/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/encodetxb.h" #include "aom_ports/mem.h" #include "av1/common/blockd.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/common/scan.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/hash.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/tokenize.h" void av1_alloc_txb_buf(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; CoeffBufferPool *coeff_buf_pool = &cpi->coeff_buffer_pool; const int num_sb_rows = CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2); const int num_sb_cols = CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); const int size = num_sb_rows * num_sb_cols; const int num_planes = av1_num_planes(cm); const int subsampling_x = cm->seq_params->subsampling_x; const int subsampling_y = cm->seq_params->subsampling_y; const int luma_max_sb_square = 1 << num_pels_log2_lookup[cm->seq_params->sb_size]; const int chroma_max_sb_square = luma_max_sb_square >> (subsampling_x + subsampling_y); const int num_tcoeffs = size * (luma_max_sb_square + (num_planes - 1) * chroma_max_sb_square); const int txb_unit_size = TX_SIZE_W_MIN * TX_SIZE_H_MIN; av1_free_txb_buf(cpi); // TODO(jingning): This should be further reduced. CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base, aom_malloc(sizeof(*cpi->coeff_buffer_base) * size)); CHECK_MEM_ERROR( cm, coeff_buf_pool->tcoeff, aom_memalign(32, sizeof(*coeff_buf_pool->tcoeff) * num_tcoeffs)); CHECK_MEM_ERROR( cm, coeff_buf_pool->eobs, aom_malloc(sizeof(*coeff_buf_pool->eobs) * num_tcoeffs / txb_unit_size)); CHECK_MEM_ERROR(cm, coeff_buf_pool->entropy_ctx, aom_malloc(sizeof(*coeff_buf_pool->entropy_ctx) * num_tcoeffs / txb_unit_size)); tran_low_t *tcoeff_ptr = coeff_buf_pool->tcoeff; uint16_t *eob_ptr = coeff_buf_pool->eobs; uint8_t *entropy_ctx_ptr = coeff_buf_pool->entropy_ctx; for (int i = 0; i < size; i++) { for (int plane = 0; plane < num_planes; plane++) { const int max_sb_square = (plane == AOM_PLANE_Y) ? luma_max_sb_square : chroma_max_sb_square; cpi->coeff_buffer_base[i].tcoeff[plane] = tcoeff_ptr; cpi->coeff_buffer_base[i].eobs[plane] = eob_ptr; cpi->coeff_buffer_base[i].entropy_ctx[plane] = entropy_ctx_ptr; tcoeff_ptr += max_sb_square; eob_ptr += max_sb_square / txb_unit_size; entropy_ctx_ptr += max_sb_square / txb_unit_size; } } } void av1_free_txb_buf(AV1_COMP *cpi) { CoeffBufferPool *coeff_buf_pool = &cpi->coeff_buffer_pool; aom_free(cpi->coeff_buffer_base); cpi->coeff_buffer_base = NULL; aom_free(coeff_buf_pool->tcoeff); coeff_buf_pool->tcoeff = NULL; aom_free(coeff_buf_pool->eobs); coeff_buf_pool->eobs = NULL; aom_free(coeff_buf_pool->entropy_ctx); coeff_buf_pool->entropy_ctx = NULL; } static void write_golomb(aom_writer *w, int level) { int x = level + 1; int i = x; int length = 0; while (i) { i >>= 1; ++length; } assert(length > 0); for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0); for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01); } static const int8_t eob_to_pos_small[33] = { 0, 1, 2, // 0-2 3, 3, // 3-4 4, 4, 4, 4, // 5-8 5, 5, 5, 5, 5, 5, 5, 5, // 9-16 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 // 17-32 }; static const int8_t eob_to_pos_large[17] = { 6, // place holder 7, // 33-64 8, 8, // 65-128 9, 9, 9, 9, // 129-256 10, 10, 10, 10, 10, 10, 10, 10, // 257-512 11 // 513- }; int av1_get_eob_pos_token(const int eob, int *const extra) { int t; if (eob < 33) { t = eob_to_pos_small[eob]; } else { const int e = AOMMIN((eob - 1) >> 5, 16); t = eob_to_pos_large[e]; } *extra = eob - av1_eob_group_start[t]; return t; } #if CONFIG_ENTROPY_STATS static void update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size, TX_CLASS tx_class, PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { #else static void update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class, PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, uint8_t allow_update_cdf) { #endif int eob_extra; const int eob_pt = av1_get_eob_pos_token(eob, &eob_extra); TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const int eob_multi_size = txsize_log2_minus4[tx_size]; const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: #if CONFIG_ENTROPY_STATS ++counts->eob_multi16[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5); break; case 1: #if CONFIG_ENTROPY_STATS ++counts->eob_multi32[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6); break; case 2: #if CONFIG_ENTROPY_STATS ++counts->eob_multi64[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7); break; case 3: #if CONFIG_ENTROPY_STATS ++counts->eob_multi128[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1, 8); } break; case 4: #if CONFIG_ENTROPY_STATS ++counts->eob_multi256[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1, 9); } break; case 5: #if CONFIG_ENTROPY_STATS ++counts->eob_multi512[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1, 10); } break; case 6: default: #if CONFIG_ENTROPY_STATS ++counts->eob_multi1024[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1, 11); } break; } if (av1_eob_offset_bits[eob_pt] > 0) { int eob_ctx = eob_pt - 3; int eob_shift = av1_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; #if CONFIG_ENTROPY_STATS counts->eob_extra[cdf_idx][txs_ctx][plane][eob_pt][bit]++; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_ctx], bit, 2); } } static INLINE int get_nz_map_ctx(const uint8_t *const levels, const int coeff_idx, const int bhl, const int width, const int scan_idx, const int is_eob, const TX_SIZE tx_size, const TX_CLASS tx_class) { if (is_eob) { if (scan_idx == 0) return 0; if (scan_idx <= (width << bhl) / 8) return 1; if (scan_idx <= (width << bhl) / 4) return 2; return 3; } const int stats = get_nz_mag(levels + get_padded_idx(coeff_idx, bhl), bhl, tx_class); return get_nz_map_ctx_from_stats(stats, coeff_idx, bhl, tx_size, tx_class); } void av1_txb_init_levels_c(const tran_low_t *const coeff, const int width, const int height, uint8_t *const levels) { const int stride = height + TX_PAD_HOR; uint8_t *ls = levels; memset(levels + stride * width, 0, sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END)); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { *ls++ = (uint8_t)clamp(abs(coeff[i * height + j]), 0, INT8_MAX); } for (int j = 0; j < TX_PAD_HOR; j++) { *ls++ = 0; } } } void av1_get_nz_map_contexts_c(const uint8_t *const levels, const int16_t *const scan, const uint16_t eob, const TX_SIZE tx_size, const TX_CLASS tx_class, int8_t *const coeff_contexts) { const int bhl = get_txb_bhl(tx_size); const int width = get_txb_wide(tx_size); for (int i = 0; i < eob; ++i) { const int pos = scan[i]; coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bhl, width, i, i == eob - 1, tx_size, tx_class); } } void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCK *const x, aom_writer *w, int blk_row, int blk_col, int plane, int block, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; const CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff; const PLANE_TYPE plane_type = get_plane_type(plane); const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); const uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset; const uint16_t eob = eob_txb[block]; const uint8_t *entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset; const int txb_skip_ctx = entropy_ctx[block] & TXB_SKIP_CTX_MASK; const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, eob == 0, ec_ctx->txb_skip_cdf[txs_ctx][txb_skip_ctx], 2); if (eob == 0) return; const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, cm->features.reduced_tx_set_used); // Only y plane's tx_type is transmitted if (plane == 0) { av1_write_tx_type(cm, xd, tx_type, tx_size, w); } int eob_extra; const int eob_pt = av1_get_eob_pos_token(eob, &eob_extra); const int eob_multi_size = txsize_log2_minus4[tx_size]; const TX_CLASS tx_class = tx_type_to_class[tx_type]; const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5); break; case 1: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6); break; case 2: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7); break; case 3: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8); break; case 4: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9); break; case 5: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10); break; default: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11); break; } const int eob_offset_bits = av1_eob_offset_bits[eob_pt]; if (eob_offset_bits > 0) { const int eob_ctx = eob_pt - 3; int eob_shift = eob_offset_bits - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_symbol(w, bit, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2); for (int i = 1; i < eob_offset_bits; i++) { eob_shift = eob_offset_bits - 1 - i; bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_bit(w, bit); } } const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, height); const tran_low_t *tcoeff_txb = cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type]; const tran_low_t *tcoeff = tcoeff_txb + BLOCK_OFFSET(block); av1_txb_init_levels(tcoeff, width, height, levels); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const int16_t *const scan = scan_order->scan; DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); const int bhl = get_txb_bhl(tx_size); for (int c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = tcoeff[pos]; const tran_low_t level = abs(v); if (c == eob - 1) { aom_write_symbol( w, AOMMIN(level, 3) - 1, ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3); } else { aom_write_symbol(w, AOMMIN(level, 3), ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx], 4); } if (level > NUM_BASE_LEVELS) { // level is above 1. const int base_range = level - 1 - NUM_BASE_LEVELS; const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class); aom_cdf_prob *cdf = ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx]; for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); aom_write_symbol(w, k, cdf, BR_CDF_SIZE); if (k < BR_CDF_SIZE - 1) break; } } } // Loop to code all signs in the transform block, // starting with the sign of DC (if applicable) for (int c = 0; c < eob; ++c) { const tran_low_t v = tcoeff[scan[c]]; const tran_low_t level = abs(v); const int sign = (v < 0) ? 1 : 0; if (level) { if (c == 0) { const int dc_sign_ctx = (entropy_ctx[block] >> DC_SIGN_CTX_SHIFT) & DC_SIGN_CTX_MASK; aom_write_symbol(w, sign, ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], 2); } else { aom_write_bit(w, sign); } if (level > COEFF_BASE_RANGE + NUM_BASE_LEVELS) write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS); } } } void av1_write_intra_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, aom_writer *w, BLOCK_SIZE bsize) { MACROBLOCKD *xd = &x->e_mbd; const int num_planes = av1_num_planes(cm); int block[MAX_MB_PLANE] = { 0 }; int row, col; assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, xd->plane[0].subsampling_y)); const int max_blocks_wide = max_block_wide(xd, bsize, 0); const int max_blocks_high = max_block_high(xd, bsize, 0); const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; int mu_blocks_wide = mi_size_wide[max_unit_bsize]; int mu_blocks_high = mi_size_high[max_unit_bsize]; mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); for (row = 0; row < max_blocks_high; row += mu_blocks_high) { for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { for (int plane = 0; plane < num_planes; ++plane) { if (plane && !xd->is_chroma_ref) break; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; const int step = stepr * stepc; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int unit_height = ROUND_POWER_OF_TWO( AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); const int unit_width = ROUND_POWER_OF_TWO( AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; blk_row += stepr) { for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; blk_col += stepc) { av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block[plane], tx_size); block[plane] += step; } } } } } } uint8_t av1_get_txb_entropy_context(const tran_low_t *qcoeff, const SCAN_ORDER *scan_order, int eob) { const int16_t *const scan = scan_order->scan; int cul_level = 0; int c; if (eob == 0) return 0; for (c = 0; c < eob; ++c) { cul_level += abs(qcoeff[scan[c]]); if (cul_level > COEFF_CONTEXT_MASK) break; } cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); set_dc_sign(&cul_level, qcoeff[0]); return (uint8_t)cul_level; } static void update_tx_type_count(const AV1_COMP *cpi, const AV1_COMMON *cm, MACROBLOCKD *xd, int blk_row, int blk_col, int plane, TX_SIZE tx_size, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { MB_MODE_INFO *mbmi = xd->mi[0]; int is_inter = is_inter_block(mbmi); const int reduced_tx_set_used = cm->features.reduced_tx_set_used; FRAME_CONTEXT *fc = xd->tile_ctx; #if !CONFIG_ENTROPY_STATS (void)counts; #endif // !CONFIG_ENTROPY_STATS // Only y plane's tx_type is updated if (plane > 0) return; const TX_TYPE tx_type = av1_get_tx_type(xd, PLANE_TYPE_Y, blk_row, blk_col, tx_size, reduced_tx_set_used); if (is_inter) { if (cpi->oxcf.txfm_cfg.use_inter_dct_only) { assert(tx_type == DCT_DCT); } } else { if (cpi->oxcf.txfm_cfg.use_intra_dct_only) { assert(tx_type == DCT_DCT); } else if (cpi->oxcf.txfm_cfg.use_intra_default_tx_only) { const TX_TYPE default_type = get_default_tx_type( PLANE_TYPE_Y, xd, tx_size, cpi->use_screen_content_tools); (void)default_type; // TODO(kyslov): We don't always respect use_intra_default_tx_only flag in // NonRD and REALTIME case. Specifically we ignore it in hybrid inta mode // search, when picking up intra mode in nonRD inter mode search and in RD // REALTIME mode when we limit TX type usage. // We need to fix txfm cfg for these cases. Meanwhile relieving the // assert. assert(tx_type == default_type || cpi->sf.rt_sf.use_nonrd_pick_mode || cpi->oxcf.mode == REALTIME); } } if (get_ext_tx_types(tx_size, is_inter, reduced_tx_set_used) > 1 && cm->quant_params.base_qindex > 0 && !mbmi->skip_txfm && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { const int eset = get_ext_tx_set(tx_size, is_inter, reduced_tx_set_used); if (eset > 0) { const TxSetType tx_set_type = av1_get_ext_tx_set_type(tx_size, is_inter, reduced_tx_set_used); if (is_inter) { if (allow_update_cdf) { update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]], av1_ext_tx_ind[tx_set_type][tx_type], av1_num_ext_tx_set[tx_set_type]); } #if CONFIG_ENTROPY_STATS ++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]] [av1_ext_tx_ind[tx_set_type][tx_type]]; #endif // CONFIG_ENTROPY_STATS } else { PREDICTION_MODE intra_dir; if (mbmi->filter_intra_mode_info.use_filter_intra) intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info .filter_intra_mode]; else intra_dir = mbmi->mode; #if CONFIG_ENTROPY_STATS ++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir] [av1_ext_tx_ind[tx_set_type][tx_type]]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf( fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir], av1_ext_tx_ind[tx_set_type][tx_type], av1_num_ext_tx_set[tx_set_type]); } } } } } void av1_update_and_record_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const int eob = p->eobs[block]; const int block_offset = BLOCK_OFFSET(block); tran_low_t *qcoeff = p->qcoeff + block_offset; const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, cm->features.reduced_tx_set_used); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); tran_low_t *tcoeff; assert(args->dry_run != DRY_RUN_COSTCOEFFS); if (args->dry_run == OUTPUT_ENABLED) { MB_MODE_INFO *mbmi = xd->mi[0]; TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, pd->above_entropy_context + blk_col, pd->left_entropy_context + blk_row, &txb_ctx); const int bhl = get_txb_bhl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const uint8_t allow_update_cdf = args->allow_update_cdf; const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; #if CONFIG_ENTROPY_STATS int cdf_idx = cm->coef_cdf_category; ++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0, 2); } CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff; const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset; uint8_t *const entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset; entropy_ctx[block] = txb_ctx.txb_skip_ctx; eob_txb[block] = eob; if (eob == 0) { av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col, blk_row); return; } const int segment_id = mbmi->segment_id; const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size); tran_low_t *tcoeff_txb = cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type]; tcoeff = tcoeff_txb + block_offset; memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, height); av1_txb_init_levels(tcoeff, width, height, levels); update_tx_type_count(cpi, cm, xd, blk_row, blk_col, plane, tx_size, td->counts, allow_update_cdf); const TX_CLASS tx_class = tx_type_to_class[tx_type]; const int16_t *const scan = scan_order->scan; // record tx type usage td->rd_counts.tx_type_used[tx_size][tx_type]++; #if CONFIG_ENTROPY_STATS update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx, td->counts, allow_update_cdf); #else update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx, allow_update_cdf); #endif DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); for (int c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = qcoeff[pos]; const tran_low_t level = abs(v); /* abs_sum_level is needed to decide the job scheduling order of * pack bitstream multi-threading. This data is not needed if * multi-threading is disabled. */ if (cpi->mt_info.pack_bs_mt_enabled) td->abs_sum_level += level; if (allow_update_cdf) { if (c == eob - 1) { assert(coeff_ctx < 4); update_cdf( ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(level, 3) - 1, 3); } else { update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(level, 3), 4); } } if (c == eob - 1) { assert(coeff_ctx < 4); #if CONFIG_ENTROPY_STATS ++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3) - 1]; } else { ++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3)]; #endif } if (level > NUM_BASE_LEVELS) { const int base_range = level - 1 - NUM_BASE_LEVELS; const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class); for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); if (allow_update_cdf) { update_cdf(ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)] [plane_type][br_ctx], k, BR_CDF_SIZE); } for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) { #if CONFIG_ENTROPY_STATS ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type] [lps][br_ctx][lps == k]; #endif // CONFIG_ENTROPY_STATS if (lps == k) break; } #if CONFIG_ENTROPY_STATS ++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)] [plane_type][br_ctx][k]; #endif if (k < BR_CDF_SIZE - 1) break; } } } // Update the context needed to code the DC sign (if applicable) if (tcoeff[0] != 0) { const int dc_sign = (tcoeff[0] < 0) ? 1 : 0; const int dc_sign_ctx = txb_ctx.dc_sign_ctx; #if CONFIG_ENTROPY_STATS ++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], dc_sign, 2); entropy_ctx[block] |= dc_sign_ctx << DC_SIGN_CTX_SHIFT; } } else { tcoeff = qcoeff; } const uint8_t cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob); av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, blk_row); } void av1_record_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const int eob = p->eobs[block]; const int block_offset = BLOCK_OFFSET(block); tran_low_t *qcoeff = p->qcoeff + block_offset; const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, cm->features.reduced_tx_set_used); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); tran_low_t *tcoeff; assert(args->dry_run != DRY_RUN_COSTCOEFFS); if (args->dry_run == OUTPUT_ENABLED) { MB_MODE_INFO *mbmi = xd->mi[0]; TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, pd->above_entropy_context + blk_col, pd->left_entropy_context + blk_row, &txb_ctx); #if CONFIG_ENTROPY_STATS const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size); const int bhl = get_txb_bhl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); int cdf_idx = cm->coef_cdf_category; ++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0]; #endif // CONFIG_ENTROPY_STATS CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff; const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset; uint8_t *const entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset; entropy_ctx[block] = txb_ctx.txb_skip_ctx; eob_txb[block] = eob; if (eob == 0) { av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col, blk_row); return; } const int segment_id = mbmi->segment_id; const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size); tran_low_t *tcoeff_txb = cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type]; tcoeff = tcoeff_txb + block_offset; memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); #if CONFIG_ENTROPY_STATS uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, height); av1_txb_init_levels(tcoeff, width, height, levels); update_tx_type_count(cpi, cm, xd, blk_row, blk_col, plane, tx_size, td->counts, 0 /*allow_update_cdf*/); const TX_CLASS tx_class = tx_type_to_class[tx_type]; const bool do_coeff_scan = true; #else const bool do_coeff_scan = cpi->mt_info.pack_bs_mt_enabled; #endif const int16_t *const scan = scan_order->scan; // record tx type usage td->rd_counts.tx_type_used[tx_size][tx_type]++; #if CONFIG_ENTROPY_STATS FRAME_CONTEXT *ec_ctx = xd->tile_ctx; update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx, td->counts, 0 /*allow_update_cdf*/); DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); #endif for (int c = eob - 1; (c >= 0) && do_coeff_scan; --c) { const int pos = scan[c]; const tran_low_t v = qcoeff[pos]; const tran_low_t level = abs(v); /* abs_sum_level is needed to decide the job scheduling order of * pack bitstream multi-threading. This data is not needed if * multi-threading is disabled. */ if (cpi->mt_info.pack_bs_mt_enabled) td->abs_sum_level += level; #if CONFIG_ENTROPY_STATS const int coeff_ctx = coeff_contexts[pos]; if (c == eob - 1) { assert(coeff_ctx < 4); ++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3) - 1]; } else { ++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3)]; } if (level > NUM_BASE_LEVELS) { const int base_range = level - 1 - NUM_BASE_LEVELS; const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class); for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) { ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type] [lps][br_ctx][lps == k]; if (lps == k) break; } ++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)] [plane_type][br_ctx][k]; if (k < BR_CDF_SIZE - 1) break; } } #endif } // Update the context needed to code the DC sign (if applicable) if (tcoeff[0] != 0) { const int dc_sign_ctx = txb_ctx.dc_sign_ctx; #if CONFIG_ENTROPY_STATS const int dc_sign = (tcoeff[0] < 0) ? 1 : 0; ++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign]; #endif // CONFIG_ENTROPY_STATS entropy_ctx[block] |= dc_sign_ctx << DC_SIGN_CTX_SHIFT; } } else { tcoeff = qcoeff; } const uint8_t cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob); av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, blk_row); } void av1_update_intra_mb_txb_context(const AV1_COMP *cpi, ThreadData *td, RUN_TYPE dry_run, BLOCK_SIZE bsize, uint8_t allow_update_cdf) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run }; if (mbmi->skip_txfm) { av1_reset_entropy_context(xd, bsize, num_planes); return; } const foreach_transformed_block_visitor visit = allow_update_cdf ? av1_update_and_record_txb_context : av1_record_txb_context; for (int plane = 0; plane < num_planes; ++plane) { if (plane && !xd->is_chroma_ref) break; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, visit, &arg); } } CB_COEFF_BUFFER *av1_get_cb_coeff_buffer(const struct AV1_COMP *cpi, int mi_row, int mi_col) { const AV1_COMMON *const cm = &cpi->common; const int mib_size_log2 = cm->seq_params->mib_size_log2; const int stride = CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); const int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); return cpi->coeff_buffer_base + offset; }