->rc.source_alt_ref_active, cpi->refresh_frame.alt_ref_frame, recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height); #if 0 int ref_frame; printf("get_ref_frame_map_idx: ["); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) printf(" %d", get_ref_frame_map_idx(cm, ref_frame)); printf(" ]\n"); #endif // 0 // --- Y --- for (h = 0; h < cm->height; ++h) { fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width, f_recon); } // --- U --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), f_recon); } // --- V --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), f_recon); } fclose(f_recon); } #endif // DUMP_RECON_FRAMES