/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_util/aom_pthread.h" #include "av1/common/warped_motion.h" #include "av1/common/thread_common.h" #include "av1/encoder/allintra_vis.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_alloc.h" #include "av1/encoder/ethread.h" #if !CONFIG_REALTIME_ONLY #include "av1/encoder/firstpass.h" #endif #include "av1/encoder/global_motion.h" #include "av1/encoder/global_motion_facade.h" #include "av1/encoder/intra_mode_search_utils.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/rdopt.h" #include "aom_dsp/aom_dsp_common.h" #include "av1/encoder/temporal_filter.h" #include "av1/encoder/tpl_model.h" static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { td->rd_counts.compound_ref_used_flag |= td_t->rd_counts.compound_ref_used_flag; td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag; for (int i = 0; i < TX_SIZES_ALL; i++) { for (int j = 0; j < TX_TYPES; j++) td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j]; } for (int i = 0; i < BLOCK_SIZES_ALL; i++) { for (int j = 0; j < 2; j++) { td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j]; } } for (int i = 0; i < 2; i++) { td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i]; } td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0]; td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1]; td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks; } static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->td.mb.e_mbd; const int mib_size = cm->seq_params->mib_size; const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int row = 0; row < cm->tiles.rows; row++) { for (int col = 0; col < cm->tiles.cols; col++) { TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col]; const TileInfo *const tile_info = &tile_data->tile_info; for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; mi_row += mib_size) { if (mi_row == tile_info->mi_row_start) av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; mi_col += mib_size) { const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col; MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str; MB_MODE_INFO *mbmi = mi[0]; if (mbmi->skip_txfm == 1 && (mbmi->bsize == cm->seq_params->sb_size)) { for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; mbmi->delta_lf_from_base = xd->delta_lf_from_base; } else { if (cm->delta_q_info.delta_lf_multi) { for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; } else { xd->delta_lf_from_base = mbmi->delta_lf_from_base; } } } } } } } void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) { (void)row_mt_sync; (void)r; (void)c; } void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c, int cols) { (void)row_mt_sync; (void)r; (void)c; (void)cols; } void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) { #if CONFIG_MULTITHREAD const int nsync = row_mt_sync->sync_range; if (r) { pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1]; pthread_mutex_lock(mutex); while (c > row_mt_sync->num_finished_cols[r - 1] - nsync - row_mt_sync->intrabc_extra_top_right_sb_delay) { pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)row_mt_sync; (void)r; (void)c; #endif // CONFIG_MULTITHREAD } void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c, int cols) { #if CONFIG_MULTITHREAD const int nsync = row_mt_sync->sync_range; int cur; // Only signal when there are enough encoded blocks for next row to run. int sig = 1; if (c < cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay; } if (sig) { pthread_mutex_lock(&row_mt_sync->mutex_[r]); // When a thread encounters an error, num_finished_cols[r] is set to maximum // column number. In this case, the AOMMAX operation here ensures that // num_finished_cols[r] is not overwritten with a smaller value thus // preventing the infinite waiting of threads in the relevant sync_read() // function. row_mt_sync->num_finished_cols[r] = AOMMAX(row_mt_sync->num_finished_cols[r], cur); pthread_cond_signal(&row_mt_sync->cond_[r]); pthread_mutex_unlock(&row_mt_sync->mutex_[r]); } #else (void)row_mt_sync; (void)r; (void)c; (void)cols; #endif // CONFIG_MULTITHREAD } // Allocate memory for row synchronization static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync, AV1_COMMON *cm, int rows) { #if CONFIG_MULTITHREAD int i; CHECK_MEM_ERROR(cm, row_mt_sync->mutex_, aom_malloc(sizeof(*row_mt_sync->mutex_) * rows)); if (row_mt_sync->mutex_) { for (i = 0; i < rows; ++i) { pthread_mutex_init(&row_mt_sync->mutex_[i], NULL); } } CHECK_MEM_ERROR(cm, row_mt_sync->cond_, aom_malloc(sizeof(*row_mt_sync->cond_) * rows)); if (row_mt_sync->cond_) { for (i = 0; i < rows; ++i) { pthread_cond_init(&row_mt_sync->cond_[i], NULL); } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols, aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows)); row_mt_sync->rows = rows; // Set up nsync. row_mt_sync->sync_range = 1; } // Deallocate row based multi-threading synchronization related mutex and data void av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) { if (row_mt_sync != NULL) { #if CONFIG_MULTITHREAD int i; if (row_mt_sync->mutex_ != NULL) { for (i = 0; i < row_mt_sync->rows; ++i) { pthread_mutex_destroy(&row_mt_sync->mutex_[i]); } aom_free(row_mt_sync->mutex_); } if (row_mt_sync->cond_ != NULL) { for (i = 0; i < row_mt_sync->rows; ++i) { pthread_cond_destroy(&row_mt_sync->cond_[i]); } aom_free(row_mt_sync->cond_); } #endif // CONFIG_MULTITHREAD aom_free(row_mt_sync->num_finished_cols); // clear the structure as the source of this call may be dynamic change // in tiles in which case this call will be followed by an _alloc() // which may fail. av1_zero(*row_mt_sync); } } static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) { return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2); } static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols, int alloc_row_ctx) { struct AV1Common *cm = &cpi->common; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int tile_col, tile_row; av1_row_mt_mem_dealloc(cpi); // Allocate memory for row based multi-threading for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_index = tile_row * tile_cols + tile_col; TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows); if (alloc_row_ctx) { assert(max_cols > 0); const int num_row_ctx = AOMMAX(1, (max_cols - 1)); CHECK_MEM_ERROR(cm, this_tile->row_ctx, (FRAME_CONTEXT *)aom_memalign( 16, num_row_ctx * sizeof(*this_tile->row_ctx))); } } } const int sb_rows = get_sb_rows_in_frame(cm); CHECK_MEM_ERROR( cm, enc_row_mt->num_tile_cols_done, aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows)); enc_row_mt->allocated_rows = max_rows; enc_row_mt->allocated_cols = max_cols - 1; enc_row_mt->allocated_sb_rows = sb_rows; } void av1_row_mt_mem_dealloc(AV1_COMP *cpi) { AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; const int tile_cols = enc_row_mt->allocated_tile_cols; const int tile_rows = enc_row_mt->allocated_tile_rows; int tile_col, tile_row; // Free row based multi-threading sync memory for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_index = tile_row * tile_cols + tile_col; TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; av1_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync); if (cpi->oxcf.algo_cfg.cdf_update_mode) { aom_free(this_tile->row_ctx); this_tile->row_ctx = NULL; } } } aom_free(enc_row_mt->num_tile_cols_done); enc_row_mt->num_tile_cols_done = NULL; enc_row_mt->allocated_rows = 0; enc_row_mt->allocated_cols = 0; enc_row_mt->allocated_sb_rows = 0; } static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id, int num_tiles, int num_workers) { int tile_id = 0; int i; for (i = 0; i < num_workers; i++) { thread_id_to_tile_id[i] = tile_id++; if (tile_id == num_tiles) tile_id = 0; } } static AOM_INLINE int get_next_job(TileDataEnc *const tile_data, int *current_mi_row, int mib_size) { AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; const int mi_row_end = tile_data->tile_info.mi_row_end; if (row_mt_sync->next_mi_row < mi_row_end) { *current_mi_row = row_mt_sync->next_mi_row; row_mt_sync->num_threads_working++; row_mt_sync->next_mi_row += mib_size; return 1; } return 0; } static AOM_INLINE void switch_tile_and_get_next_job( AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id, int *current_mi_row, int *end_of_frame, int is_firstpass, const BLOCK_SIZE fp_block_size) { const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int tile_id = -1; // Stores the tile ID with minimum proc done int max_mis_to_encode = 0; int min_num_threads_working = INT_MAX; for (int tile_row = 0; tile_row < tile_rows; tile_row++) { for (int tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_index = tile_row * tile_cols + tile_col; TileDataEnc *const this_tile = &tile_data[tile_index]; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; #if CONFIG_REALTIME_ONLY int num_b_rows_in_tile = av1_get_sb_rows_in_tile(cm, &this_tile->tile_info); int num_b_cols_in_tile = av1_get_sb_cols_in_tile(cm, &this_tile->tile_info); #else int num_b_rows_in_tile = is_firstpass ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size) : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info); int num_b_cols_in_tile = is_firstpass ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size) : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info); #endif int theoretical_limit_on_threads = AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile); int num_threads_working = row_mt_sync->num_threads_working; if (num_threads_working < theoretical_limit_on_threads) { int num_mis_to_encode = this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row; // Tile to be processed by this thread is selected on the basis of // availability of jobs: // 1) If jobs are available, tile to be processed is chosen on the // basis of minimum number of threads working for that tile. If two or // more tiles have same number of threads working for them, then the // tile with maximum number of jobs available will be chosen. // 2) If no jobs are available, then end_of_frame is reached. if (num_mis_to_encode > 0) { if (num_threads_working < min_num_threads_working) { min_num_threads_working = num_threads_working; max_mis_to_encode = 0; } if (num_threads_working == min_num_threads_working && num_mis_to_encode > max_mis_to_encode) { tile_id = tile_index; max_mis_to_encode = num_mis_to_encode; } } } } } if (tile_id == -1) { *end_of_frame = 1; } else { // Update the current tile id to the tile id that will be processed next, // which will be the least processed tile. *cur_tile_id = tile_id; const int unit_height = mi_size_high[fp_block_size]; get_next_job(&tile_data[tile_id], current_mi_row, is_firstpass ? unit_height : cm->seq_params->mib_size); } } #if !CONFIG_REALTIME_ONLY static void set_firstpass_encode_done(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; const BLOCK_SIZE fp_block_size = cpi->fp_block_size; const int unit_height = mi_size_high[fp_block_size]; // In case of multithreading of firstpass encode, due to top-right // dependency, the worker on a firstpass row waits for the completion of the // firstpass processing of the top and top-right fp_blocks. Hence, in case a // thread (main/worker) encounters an error, update the firstpass processing // of every row in the frame to indicate that it is complete in order to avoid // dependent workers waiting indefinitely. for (int tile_row = 0; tile_row < tile_rows; ++tile_row) { for (int tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; TileInfo *tile = &tile_data->tile_info; AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; const int unit_cols_in_tile = av1_get_unit_cols_in_tile(tile, fp_block_size); for (int mi_row = tile->mi_row_start, unit_row_in_tile = 0; mi_row < tile->mi_row_end; mi_row += unit_height, unit_row_in_tile++) { enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile, unit_cols_in_tile - 1, unit_cols_in_tile); } } } } static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) { EncWorkerData *const thread_data = (EncWorkerData *)arg1; AV1_COMP *const cpi = thread_data->cpi; int thread_id = thread_data->thread_id; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; #if CONFIG_MULTITHREAD pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; #endif (void)unused; struct aom_internal_error_info *const error_info = &thread_data->error_info; MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); enc_row_mt->firstpass_mt_exit = true; pthread_mutex_unlock(enc_row_mt_mutex_); #endif set_firstpass_encode_done(cpi); return 0; } error_info->setjmp = 1; AV1_COMMON *const cm = &cpi->common; int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; assert(cur_tile_id != -1); const BLOCK_SIZE fp_block_size = cpi->fp_block_size; const int unit_height = mi_size_high[fp_block_size]; int end_of_frame = 0; while (1) { int current_mi_row = -1; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); #endif bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit; if (!firstpass_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, unit_height)) { // No jobs are available for the current tile. Query for the status of // other tiles and get the next job if available switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, ¤t_mi_row, &end_of_frame, 1, fp_block_size); } #if CONFIG_MULTITHREAD pthread_mutex_unlock(enc_row_mt_mutex_); #endif // When firstpass_mt_exit is set to true, other workers need not pursue any // further jobs. if (firstpass_mt_exit || end_of_frame) break; TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; ThreadData *td = thread_data->td; assert(current_mi_row != -1 && current_mi_row < this_tile->tile_info.mi_row_end); const int unit_height_log2 = mi_size_high_log2[fp_block_size]; av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2, fp_block_size); #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); #endif row_mt_sync->num_threads_working--; #if CONFIG_MULTITHREAD pthread_mutex_unlock(enc_row_mt_mutex_); #endif } error_info->setjmp = 0; return 1; } #endif static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data, AV1EncRowMultiThreadInfo *enc_row_mt, int mib_size_log2) { AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync; const int sb_rows = get_sb_rows_in_frame(cm); AV1LfMTInfo *cur_job_info; bool row_mt_exit = false; (void)enc_row_mt; #if CONFIG_MULTITHREAD pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; #endif while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) { LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data; const int lpf_opt_level = cur_job_info->lpf_opt_level; (void)sb_rows; #if CONFIG_MULTITHREAD const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2; const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1); // Wait for current and next superblock row to finish encoding. pthread_mutex_lock(enc_row_mt_mutex_); while (!enc_row_mt->row_mt_exit && (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols || enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols)) { pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_); } row_mt_exit = enc_row_mt->row_mt_exit; pthread_mutex_unlock(enc_row_mt_mutex_); #endif if (row_mt_exit) return; av1_thread_loop_filter_rows( lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir, lpf_opt_level, lf_sync, &thread_data->error_info, lf_data->params_buf, lf_data->tx_buf, mib_size_log2); } } static void set_encoding_done(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; const int mib_size = cm->seq_params->mib_size; // In case of row-multithreading, due to top-right dependency, the worker on // an SB row waits for the completion of the encode of the top and top-right // SBs. Hence, in case a thread (main/worker) encounters an error, update that // encoding of every SB row in the frame is complete in order to avoid the // dependent workers of every tile from waiting indefinitely. for (int tile_row = 0; tile_row < tile_rows; tile_row++) { for (int tile_col = 0; tile_col < tile_cols; tile_col++) { TileDataEnc *const this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); for (int mi_row = tile_info->mi_row_start, sb_row_in_tile = 0; mi_row < tile_info->mi_row_end; mi_row += mib_size, sb_row_in_tile++) { enc_row_mt->sync_write_ptr(row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1, sb_cols_in_tile); } } } } static bool lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc, const int filter_level[2]) { return pipeline_lpf_mt_with_enc && (filter_level[0] || filter_level[1]); } static int enc_row_mt_worker_hook(void *arg1, void *unused) { EncWorkerData *const thread_data = (EncWorkerData *)arg1; AV1_COMP *const cpi = thread_data->cpi; int thread_id = thread_data->thread_id; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; #if CONFIG_MULTITHREAD pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; #endif (void)unused; struct aom_internal_error_info *const error_info = &thread_data->error_info; AV1LfSync *const lf_sync = thread_data->lf_sync; MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; xd->error_info = error_info; AV1_COMMON *volatile const cm = &cpi->common; volatile const bool do_pipelined_lpf_mt_with_enc = lpf_mt_with_enc_enabled( cpi->mt_info.pipeline_lpf_mt_with_enc, cm->lf.filter_level); // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); enc_row_mt->row_mt_exit = true; // Wake up all the workers waiting in launch_loop_filter_rows() to exit in // case of an error. pthread_cond_broadcast(enc_row_mt->cond_); pthread_mutex_unlock(enc_row_mt_mutex_); #endif set_encoding_done(cpi); if (do_pipelined_lpf_mt_with_enc) { #if CONFIG_MULTITHREAD pthread_mutex_lock(lf_sync->job_mutex); lf_sync->lf_mt_exit = true; pthread_mutex_unlock(lf_sync->job_mutex); #endif av1_set_vert_loop_filter_done(&cpi->common, lf_sync, cpi->common.seq_params->mib_size_log2); } return 0; } error_info->setjmp = 1; const int mib_size_log2 = cm->seq_params->mib_size_log2; int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; // Preallocate the pc_tree for realtime coding to reduce the cost of memory // allocation. if (cpi->sf.rt_sf.use_nonrd_pick_mode) { thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size); if (!thread_data->td->pc_root) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); } else { thread_data->td->pc_root = NULL; } assert(cur_tile_id != -1); const BLOCK_SIZE fp_block_size = cpi->fp_block_size; int end_of_frame = 0; bool row_mt_exit = false; // When master thread does not have a valid job to process, xd->tile_ctx // is not set and it contains NULL pointer. This can result in NULL pointer // access violation if accessed beyond the encode stage. Hence, updating // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame // context to avoid NULL pointer access in subsequent stages. thread_data->td->mb.e_mbd.tile_ctx = cm->fc; while (1) { int current_mi_row = -1; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); #endif row_mt_exit = enc_row_mt->row_mt_exit; // row_mt_exit check here can be avoided as it is checked after // sync_read_ptr() in encode_sb_row(). However, checking row_mt_exit here, // tries to return before calling the function get_next_job(). if (!row_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, cm->seq_params->mib_size)) { // No jobs are available for the current tile. Query for the status of // other tiles and get the next job if available switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, ¤t_mi_row, &end_of_frame, 0, fp_block_size); } #if CONFIG_MULTITHREAD pthread_mutex_unlock(enc_row_mt_mutex_); #endif // When row_mt_exit is set to true, other workers need not pursue any // further jobs. if (row_mt_exit) { error_info->setjmp = 0; return 1; } if (end_of_frame) break; TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; const TileInfo *const tile_info = &this_tile->tile_info; const int tile_row = tile_info->tile_row; const int tile_col = tile_info->tile_col; ThreadData *td = thread_data->td; const int sb_row = current_mi_row >> mib_size_log2; assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end); td->mb.e_mbd.tile_ctx = td->tctx; td->mb.tile_pb_ctx = &this_tile->tctx; td->abs_sum_level = 0; if (this_tile->allow_update_cdf) { td->mb.row_ctx = this_tile->row_ctx; if (current_mi_row == tile_info->mi_row_start) memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); } else { memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); } av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, &td->mb.e_mbd); cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); if (td->mb.txfm_search_info.mb_rd_record != NULL) { av1_crc32c_calculator_init( &td->mb.txfm_search_info.mb_rd_record->crc_calculator); } av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row); #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex_); #endif this_tile->abs_sum_level += td->abs_sum_level; row_mt_sync->num_threads_working--; enc_row_mt->num_tile_cols_done[sb_row]++; #if CONFIG_MULTITHREAD pthread_cond_broadcast(enc_row_mt->cond_); pthread_mutex_unlock(enc_row_mt_mutex_); #endif } if (do_pipelined_lpf_mt_with_enc) { // Loop-filter a superblock row if encoding of the current and next // superblock row is complete. // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving // encoding and loop filter stage. launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2); } av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); thread_data->td->pc_root = NULL; error_info->setjmp = 0; return 1; } static int enc_worker_hook(void *arg1, void *unused) { EncWorkerData *const thread_data = (EncWorkerData *)arg1; AV1_COMP *const cpi = thread_data->cpi; MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; struct aom_internal_error_info *const error_info = &thread_data->error_info; const AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int t; (void)unused; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; return 0; } error_info->setjmp = 1; // Preallocate the pc_tree for realtime coding to reduce the cost of memory // allocation. if (cpi->sf.rt_sf.use_nonrd_pick_mode) { thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size); if (!thread_data->td->pc_root) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); } else { thread_data->td->pc_root = NULL; } for (t = thread_data->start; t < tile_rows * tile_cols; t += cpi->mt_info.num_workers) { int tile_row = t / tile_cols; int tile_col = t % tile_cols; TileDataEnc *const this_tile = &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; thread_data->td->mb.tile_pb_ctx = &this_tile->tctx; av1_encode_tile(cpi, thread_data->td, tile_row, tile_col); } av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); thread_data->td->pc_root = NULL; error_info->setjmp = 0; return 1; } void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) { cpi->mt_info.workers = ppi->p_mt_info.workers; cpi->mt_info.num_workers = ppi->p_mt_info.num_workers; cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data; int i; for (i = MOD_FP; i < NUM_MT_MODULES; i++) { cpi->mt_info.num_mod_workers[i] = AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]); } } void av1_init_cdef_worker(AV1_COMP *cpi) { // The allocation is done only for level 0 parallel frames. No change // in config is supported in the middle of a parallel encode set, since the // rest of the MT modules also do not support dynamic change of config. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return; PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info; int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF); av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker, &cpi->mt_info.cdef_sync, num_cdef_workers, 1); cpi->mt_info.cdef_worker = p_mt_info->cdef_worker; } #if !CONFIG_REALTIME_ONLY void av1_init_lr_mt_buffers(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync; if (lr_sync->sync_range) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return; int num_lr_workers = av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR); assert(num_lr_workers <= lr_sync->num_workers); lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf; lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs; } } #endif #if CONFIG_MULTITHREAD void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; if (setjmp(cm->error->jmp)) { cm->error->setjmp = 0; aom_internal_error_copy(&cpi->ppi->error, cm->error); } cm->error->setjmp = 1; // Initialize enc row MT object. if (is_first_pass || cpi->oxcf.row_mt == 1) { AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; if (enc_row_mt->mutex_ == NULL) { CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, aom_malloc(sizeof(*(enc_row_mt->mutex_)))); if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); } if (enc_row_mt->cond_ == NULL) { CHECK_MEM_ERROR(cm, enc_row_mt->cond_, aom_malloc(sizeof(*(enc_row_mt->cond_)))); if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL); } } if (!is_first_pass) { // Initialize global motion MT object. AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync; if (gm_sync->mutex_ == NULL) { CHECK_MEM_ERROR(cm, gm_sync->mutex_, aom_malloc(sizeof(*(gm_sync->mutex_)))); if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL); } #if !CONFIG_REALTIME_ONLY // Initialize temporal filtering MT object. AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync; if (tf_sync->mutex_ == NULL) { CHECK_MEM_ERROR(cm, tf_sync->mutex_, aom_malloc(sizeof(*tf_sync->mutex_))); if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL); } #endif // !CONFIG_REALTIME_ONLY // Initialize CDEF MT object. AV1CdefSync *cdef_sync = &mt_info->cdef_sync; if (cdef_sync->mutex_ == NULL) { CHECK_MEM_ERROR(cm, cdef_sync->mutex_, aom_malloc(sizeof(*(cdef_sync->mutex_)))); if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); } // Initialize loop filter MT object. AV1LfSync *lf_sync = &mt_info->lf_row_sync; // Number of superblock rows const int sb_rows = CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2); PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info; int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF); if (!lf_sync->sync_range || sb_rows != lf_sync->rows || num_lf_workers > lf_sync->num_workers) { av1_loop_filter_dealloc(lf_sync); av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers); } // Initialize tpl MT object. AV1TplRowMultiThreadInfo *tpl_row_mt = &mt_info->tpl_row_mt; if (tpl_row_mt->mutex_ == NULL) { CHECK_MEM_ERROR(cm, tpl_row_mt->mutex_, aom_malloc(sizeof(*(tpl_row_mt->mutex_)))); if (tpl_row_mt->mutex_) pthread_mutex_init(tpl_row_mt->mutex_, NULL); } #if !CONFIG_REALTIME_ONLY if (is_restoration_used(cm)) { // Initialize loop restoration MT object. AV1LrSync *lr_sync = &mt_info->lr_row_sync; int rst_unit_size = cpi->sf.lpf_sf.min_lr_unit_size; int num_rows_lr = av1_lr_count_units(rst_unit_size, cm->height); int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR); if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows || num_lr_workers > lr_sync->num_workers || MAX_MB_PLANE > lr_sync->num_planes) { av1_loop_restoration_dealloc(lr_sync); av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr, MAX_MB_PLANE, cm->width); } } #endif // Initialization of pack bitstream MT object. AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync; if (pack_bs_sync->mutex_ == NULL) { CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_, aom_malloc(sizeof(*pack_bs_sync->mutex_))); if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL); } } cm->error->setjmp = 0; } #endif // CONFIG_MULTITHREAD // Computes the number of workers to be considered while allocating memory for a // multi-threaded module under FPMT. int av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo *p_mt_info, MULTI_THREADED_MODULES mod_name) { int num_mod_workers = p_mt_info->num_mod_workers[mod_name]; if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) { // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC]. // As frame parallel jobs will only perform multi-threading for the encode // stage, we can limit the allocations according to num_enc_workers per // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]). num_mod_workers = p_mt_info->num_workers; } return num_mod_workers; } void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) { PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; assert(p_mt_info->workers != NULL); assert(p_mt_info->tile_thr_data != NULL); int num_workers = p_mt_info->num_workers; int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC); assert(num_enc_workers <= num_workers); for (int i = num_workers - 1; i >= 0; i--) { EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i]; if (i > 0) { // Allocate thread data. ThreadData *td; AOM_CHECK_MEM_ERROR(&ppi->error, td, aom_memalign(32, sizeof(*td))); av1_zero(*td); thread_data->original_td = thread_data->td = td; // Set up shared coeff buffers. av1_setup_shared_coeff_buffer(&ppi->seq_params, &td->shared_coeff_buf, &ppi->error); AOM_CHECK_MEM_ERROR(&ppi->error, td->tmp_conv_dst, aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*td->tmp_conv_dst))); if (i < p_mt_info->num_mod_workers[MOD_FP]) { // Set up firstpass PICK_MODE_CONTEXT. td->firstpass_ctx = av1_alloc_pmc(ppi->cpi, BLOCK_16X16, &td->shared_coeff_buf); if (!td->firstpass_ctx) aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } if (!is_first_pass && i < num_enc_workers) { // Set up sms_tree. if (av1_setup_sms_tree(ppi->cpi, td)) { aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR, "Failed to allocate SMS tree"); } for (int x = 0; x < 2; x++) for (int y = 0; y < 2; y++) AOM_CHECK_MEM_ERROR( &ppi->error, td->hash_value_buffer[x][y], (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH * sizeof(*td->hash_value_buffer[0][0]))); // Allocate frame counters in thread data. AOM_CHECK_MEM_ERROR(&ppi->error, td->counts, aom_calloc(1, sizeof(*td->counts))); // Allocate buffers used by palette coding mode. AOM_CHECK_MEM_ERROR(&ppi->error, td->palette_buffer, aom_memalign(16, sizeof(*td->palette_buffer))); // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are // used in inter frames to store intermediate inter mode prediction // results and are not required for allintra encoding mode. Hence, the // memory allocations for these buffers are avoided for allintra // encoding mode. if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) { alloc_obmc_buffers(&td->obmc_buffer, &ppi->error); alloc_compound_type_rd_buffers(&ppi->error, &td->comp_rd_buffer); for (int j = 0; j < 2; ++j) { AOM_CHECK_MEM_ERROR( &ppi->error, td->tmp_pred_bufs[j], aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*td->tmp_pred_bufs[j]))); } } if (is_gradient_caching_for_hog_enabled(ppi->cpi)) { const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome; AOM_CHECK_MEM_ERROR(&ppi->error, td->pixel_gradient_info, aom_malloc(sizeof(*td->pixel_gradient_info) * plane_types * MAX_SB_SQUARE)); } if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) { const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size; const int mi_count_in_sb = mi_size_wide[sb_size] * mi_size_high[sb_size]; AOM_CHECK_MEM_ERROR( &ppi->error, td->src_var_info_of_4x4_sub_blocks, aom_malloc(sizeof(*td->src_var_info_of_4x4_sub_blocks) * mi_count_in_sb)); } if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) { const int num_64x64_blocks = (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4; AOM_CHECK_MEM_ERROR( &ppi->error, td->vt64x64, aom_malloc(sizeof(*td->vt64x64) * num_64x64_blocks)); } } } if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) { if (i == 0) { for (int j = 0; j < ppi->num_fp_contexts; j++) { AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx, (FRAME_CONTEXT *)aom_memalign( 16, sizeof(*ppi->parallel_cpi[j]->td.tctx))); } } else { AOM_CHECK_MEM_ERROR( &ppi->error, thread_data->td->tctx, (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx))); } } } // Record the number of workers in encode stage multi-threading for which // allocation is done. p_mt_info->prev_num_enc_workers = num_enc_workers; } void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) { PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); assert(p_mt_info->num_workers == 0); AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers, aom_malloc(num_workers * sizeof(*p_mt_info->workers))); AOM_CHECK_MEM_ERROR( &ppi->error, p_mt_info->tile_thr_data, aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data))); for (int i = 0; i < num_workers; ++i) { AVxWorker *const worker = &p_mt_info->workers[i]; EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i]; winterface->init(worker); worker->thread_name = "aom enc worker"; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; if (i > 0) { // Create threads if (!winterface->reset(worker)) aom_internal_error(&ppi->error, AOM_CODEC_ERROR, "Tile encoder thread creation failed"); } winterface->sync(worker); ++p_mt_info->num_workers; } } // This function will change the state and free the mutex of corresponding // workers and terminate the object. The object can not be re-used unless a call // to reset() is made. void av1_terminate_workers(AV1_PRIMARY *ppi) { PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; for (int t = 0; t < p_mt_info->num_workers; ++t) { AVxWorker *const worker = &p_mt_info->workers[t]; aom_get_worker_interface()->end(worker); } } // This function returns 1 if frame parallel encode is supported for // the current configuration. Returns 0 otherwise. static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) { // FPMT is enabled for AOM_Q and AOM_VBR. // TODO(Tarun): Test and enable resize config. if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) { return 0; } if (ppi->use_svc) { return 0; } if (oxcf->tile_cfg.enable_large_scale_tile) { return 0; } if (oxcf->dec_model_cfg.timing_info_present) { return 0; } if (oxcf->mode != GOOD) { return 0; } if (oxcf->tool_cfg.error_resilient_mode) { return 0; } if (oxcf->resize_cfg.resize_mode) { return 0; } if (oxcf->pass != AOM_RC_SECOND_PASS) { return 0; } if (oxcf->max_threads < 2) { return 0; } if (!oxcf->fp_mt) { return 0; } return 1; } int av1_check_fpmt_config(AV1_PRIMARY *const ppi, AV1EncoderConfig *const oxcf) { if (is_fpmt_config(ppi, oxcf)) return 1; // Reset frame parallel configuration for unsupported config if (ppi->num_fp_contexts > 1) { for (int i = 1; i < ppi->num_fp_contexts; i++) { // Release the previously-used frame-buffer if (ppi->parallel_cpi[i]->common.cur_frame != NULL) { --ppi->parallel_cpi[i]->common.cur_frame->ref_count; ppi->parallel_cpi[i]->common.cur_frame = NULL; } } int cur_gf_index = ppi->cpi->gf_frame_index; int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index); av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index], reset_size); av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size); av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size); memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX, sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) * reset_size * REF_FRAMES); memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX, sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size); ppi->num_fp_contexts = 1; } return 0; } // A large value for threads used to compute the max num_enc_workers // possible for each resolution. #define MAX_THREADS 100 // Computes the max number of enc workers possible for each resolution. static AOM_INLINE int compute_max_num_enc_workers( CommonModeInfoParams *const mi_params, int mib_size_log2) { int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2); int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2); return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows); } // Computes the number of frame parallel(fp) contexts to be created // based on the number of max_enc_workers. int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) { ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0; if (!av1_check_fpmt_config(ppi, oxcf)) { return 1; } int max_num_enc_workers = compute_max_num_enc_workers( &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2); // Scaling factors and rounding factors used to tune worker_per_frame // computation. int rounding_factor[2] = { 2, 4 }; int scaling_factor[2] = { 4, 8 }; int is_480p_or_lesser = AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480; int is_sb_64 = 0; if (ppi->cpi != NULL) is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64; // A parallel frame encode has at least 1/4th the // theoretical limit of max enc workers in default case. For resolutions // larger than 480p, if SB size is 64x64, optimal performance is obtained with // limit of 1/8. int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0; int workers_per_frame = AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) / scaling_factor[index]); int max_threads = oxcf->max_threads; int num_fp_contexts = max_threads / workers_per_frame; // Based on empirical results, FPMT gains with multi-tile are significant when // more parallel frames are available. Use FPMT with multi-tile encode only // when sufficient threads are available for parallel encode of // MAX_PARALLEL_FRAMES frames. if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) { if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1; } num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES)); // Limit recalculated num_fp_contexts to ppi->num_fp_contexts. num_fp_contexts = (ppi->num_fp_contexts == 1) ? num_fp_contexts : AOMMIN(num_fp_contexts, ppi->num_fp_contexts); if (num_fp_contexts > 1) { ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads); } return num_fp_contexts; } // Computes the number of workers to process each of the parallel frames. static AOM_INLINE int compute_num_workers_per_frame( const int num_workers, const int parallel_frame_count) { // Number of level 2 workers per frame context (floor division). int workers_per_frame = (num_workers / parallel_frame_count); return workers_per_frame; } static AOM_INLINE void restore_workers_after_fpmt( AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared); // Prepare level 1 workers. This function is only called for // parallel_frame_count > 1. This function populates the mt_info structure of // frame level contexts appropriately by dividing the total number of available // workers amongst the frames as level 2 workers. It also populates the hook and // data members of level 1 workers. static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi, AV1_COMP_DATA *first_cpi_data, AVxWorkerHook hook, int parallel_frame_count) { assert(parallel_frame_count <= ppi->num_fp_contexts && parallel_frame_count > 1); PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; int num_workers = p_mt_info->num_workers; volatile int frame_idx = 0; volatile int i = 0; while (i < num_workers) { // Assign level 1 worker AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] = &p_mt_info->workers[i]; AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx]; MultiThreadInfo *mt_info = &cur_cpi->mt_info; // This 'aom_internal_error_info' pointer is not derived from the local // pointer ('AV1_COMMON *const cm') to silence the compiler warning // "variable 'cm' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]". struct aom_internal_error_info *const error = cur_cpi->common.error; // The jmp_buf is valid only within the scope of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error->jmp)) { error->setjmp = 0; restore_workers_after_fpmt(ppi, parallel_frame_count, i); aom_internal_error_copy(&ppi->error, error); } error->setjmp = 1; AV1_COMMON *const cm = &cur_cpi->common; // Assign start of level 2 worker pool mt_info->workers = &p_mt_info->workers[i]; mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i]; // Assign number of workers for each frame in the parallel encode set. mt_info->num_workers = compute_num_workers_per_frame( num_workers - i, parallel_frame_count - frame_idx); for (int j = MOD_FP; j < NUM_MT_MODULES; j++) { mt_info->num_mod_workers[j] = AOMMIN(mt_info->num_workers, p_mt_info->num_mod_workers[j]); } if (p_mt_info->cdef_worker != NULL) { mt_info->cdef_worker = &p_mt_info->cdef_worker[i]; // Back up the original cdef_worker pointers. mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf; const int num_planes = av1_num_planes(cm); for (int plane = 0; plane < num_planes; plane++) mt_info->restore_state_buf.cdef_colbuf[plane] = mt_info->cdef_worker->colbuf[plane]; } #if !CONFIG_REALTIME_ONLY if (is_restoration_used(cm)) { // Back up the original LR buffers before update. int idx = i + mt_info->num_workers - 1; assert(idx < mt_info->lr_row_sync.num_workers); mt_info->restore_state_buf.rst_tmpbuf = mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf; mt_info->restore_state_buf.rlbs = mt_info->lr_row_sync.lrworkerdata[idx].rlbs; // Update LR buffers. mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf; mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs; } #endif i += mt_info->num_workers; // At this stage, the thread specific CDEF buffers for the current frame's // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has // already been allocated across parallel frames. av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync, p_mt_info->num_workers, 0); frame_worker->hook = hook; frame_worker->data1 = cur_cpi; frame_worker->data2 = (frame_idx == 0) ? first_cpi_data : &ppi->parallel_frames_data[frame_idx - 1]; frame_idx++; error->setjmp = 0; } p_mt_info->p_num_workers = parallel_frame_count; } // Launch level 1 workers to perform frame parallel encode. static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); int num_workers = ppi->p_mt_info.p_num_workers; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = ppi->p_mt_info.p_workers[i]; if (i == 0) winterface->execute(worker); else winterface->launch(worker); } } // Restore worker states after parallel encode. static AOM_INLINE void restore_workers_after_fpmt( AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared) { assert(parallel_frame_count <= ppi->num_fp_contexts && parallel_frame_count > 1); (void)parallel_frame_count; PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; int frame_idx = 0; int i = 0; while (i < num_fpmt_workers_prepared) { AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx]; MultiThreadInfo *mt_info = &cur_cpi->mt_info; const AV1_COMMON *const cm = &cur_cpi->common; const int num_planes = av1_num_planes(cm); // Restore the original cdef_worker pointers. if (p_mt_info->cdef_worker != NULL) { mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf; for (int plane = 0; plane < num_planes; plane++) mt_info->cdef_worker->colbuf[plane] = mt_info->restore_state_buf.cdef_colbuf[plane]; } #if !CONFIG_REALTIME_ONLY if (is_restoration_used(cm)) { // Restore the original LR buffers. int idx = i + mt_info->num_workers - 1; assert(idx < mt_info->lr_row_sync.num_workers); mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = mt_info->restore_state_buf.rst_tmpbuf; mt_info->lr_row_sync.lrworkerdata[idx].rlbs = mt_info->restore_state_buf.rlbs; } #endif frame_idx++; i += mt_info->num_workers; } } // Synchronize level 1 workers. static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi, int frames_in_parallel_set) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); int num_workers = ppi->p_mt_info.p_num_workers; int had_error = 0; // Points to error in the earliest display order frame in the parallel set. const struct aom_internal_error_info *error = NULL; // Encoding ends. for (int i = num_workers - 1; i >= 0; --i) { AVxWorker *const worker = ppi->p_mt_info.p_workers[i]; if (!winterface->sync(worker)) { had_error = 1; error = ppi->parallel_cpi[i]->common.error; } } restore_workers_after_fpmt(ppi, frames_in_parallel_set, ppi->p_mt_info.num_workers); if (had_error) aom_internal_error_copy(&ppi->error, error); } static int get_compressed_data_hook(void *arg1, void *arg2) { AV1_COMP *cpi = (AV1_COMP *)arg1; AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2; int status = av1_get_compressed_data(cpi, cpi_data); // AOM_CODEC_OK(0) means no error. return !status; } // This function encodes the raw frame data for each frame in parallel encode // set, and outputs the frame bit stream to the designated buffers. void av1_compress_parallel_frames(AV1_PRIMARY *const ppi, AV1_COMP_DATA *const first_cpi_data) { // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf // corresponding to frames in the current parallel encode set. int ref_buffers_used_map = 0; int frames_in_parallel_set = av1_init_parallel_frame_context( first_cpi_data, ppi, &ref_buffers_used_map); prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook, frames_in_parallel_set); launch_fpmt_workers(ppi); sync_fpmt_workers(ppi, frames_in_parallel_set); // Release cpi->scaled_ref_buf corresponding to frames in the current parallel // encode set. for (int i = 0; i < frames_in_parallel_set; ++i) { av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]); } av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool, ref_buffers_used_map); } static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info, int num_workers) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; worker->had_error = 0; if (i == 0) winterface->execute(worker); else winterface->launch(worker); } } static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info, AV1_COMMON *const cm, int num_workers) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const AVxWorker *const worker_main = &mt_info->workers[0]; int had_error = worker_main->had_error; struct aom_internal_error_info error_info; // Read the error_info of main thread. if (had_error) { error_info = ((EncWorkerData *)worker_main->data1)->error_info; } // Encoding ends. for (int i = num_workers - 1; i > 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; if (!winterface->sync(worker)) { had_error = 1; error_info = ((EncWorkerData *)worker->data1)->error_info; } } if (had_error) aom_internal_error_copy(cm->error, &error_info); // Restore xd->error_info of the main thread back to cm->error so that the // multithreaded code, when executed using a single thread, has a valid // xd->error_info. MACROBLOCKD *const xd = &((EncWorkerData *)worker_main->data1)->td->mb.e_mbd; xd->error_info = cm->error; } static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi, int num_workers) { for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &cpi->mt_info.workers[i]; EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; cpi->intrabc_used |= thread_data->td->intrabc_used; cpi->deltaq_used |= thread_data->td->deltaq_used; // Accumulate rtc counters. if (!frame_is_intra_only(&cpi->common)) av1_accumulate_rtc_counters(cpi, &thread_data->td->mb); cpi->palette_pixel_num += thread_data->td->mb.palette_pixels; if (thread_data->td != &cpi->td) { // Keep these conditional expressions in sync with the corresponding ones // in prepare_enc_workers(). if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { aom_free(thread_data->td->mv_costs_alloc); thread_data->td->mv_costs_alloc = NULL; } if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) { aom_free(thread_data->td->dv_costs_alloc); thread_data->td->dv_costs_alloc = NULL; } } av1_dealloc_mb_data(&thread_data->td->mb, av1_num_planes(&cpi->common)); // Accumulate counters. if (i > 0) { av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts); accumulate_rd_opt(&cpi->td, thread_data->td); cpi->td.mb.txfm_search_info.txb_split_count += thread_data->td->mb.txfm_search_info.txb_split_count; #if CONFIG_SPEED_STATS cpi->td.mb.txfm_search_info.tx_search_count += thread_data->td->mb.txfm_search_info.tx_search_count; #endif // CONFIG_SPEED_STATS } } } static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers) { MultiThreadInfo *const mt_info = &cpi->mt_info; AV1_COMMON *const cm = &cpi->common; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } thread_data->td->intrabc_used = 0; thread_data->td->deltaq_used = 0; thread_data->td->abs_sum_level = 0; thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0; thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0; // Before encoding a frame, copy the thread data from cpi. if (thread_data->td != &cpi->td) { thread_data->td->mb = cpi->td.mb; thread_data->td->rd_counts = cpi->td.rd_counts; thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer; for (int x = 0; x < 2; x++) { for (int y = 0; y < 2; y++) { memcpy(thread_data->td->hash_value_buffer[x][y], cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], AOM_BUFFER_SIZE_FOR_BLOCK_HASH * sizeof(*thread_data->td->hash_value_buffer[0][0])); thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] = thread_data->td->hash_value_buffer[x][y]; } } // Keep these conditional expressions in sync with the corresponding ones // in accumulate_counters_enc_workers(). if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { CHECK_MEM_ERROR( cm, thread_data->td->mv_costs_alloc, (MvCosts *)aom_malloc(sizeof(*thread_data->td->mv_costs_alloc))); thread_data->td->mb.mv_costs = thread_data->td->mv_costs_alloc; memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs, sizeof(MvCosts)); } if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) { // Reset dv_costs to NULL for worker threads when dv cost update is // enabled so that only dv_cost_upd_level needs to be checked before the // aom_free() call for the same. thread_data->td->mb.dv_costs = NULL; if (av1_need_dv_costs(cpi)) { CHECK_MEM_ERROR(cm, thread_data->td->dv_costs_alloc, (IntraBCMVCosts *)aom_malloc( sizeof(*thread_data->td->dv_costs_alloc))); thread_data->td->mb.dv_costs = thread_data->td->dv_costs_alloc; memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs, sizeof(IntraBCMVCosts)); } } } av1_alloc_mb_data(cpi, &thread_data->td->mb); // Reset rtc counters. av1_init_rtc_counters(&thread_data->td->mb); thread_data->td->mb.palette_pixels = 0; if (thread_data->td->counts != &cpi->counts) { memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts)); } if (i > 0) { thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer; thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer; thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; for (int j = 0; j < 2; ++j) { thread_data->td->mb.tmp_pred_bufs[j] = thread_data->td->tmp_pred_bufs[j]; } thread_data->td->mb.pixel_gradient_info = thread_data->td->pixel_gradient_info; thread_data->td->mb.src_var_info_of_4x4_sub_blocks = thread_data->td->src_var_info_of_4x4_sub_blocks; thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; for (int j = 0; j < 2; ++j) { thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] = thread_data->td->mb.tmp_pred_bufs[j]; } } } } #if !CONFIG_REALTIME_ONLY static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; // Before encoding a frame, copy the thread data from cpi. thread_data->td->mb = cpi->td.mb; } av1_alloc_src_diff_buf(cm, &thread_data->td->mb); } } #endif // Computes the number of workers for row multi-threading of encoding stage static AOM_INLINE int compute_num_enc_row_mt_workers(const AV1_COMMON *cm, int max_threads) { TileInfo tile_info; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int total_num_threads_row_mt = 0; for (int row = 0; row < tile_rows; row++) { for (int col = 0; col < tile_cols; col++) { av1_tile_init(&tile_info, cm, row, col); const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info); const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info); total_num_threads_row_mt += AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile); } } return AOMMIN(max_threads, total_num_threads_row_mt); } // Computes the number of workers for tile multi-threading of encoding stage static AOM_INLINE int compute_num_enc_tile_mt_workers(const AV1_COMMON *cm, int max_threads) { const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; return AOMMIN(max_threads, tile_cols * tile_rows); } // Find max worker of all MT stages int av1_get_max_num_workers(const AV1_COMP *cpi) { int max_num_workers = 0; for (int i = MOD_FP; i < NUM_MT_MODULES; i++) max_num_workers = AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers); assert(max_num_workers >= 1); return AOMMIN(max_num_workers, cpi->oxcf.max_threads); } // Computes the number of workers for encoding stage (row/tile multi-threading) int av1_compute_num_enc_workers(const AV1_COMP *cpi, int max_workers) { if (max_workers <= 1) return 1; if (cpi->oxcf.row_mt) return compute_num_enc_row_mt_workers(&cpi->common, max_workers); else return compute_num_enc_tile_mt_workers(&cpi->common, max_workers); } void av1_encode_tiles_mt(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int num_workers = mt_info->num_mod_workers[MOD_ENC]; assert(IMPLIES(cpi->tile_data == NULL, cpi->allocated_tiles < tile_cols * tile_rows)); if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); av1_init_tile_data(cpi); num_workers = AOMMIN(num_workers, mt_info->num_workers); prepare_enc_workers(cpi, enc_worker_hook, num_workers); launch_workers(&cpi->mt_info, num_workers); sync_enc_workers(&cpi->mt_info, cm, num_workers); accumulate_counters_enc_workers(cpi, num_workers); } // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' // members, so we treat it as an array, and sum over the whole length. void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, const FRAME_COUNTS *counts) { unsigned int *const acc = (unsigned int *)acc_counts; const unsigned int *const cnt = (const unsigned int *)counts; const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i]; } // Computes the maximum number of sb rows and sb_cols across tiles which are // used to allocate memory for multi-threaded encoding with row-mt=1. static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm, int *max_sb_rows_in_tile, int *max_sb_cols_in_tile) { const int tile_rows = cm->tiles.rows; const int mib_size_log2 = cm->seq_params->mib_size_log2; const int num_mi_rows = cm->mi_params.mi_rows; const int *const row_start_sb = cm->tiles.row_start_sb; for (int row = 0; row < tile_rows; row++) { const int mi_row_start = row_start_sb[row] << mib_size_log2; const int mi_row_end = AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows); const int num_sb_rows_in_tile = CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2); *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile); } const int tile_cols = cm->tiles.cols; const int num_mi_cols = cm->mi_params.mi_cols; const int *const col_start_sb = cm->tiles.col_start_sb; for (int col = 0; col < tile_cols; col++) { const int mi_col_start = col_start_sb[col] << mib_size_log2; const int mi_col_end = AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols); const int num_sb_cols_in_tile = CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2); *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile); } } #if !CONFIG_REALTIME_ONLY // Computes the number of workers for firstpass stage (row/tile multi-threading) int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int total_num_threads_row_mt = 0; TileInfo tile_info; if (cpi->oxcf.max_threads <= 1) return 1; for (int row = 0; row < tile_rows; row++) { for (int col = 0; col < tile_cols; col++) { av1_tile_init(&tile_info, cm, row, col); const int num_mb_rows_in_tile = av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size); const int num_mb_cols_in_tile = av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size); total_num_threads_row_mt += AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile); } } return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt); } // Computes the maximum number of mb_rows for row multi-threading of firstpass // stage static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm, BLOCK_SIZE fp_block_size) { const int tile_rows = cm->tiles.rows; const int unit_height_log2 = mi_size_high_log2[fp_block_size]; const int mib_size_log2 = cm->seq_params->mib_size_log2; const int num_mi_rows = cm->mi_params.mi_rows; const int *const row_start_sb = cm->tiles.row_start_sb; int max_mb_rows = 0; for (int row = 0; row < tile_rows; row++) { const int mi_row_start = row_start_sb[row] << mib_size_log2; const int mi_row_end = AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows); const int num_mb_rows_in_tile = CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2); max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile); } return max_mb_rows; } #endif static void lpf_pipeline_mt_init(AV1_COMP *cpi, int num_workers) { // Pipelining of loop-filtering after encoding is enabled when loop-filter // level is chosen based on quantizer and frame type. It is disabled in case // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage // decides the filter level. Loop-filtering is disabled in case // of non-reference frames and for frames with intra block copy tool enabled. AV1_COMMON *cm = &cpi->common; const int use_loopfilter = is_loopfilter_used(cm); const int use_superres = av1_superres_scaled(cm); const int use_cdef = is_cdef_used(cm); const int use_restoration = is_restoration_used(cm); MultiThreadInfo *const mt_info = &cpi->mt_info; MACROBLOCKD *xd = &cpi->td.mb.e_mbd; const unsigned int skip_apply_postproc_filters = derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef, use_superres, use_restoration); mt_info->pipeline_lpf_mt_with_enc = (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) && (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) && (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) && !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc && ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0); if (!mt_info->pipeline_lpf_mt_with_enc) return; set_postproc_filter_default_params(cm); if (!use_loopfilter) return; const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick; assert(method == LPF_PICK_FROM_Q); assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY); av1_pick_filter_level(cpi->source, cpi, method); struct loopfilter *lf = &cm->lf; const int plane_start = 0; const int plane_end = av1_num_planes(cm); int planes_to_lf[MAX_MB_PLANE]; if (lpf_mt_with_enc_enabled(cpi->mt_info.pipeline_lpf_mt_with_enc, lf->filter_level)) { set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end); int lpf_opt_level = get_lpf_opt_level(&cpi->sf); assert(lpf_opt_level == 2); const int start_mi_row = 0; const int end_mi_row = start_mi_row + cm->mi_params.mi_rows; av1_loop_filter_frame_init(cm, plane_start, plane_end); assert(mt_info->num_mod_workers[MOD_ENC] == mt_info->num_mod_workers[MOD_LPF]); loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf, mt_info->num_mod_workers[MOD_LPF], &mt_info->lf_row_sync, lpf_opt_level, cm->seq_params->mib_size_log2); for (int i = num_workers - 1; i >= 0; i--) { EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; // Initialize loopfilter data thread_data->lf_sync = &mt_info->lf_row_sync; thread_data->lf_data = &thread_data->lf_sync->lfdata[i]; loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd); } } } void av1_encode_tiles_row_mt(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; const int sb_rows_in_frame = get_sb_rows_in_frame(cm); int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0; int num_workers = mt_info->num_mod_workers[MOD_ENC]; compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile); const bool alloc_row_mt_mem = (enc_row_mt->allocated_tile_cols != tile_cols || enc_row_mt->allocated_tile_rows != tile_rows || enc_row_mt->allocated_rows != max_sb_rows_in_tile || enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) || enc_row_mt->allocated_sb_rows != sb_rows_in_frame); const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows; assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data)); if (alloc_tile_data) { av1_alloc_tile_data(cpi); } assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem)); if (alloc_row_mt_mem) { row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile, cpi->oxcf.algo_cfg.cdf_update_mode); } num_workers = AOMMIN(num_workers, mt_info->num_workers); lpf_pipeline_mt_init(cpi, num_workers); av1_init_tile_data(cpi); memset(thread_id_to_tile_id, -1, sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); memset(enc_row_mt->num_tile_cols_done, 0, sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame); enc_row_mt->row_mt_exit = false; for (int tile_row = 0; tile_row < tile_rows; tile_row++) { for (int tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_index = tile_row * tile_cols + tile_col; TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; // Initialize num_finished_cols to -1 for all rows. memset(row_mt_sync->num_finished_cols, -1, sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile); row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; row_mt_sync->num_threads_working = 0; row_mt_sync->intrabc_extra_top_right_sb_delay = av1_get_intrabc_extra_top_right_sb_delay(cm); av1_inter_mode_data_init(this_tile); av1_zero_above_context(cm, &cpi->td.mb.e_mbd, this_tile->tile_info.mi_col_start, this_tile->tile_info.mi_col_end, tile_row); } } assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, num_workers); prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers); launch_workers(&cpi->mt_info, num_workers); sync_enc_workers(&cpi->mt_info, cm, num_workers); if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi); accumulate_counters_enc_workers(cpi, num_workers); } #if !CONFIG_REALTIME_ONLY static void dealloc_thread_data_src_diff_buf(AV1_COMP *cpi, int num_workers) { for (int i = num_workers - 1; i >= 0; --i) { EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i]; if (thread_data->td != &cpi->td) av1_dealloc_src_diff_buf(&thread_data->td->mb, av1_num_planes(&cpi->common)); } } void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; int num_workers = 0; int max_mb_rows = 0; max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size); const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols || enc_row_mt->allocated_tile_rows != tile_rows || enc_row_mt->allocated_rows != max_mb_rows; const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows; assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data)); if (alloc_tile_data) { av1_alloc_tile_data(cpi); } assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem)); if (alloc_row_mt_mem) { row_mt_mem_alloc(cpi, max_mb_rows, -1, 0); } av1_init_tile_data(cpi); // For pass = 1, compute the no. of workers needed. For single-pass encode // (pass = 0), no. of workers are already computed. if (mt_info->num_mod_workers[MOD_FP] == 0) num_workers = av1_fp_compute_num_enc_workers(cpi); else num_workers = mt_info->num_mod_workers[MOD_FP]; memset(thread_id_to_tile_id, -1, sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); enc_row_mt->firstpass_mt_exit = false; for (int tile_row = 0; tile_row < tile_rows; tile_row++) { for (int tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_index = tile_row * tile_cols + tile_col; TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; // Initialize num_finished_cols to -1 for all rows. memset(row_mt_sync->num_finished_cols, -1, sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows); row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; row_mt_sync->num_threads_working = 0; // intraBC mode is not evaluated during first-pass encoding. Hence, no // additional top-right delay is required. row_mt_sync->intrabc_extra_top_right_sb_delay = 0; } } num_workers = AOMMIN(num_workers, mt_info->num_workers); assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, num_workers); fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers); launch_workers(&cpi->mt_info, num_workers); sync_enc_workers(&cpi->mt_info, cm, num_workers); dealloc_thread_data_src_diff_buf(cpi, num_workers); } void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, int r, int c) { (void)tpl_mt_sync; (void)r; (void)c; } void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, int r, int c, int cols) { (void)tpl_mt_sync; (void)r; (void)c; (void)cols; } void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, int c) { #if CONFIG_MULTITHREAD int nsync = tpl_row_mt_sync->sync_range; if (r) { pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1]; pthread_mutex_lock(mutex); while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync) pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex); pthread_mutex_unlock(mutex); } #else (void)tpl_row_mt_sync; (void)r; (void)c; #endif // CONFIG_MULTITHREAD } void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, int c, int cols) { #if CONFIG_MULTITHREAD int nsync = tpl_row_mt_sync->sync_range; int cur; // Only signal when there are enough encoded blocks for next row to run. int sig = 1; if (c < cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = cols + nsync; } if (sig) { pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]); // When a thread encounters an error, num_finished_cols[r] is set to maximum // column number. In this case, the AOMMAX operation here ensures that // num_finished_cols[r] is not overwritten with a smaller value thus // preventing the infinite waiting of threads in the relevant sync_read() // function. tpl_row_mt_sync->num_finished_cols[r] = AOMMAX(tpl_row_mt_sync->num_finished_cols[r], cur); pthread_cond_signal(&tpl_row_mt_sync->cond_[r]); pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]); } #else (void)tpl_row_mt_sync; (void)r; (void)c; (void)cols; #endif // CONFIG_MULTITHREAD } static AOM_INLINE void set_mode_estimation_done(AV1_COMP *cpi) { const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; TplParams *const tpl_data = &cpi->ppi->tpl_data; const BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d); const int mi_height = mi_size_high[bsize]; AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt; const int tplb_cols_in_tile = ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]); // In case of tpl row-multithreading, due to top-right dependency, the worker // on an mb_row waits for the completion of the tpl processing of the top and // top-right blocks. Hence, in case a thread (main/worker) encounters an // error, update that the tpl processing of every mb_row in the frame is // complete in order to avoid dependent workers waiting indefinitely. for (int mi_row = 0, tplb_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height, tplb_row++) { (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row, tplb_cols_in_tile - 1, tplb_cols_in_tile); } } // Each worker calls tpl_worker_hook() and computes the tpl data. static int tpl_worker_hook(void *arg1, void *unused) { (void)unused; EncWorkerData *thread_data = (EncWorkerData *)arg1; AV1_COMP *cpi = thread_data->cpi; AV1_COMMON *cm = &cpi->common; MACROBLOCK *x = &thread_data->td->mb; MACROBLOCKD *xd = &x->e_mbd; TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats; TplBuffers *tpl_tmp_buffers = &thread_data->td->tpl_tmp_buffers; CommonModeInfoParams *mi_params = &cm->mi_params; int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working; struct aom_internal_error_info *const error_info = &thread_data->error_info; xd->error_info = error_info; AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt; (void)tpl_row_mt; #if CONFIG_MULTITHREAD pthread_mutex_t *tpl_error_mutex_ = tpl_row_mt->mutex_; #endif // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(tpl_error_mutex_); tpl_row_mt->tpl_mt_exit = true; pthread_mutex_unlock(tpl_error_mutex_); #endif set_mode_estimation_done(cpi); return 0; } error_info->setjmp = 1; BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d); TX_SIZE tx_size = max_txsize_lookup[bsize]; int mi_height = mi_size_high[bsize]; av1_init_tpl_txfm_stats(tpl_txfm_stats); for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows; mi_row += num_active_workers * mi_height) { // Motion estimation row boundary av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height, cpi->oxcf.border_in_pixels); xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, bsize, tx_size); } error_info->setjmp = 0; return 1; } // Deallocate tpl synchronization related mutex and data. void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) { assert(tpl_sync != NULL); #if CONFIG_MULTITHREAD if (tpl_sync->mutex_ != NULL) { for (int i = 0; i < tpl_sync->rows; ++i) pthread_mutex_destroy(&tpl_sync->mutex_[i]); aom_free(tpl_sync->mutex_); } if (tpl_sync->cond_ != NULL) { for (int i = 0; i < tpl_sync->rows; ++i) pthread_cond_destroy(&tpl_sync->cond_[i]); aom_free(tpl_sync->cond_); } #endif // CONFIG_MULTITHREAD aom_free(tpl_sync->num_finished_cols); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*tpl_sync); } // Allocate memory for tpl row synchronization. static void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm, int mb_rows) { tpl_sync->rows = mb_rows; #if CONFIG_MULTITHREAD { CHECK_MEM_ERROR(cm, tpl_sync->mutex_, aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows)); if (tpl_sync->mutex_) { for (int i = 0; i < mb_rows; ++i) pthread_mutex_init(&tpl_sync->mutex_[i], NULL); } CHECK_MEM_ERROR(cm, tpl_sync->cond_, aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows)); if (tpl_sync->cond_) { for (int i = 0; i < mb_rows; ++i) pthread_cond_init(&tpl_sync->cond_[i], NULL); } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols, aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows)); // Set up nsync. tpl_sync->sync_range = 1; } // Each worker is prepared by assigning the hook function and individual thread // data. static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers) { MultiThreadInfo *mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *worker = &mt_info->workers[i]; EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } // Before encoding a frame, copy the thread data from cpi. if (thread_data->td != &cpi->td) { thread_data->td->mb = cpi->td.mb; // OBMC buffers are used only to init MS params and remain unused when // called from tpl, hence set the buffers to defaults. av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer); if (!tpl_alloc_temp_buffers(&thread_data->td->tpl_tmp_buffers, cpi->ppi->tpl_data.tpl_bsize_1d)) { aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR, "Error allocating tpl data"); } thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; } } } #if CONFIG_BITRATE_ACCURACY // Accumulate transform stats after tpl. static void tpl_accumulate_txfm_stats(ThreadData *main_td, const MultiThreadInfo *mt_info, int num_workers) { TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; ThreadData *td = thread_data->td; if (td != main_td) { const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats; av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats); } } } #endif // CONFIG_BITRATE_ACCURACY // Implements multi-threading for tpl. void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; CommonModeInfoParams *mi_params = &cm->mi_params; MultiThreadInfo *mt_info = &cpi->mt_info; TplParams *tpl_data = &cpi->ppi->tpl_data; AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync; int mb_rows = mi_params->mb_rows; int num_workers = AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers); if (mb_rows != tpl_sync->rows) { av1_tpl_dealloc(tpl_sync); av1_tpl_alloc(tpl_sync, cm, mb_rows); } tpl_sync->num_threads_working = num_workers; mt_info->tpl_row_mt.tpl_mt_exit = false; // Initialize cur_mb_col to -1 for all MB rows. memset(tpl_sync->num_finished_cols, -1, sizeof(*tpl_sync->num_finished_cols) * mb_rows); prepare_tpl_workers(cpi, tpl_worker_hook, num_workers); launch_workers(&cpi->mt_info, num_workers); sync_enc_workers(&cpi->mt_info, cm, num_workers); #if CONFIG_BITRATE_ACCURACY tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers); #endif // CONFIG_BITRATE_ACCURACY for (int i = num_workers - 1; i >= 0; i--) { EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; ThreadData *td = thread_data->td; if (td != &cpi->td) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers); } } // Deallocate memory for temporal filter multi-thread synchronization. void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) { assert(tf_sync != NULL); #if CONFIG_MULTITHREAD if (tf_sync->mutex_ != NULL) { pthread_mutex_destroy(tf_sync->mutex_); aom_free(tf_sync->mutex_); } #endif // CONFIG_MULTITHREAD tf_sync->next_tf_row = 0; } // Checks if a job is available. If job is available, // populates next_tf_row and returns 1, else returns 0. static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync, int *current_mb_row, int mb_rows) { int do_next_row = 0; #if CONFIG_MULTITHREAD pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_; pthread_mutex_lock(tf_mutex_); #endif if (!tf_mt_sync->tf_mt_exit && tf_mt_sync->next_tf_row < mb_rows) { *current_mb_row = tf_mt_sync->next_tf_row; tf_mt_sync->next_tf_row++; do_next_row = 1; } #if CONFIG_MULTITHREAD pthread_mutex_unlock(tf_mutex_); #endif return do_next_row; } // Hook function for each thread in temporal filter multi-threading. static int tf_worker_hook(void *arg1, void *unused) { (void)unused; EncWorkerData *thread_data = (EncWorkerData *)arg1; AV1_COMP *cpi = thread_data->cpi; ThreadData *td = thread_data->td; TemporalFilterCtx *tf_ctx = &cpi->tf_ctx; AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync; const struct scale_factors *scale = &cpi->tf_ctx.sf; #if CONFIG_MULTITHREAD pthread_mutex_t *tf_mutex_ = tf_sync->mutex_; #endif MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; struct aom_internal_error_info *const error_info = &thread_data->error_info; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(tf_mutex_); tf_sync->tf_mt_exit = true; pthread_mutex_unlock(tf_mutex_); #endif return 0; } error_info->setjmp = 1; const int num_planes = av1_num_planes(&cpi->common); assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); MACROBLOCKD *mbd = &td->mb.e_mbd; uint8_t *input_buffer[MAX_MB_PLANE]; MB_MODE_INFO **input_mb_mode_info; tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes); tf_setup_macroblockd(mbd, &td->tf_data, scale); int current_mb_row = -1; while (tf_get_next_job(tf_sync, ¤t_mb_row, tf_ctx->mb_rows)) av1_tf_do_filtering_row(cpi, td, current_mb_row); tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes); error_info->setjmp = 0; return 1; } // Assigns temporal filter hook function and thread data to each worker. static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers, int is_highbitdepth) { MultiThreadInfo *mt_info = &cpi->mt_info; mt_info->tf_sync.next_tf_row = 0; mt_info->tf_sync.tf_mt_exit = false; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *worker = &mt_info->workers[i]; EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } // Before encoding a frame, copy the thread data from cpi. if (thread_data->td != &cpi->td) { thread_data->td->mb = cpi->td.mb; // OBMC buffers are used only to init MS params and remain unused when // called from tf, hence set the buffers to defaults. av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer); if (!tf_alloc_and_reset_data(&thread_data->td->tf_data, cpi->tf_ctx.num_pels, is_highbitdepth)) { aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR, "Error allocating temporal filter data"); } } } } // Deallocate thread specific data for temporal filter. static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers, int is_highbitdepth) { MultiThreadInfo *mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; ThreadData *td = thread_data->td; if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth); } } // Accumulate sse and sum after temporal filtering. static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) { FRAME_DIFF *total_diff = &cpi->td.tf_data.diff; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &cpi->mt_info.workers[i]; EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; ThreadData *td = thread_data->td; FRAME_DIFF *diff = &td->tf_data.diff; if (td != &cpi->td) { total_diff->sse += diff->sse; total_diff->sum += diff->sum; } } } // Implements multi-threading for temporal filter. void av1_tf_do_filtering_mt(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; MultiThreadInfo *mt_info = &cpi->mt_info; const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth; int num_workers = AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers); prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth); launch_workers(mt_info, num_workers); sync_enc_workers(mt_info, cm, num_workers); tf_accumulate_frame_diff(cpi, num_workers); tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth); } // Checks if a job is available in the current direction. If a job is available, // frame_idx will be populated and returns 1, else returns 0. static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, int cur_dir) { GlobalMotionInfo *gm_info = &cpi->gm_info; JobInfo *job_info = &cpi->mt_info.gm_sync.job_info; int total_refs = gm_info->num_ref_frames[cur_dir]; int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir]; if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) { *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame; job_info->next_frame_to_process[cur_dir] += 1; return 1; } return 0; } // Switches the current direction and calls the function get_next_gm_job() if // the speed feature 'prune_ref_frame_for_gm_search' is not set. static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx, int *cur_dir) { if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return; // Switch the direction and get next job *cur_dir = !(*cur_dir); get_next_gm_job(cpi, frame_idx, *(cur_dir)); } // Hook function for each thread in global motion multi-threading. static int gm_mt_worker_hook(void *arg1, void *unused) { (void)unused; EncWorkerData *thread_data = (EncWorkerData *)arg1; AV1_COMP *cpi = thread_data->cpi; GlobalMotionInfo *gm_info = &cpi->gm_info; AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; JobInfo *job_info = &gm_sync->job_info; int thread_id = thread_data->thread_id; GlobalMotionData *gm_thread_data = &thread_data->td->gm_data; #if CONFIG_MULTITHREAD pthread_mutex_t *gm_mt_mutex_ = gm_sync->mutex_; #endif MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; struct aom_internal_error_info *const error_info = &thread_data->error_info; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(gm_mt_mutex_); gm_sync->gm_mt_exit = true; pthread_mutex_unlock(gm_mt_mutex_); #endif return 0; } error_info->setjmp = 1; int cur_dir = job_info->thread_id_to_dir[thread_id]; bool gm_mt_exit = false; while (1) { int ref_buf_idx = -1; #if CONFIG_MULTITHREAD pthread_mutex_lock(gm_mt_mutex_); #endif gm_mt_exit = gm_sync->gm_mt_exit; // Populates ref_buf_idx(the reference frame type) for which global motion // estimation will be done. if (!gm_mt_exit && !get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) { // No jobs are available for the current direction. Switch // to other direction and get the next job, if available. switch_direction(cpi, &ref_buf_idx, &cur_dir); } #if CONFIG_MULTITHREAD pthread_mutex_unlock(gm_mt_mutex_); #endif // When gm_mt_exit is set to true, other workers need not pursue any // further jobs. if (gm_mt_exit || ref_buf_idx == -1) break; // Compute global motion for the given ref_buf_idx. av1_compute_gm_for_valid_ref_frames( cpi, error_info, gm_info->ref_buf, ref_buf_idx, gm_thread_data->motion_models, gm_thread_data->segment_map, gm_info->segment_map_w, gm_info->segment_map_h); #if CONFIG_MULTITHREAD pthread_mutex_lock(gm_mt_mutex_); #endif // If global motion w.r.t. current ref frame is // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t // the remaining ref frames in that direction. if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION) job_info->early_exit[cur_dir] = 1; #if CONFIG_MULTITHREAD pthread_mutex_unlock(gm_mt_mutex_); #endif } error_info->setjmp = 0; return 1; } // Assigns global motion hook function and thread data to each worker. static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers) { MultiThreadInfo *mt_info = &cpi->mt_info; mt_info->gm_sync.gm_mt_exit = false; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *worker = &mt_info->workers[i]; EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread. thread_data->start = i; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } if (thread_data->td != &cpi->td) gm_alloc_data(cpi, &thread_data->td->gm_data); } } // Assigns available threads to past/future direction. static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir, int num_workers) { int8_t frame_dir_idx = 0; for (int i = 0; i < num_workers; i++) { thread_id_to_dir[i] = frame_dir_idx++; if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0; } } // Computes number of workers for global motion multi-threading. static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) { int total_refs = cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1]; int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search ? AOMMIN(MAX_DIRECTIONS, total_refs) : total_refs; num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers); return (num_gm_workers); } // Frees the memory allocated for each worker in global motion multi-threading. static AOM_INLINE void gm_dealloc_thread_data(AV1_COMP *cpi, int num_workers) { MultiThreadInfo *mt_info = &cpi->mt_info; for (int j = 0; j < num_workers; j++) { EncWorkerData *thread_data = &mt_info->tile_thr_data[j]; ThreadData *td = thread_data->td; if (td != &cpi->td) gm_dealloc_data(&td->gm_data); } } // Implements multi-threading for global motion. void av1_global_motion_estimation_mt(AV1_COMP *cpi) { JobInfo *job_info = &cpi->mt_info.gm_sync.job_info; av1_zero(*job_info); int num_workers = compute_gm_workers(cpi); assign_thread_to_dir(job_info->thread_id_to_dir, num_workers); prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers); launch_workers(&cpi->mt_info, num_workers); sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers); gm_dealloc_thread_data(cpi, num_workers); } #endif // !CONFIG_REALTIME_ONLY static AOM_INLINE int get_next_job_allintra( AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end, int *current_mi_row, int mib_size) { if (row_mt_sync->next_mi_row < mi_row_end) { *current_mi_row = row_mt_sync->next_mi_row; row_mt_sync->num_threads_working++; row_mt_sync->next_mi_row += mib_size; return 1; } return 0; } static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi, AVxWorkerHook hook, const int num_workers) { MultiThreadInfo *const mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *const worker = &mt_info->workers[i]; EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; worker->hook = hook; worker->data1 = thread_data; worker->data2 = NULL; thread_data->thread_id = i; // Set the starting tile for each thread, in this case the preprocessing // stage does not need tiles. So we set it to 0. thread_data->start = 0; thread_data->cpi = cpi; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } if (thread_data->td != &cpi->td) { thread_data->td->mb = cpi->td.mb; av1_alloc_mb_wiener_var_pred_buf(&cpi->common, thread_data->td); } } } static void set_mb_wiener_var_calc_done(AV1_COMP *const cpi) { const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; const BLOCK_SIZE bsize = cpi->weber_bsize; const int mb_step = mi_size_wide[bsize]; assert(MB_WIENER_MT_UNIT_SIZE < BLOCK_SIZES_ALL); const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE]; const int mt_unit_cols = (mi_params->mi_cols + (mt_unit_step >> 1)) / mt_unit_step; const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt; AV1EncRowMultiThreadSync *const intra_row_mt_sync = &cpi->ppi->intra_row_mt_sync; // Update the wiener variance computation of every row in the frame to // indicate that it is complete in order to avoid dependent workers waiting // indefinitely. for (int mi_row = 0, mt_thread_id = 0; mi_row < mi_params->mi_rows; mi_row += mb_step, ++mt_thread_id) { intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id, mt_unit_cols - 1, mt_unit_cols); } } static int cal_mb_wiener_var_hook(void *arg1, void *unused) { (void)unused; EncWorkerData *const thread_data = (EncWorkerData *)arg1; AV1_COMP *const cpi = thread_data->cpi; MACROBLOCK *x = &thread_data->td->mb; MACROBLOCKD *xd = &x->e_mbd; const BLOCK_SIZE bsize = cpi->weber_bsize; const int mb_step = mi_size_wide[bsize]; AV1EncRowMultiThreadSync *const intra_row_mt_sync = &cpi->ppi->intra_row_mt_sync; AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; (void)enc_row_mt; #if CONFIG_MULTITHREAD pthread_mutex_t *enc_row_mt_mutex = enc_row_mt->mutex_; #endif struct aom_internal_error_info *const error_info = &thread_data->error_info; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex); enc_row_mt->mb_wiener_mt_exit = true; pthread_mutex_unlock(enc_row_mt_mutex); #endif set_mb_wiener_var_calc_done(cpi); return 0; } error_info->setjmp = 1; DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]); DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]); DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]); DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]); double sum_rec_distortion = 0; double sum_est_rate = 0; while (1) { int current_mi_row = -1; #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex); #endif int has_jobs = enc_row_mt->mb_wiener_mt_exit ? 0 : get_next_job_allintra(intra_row_mt_sync, cpi->common.mi_params.mi_rows, ¤t_mi_row, mb_step); #if CONFIG_MULTITHREAD pthread_mutex_unlock(enc_row_mt_mutex); #endif if (!has_jobs) break; // TODO(chengchen): properly accumulate the distortion and rate. av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff, qcoeff, dqcoeff, &sum_rec_distortion, &sum_est_rate, thread_data->td->wiener_tmp_pred_buf); #if CONFIG_MULTITHREAD pthread_mutex_lock(enc_row_mt_mutex); #endif intra_row_mt_sync->num_threads_working--; #if CONFIG_MULTITHREAD pthread_mutex_unlock(enc_row_mt_mutex); #endif } error_info->setjmp = 0; return 1; } static void dealloc_mb_wiener_var_mt_data(AV1_COMP *cpi, int num_workers) { av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync); MultiThreadInfo *mt_info = &cpi->mt_info; for (int j = 0; j < num_workers; ++j) { EncWorkerData *thread_data = &mt_info->tile_thr_data[j]; ThreadData *td = thread_data->td; if (td != &cpi->td) av1_dealloc_mb_wiener_var_pred_buf(td); } } // This function is the multi-threading version of computing the wiener // variance. // Note that the wiener variance is used for allintra mode (1 pass) and its // computation is before the frame encoding, so we don't need to consider // the number of tiles, instead we allocate all available threads to // the computation. void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers, double *sum_rec_distortion, double *sum_est_rate) { (void)sum_rec_distortion; (void)sum_est_rate; AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadSync *const intra_row_mt_sync = &cpi->ppi->intra_row_mt_sync; // TODO(chengchen): the memory usage could be improved. const int mi_rows = cm->mi_params.mi_rows; row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows); intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0; intra_row_mt_sync->num_threads_working = num_workers; intra_row_mt_sync->next_mi_row = 0; memset(intra_row_mt_sync->num_finished_cols, -1, sizeof(*intra_row_mt_sync->num_finished_cols) * mi_rows); mt_info->enc_row_mt.mb_wiener_mt_exit = false; prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers); launch_workers(mt_info, num_workers); sync_enc_workers(mt_info, cm, num_workers); dealloc_mb_wiener_var_mt_data(cpi, num_workers); } // Compare and order tiles based on absolute sum of tx coeffs. static int compare_tile_order(const void *a, const void *b) { const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a; const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b; if (tile_a->abs_sum_level > tile_b->abs_sum_level) return -1; else if (tile_a->abs_sum_level == tile_b->abs_sum_level) return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1); else return 1; } // Get next tile index to be processed for pack bitstream static AOM_INLINE int get_next_pack_bs_tile_idx( AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) { assert(pack_bs_sync->next_job_idx <= num_tiles); if (pack_bs_sync->next_job_idx == num_tiles) return -1; return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++] .tile_idx; } // Calculates bitstream chunk size based on total buffer size and tile or tile // group size. static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size, const int frame_or_tg_size, size_t *remain_buf_size, size_t max_buf_size, int is_last_chunk) { size_t this_chunk_size; assert(*remain_buf_size > 0); if (is_last_chunk) { this_chunk_size = *remain_buf_size; *remain_buf_size = 0; } else { const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size; this_chunk_size = (size_t)(size_scale / frame_or_tg_size); *remain_buf_size -= this_chunk_size; assert(*remain_buf_size > 0); } assert(this_chunk_size > 0); return this_chunk_size; } // Initializes params required for pack bitstream tile. static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst, struct aom_write_bit_buffer *saved_wb, PackBSParams *const pack_bs_params_arr, uint8_t obu_extn_header) { MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; const int num_tiles = tiles->cols * tiles->rows; // Fixed size tile groups for the moment const int num_tg_hdrs = cpi->num_tg; // Tile group size in terms of number of tiles. const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs; uint8_t *tile_dst = dst; uint8_t *tile_data_curr = dst; // Max tile group count can not be more than MAX_TILES. int tg_size_mi[MAX_TILES] = { 0 }; // Size of tile group in mi units int tile_idx; int tg_idx = 0; int tile_count_in_tg = 0; int new_tg = 1; // Populate pack bitstream params of all tiles. for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) { const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info; PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; // Calculate tile size in mi units. const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) * (tile_info->mi_row_end - tile_info->mi_row_start); int is_last_tile_in_tg = 0; tile_count_in_tg++; if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1)) is_last_tile_in_tg = 1; // Populate pack bitstream params of this tile. pack_bs_params->curr_tg_hdr_size = 0; pack_bs_params->obu_extn_header = obu_extn_header; pack_bs_params->saved_wb = saved_wb; pack_bs_params->obu_header_size = 0; pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg; pack_bs_params->new_tg = new_tg; pack_bs_params->tile_col = tile_info->tile_col; pack_bs_params->tile_row = tile_info->tile_row; pack_bs_params->tile_size_mi = tile_size_mi; tg_size_mi[tg_idx] += tile_size_mi; if (new_tg) new_tg = 0; if (is_last_tile_in_tg) { tile_count_in_tg = 0; new_tg = 1; tg_idx++; } } assert(cpi->available_bs_size > 0); size_t tg_buf_size[MAX_TILES] = { 0 }; size_t max_buf_size = cpi->available_bs_size; size_t remain_buf_size = max_buf_size; const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols; tile_idx = 0; // Prepare obu, tile group and frame header of each tile group. for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) { PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; int is_last_tg = tg_idx == cpi->num_tg - 1; // Prorate bitstream buffer size based on tile group size and available // buffer size. This buffer will be used to store headers and tile data. tg_buf_size[tg_idx] = get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size, max_buf_size, is_last_tg); pack_bs_params->dst = tile_dst; pack_bs_params->tile_data_curr = tile_dst; // Write obu, tile group and frame header at first tile in the tile // group. av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx); tile_dst += tg_buf_size[tg_idx]; // Exclude headers from tile group buffer size. tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size; tile_idx += tg_size_in_tiles; } tg_idx = 0; // Calculate bitstream buffer size of each tile in the tile group. for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) { PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; if (pack_bs_params->new_tg) { max_buf_size = tg_buf_size[tg_idx]; remain_buf_size = max_buf_size; } // Prorate bitstream buffer size of this tile based on tile size and // available buffer size. For this proration, header size is not accounted. const size_t tile_buf_size = get_bs_chunk_size( pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size, max_buf_size, pack_bs_params->is_last_tile_in_tg); pack_bs_params->tile_buf_size = tile_buf_size; // Update base address of bitstream buffer for tile and tile group. if (pack_bs_params->new_tg) { tile_dst = pack_bs_params->dst; tile_data_curr = pack_bs_params->tile_data_curr; // Account header size in first tile of a tile group. pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size; } else { pack_bs_params->dst = tile_dst; pack_bs_params->tile_data_curr = tile_data_curr; } if (pack_bs_params->is_last_tile_in_tg) tg_idx++; tile_dst += pack_bs_params->tile_buf_size; } } // Worker hook function of pack bitsteam multithreading. static int pack_bs_worker_hook(void *arg1, void *arg2) { EncWorkerData *const thread_data = (EncWorkerData *)arg1; PackBSParams *const pack_bs_params = (PackBSParams *)arg2; AV1_COMP *const cpi = thread_data->cpi; AV1_COMMON *const cm = &cpi->common; AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync; const CommonTileParams *const tiles = &cm->tiles; const int num_tiles = tiles->cols * tiles->rows; #if CONFIG_MULTITHREAD pthread_mutex_t *const pack_bs_mutex = pack_bs_sync->mutex_; #endif MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; struct aom_internal_error_info *const error_info = &thread_data->error_info; xd->error_info = error_info; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(pack_bs_mutex); pack_bs_sync->pack_bs_mt_exit = true; pthread_mutex_unlock(pack_bs_mutex); #endif return 0; } error_info->setjmp = 1; while (1) { #if CONFIG_MULTITHREAD pthread_mutex_lock(pack_bs_mutex); #endif const int tile_idx = pack_bs_sync->pack_bs_mt_exit ? -1 : get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles); #if CONFIG_MULTITHREAD pthread_mutex_unlock(pack_bs_mutex); #endif // When pack_bs_mt_exit is set to true, other workers need not pursue any // further jobs. if (tile_idx == -1) break; TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]); } error_info->setjmp = 0; return 1; } // Prepares thread data and workers of pack bitsteam multithreading. static void prepare_pack_bs_workers(AV1_COMP *const cpi, PackBSParams *const pack_bs_params, AVxWorkerHook hook, const int num_workers) { MultiThreadInfo *const mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *worker = &mt_info->workers[i]; EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; if (i == 0) { thread_data->td = &cpi->td; } else { thread_data->td = thread_data->original_td; } if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb; thread_data->cpi = cpi; thread_data->start = i; thread_data->thread_id = i; av1_reset_pack_bs_thread_data(thread_data->td); worker->hook = hook; worker->data1 = thread_data; worker->data2 = pack_bs_params; } AV1_COMMON *const cm = &cpi->common; AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync; const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols; pack_bs_sync->next_job_idx = 0; pack_bs_sync->pack_bs_mt_exit = false; PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order; // Reset tile order data of pack bitstream av1_zero_array(pack_bs_tile_order, num_tiles); // Populate pack bitstream tile order structure for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) { pack_bs_tile_order[tile_idx].abs_sum_level = cpi->tile_data[tile_idx].abs_sum_level; pack_bs_tile_order[tile_idx].tile_idx = tile_idx; } // Sort tiles in descending order based on tile area. qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order), compare_tile_order); } // Accumulates data after pack bitsteam processing. static void accumulate_pack_bs_data( AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr, uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info, int *const largest_tile_id, unsigned int *max_tile_size, uint32_t *const obu_header_size, uint8_t **tile_data_start, const int num_workers) { const AV1_COMMON *const cm = &cpi->common; const CommonTileParams *const tiles = &cm->tiles; const int tile_count = tiles->cols * tiles->rows; // Fixed size tile groups for the moment size_t curr_tg_data_size = 0; int is_first_tg = 1; uint8_t *curr_tg_start = dst; size_t src_offset = 0; size_t dst_offset = 0; for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) { // PackBSParams stores all parameters required to pack tile and header // info. const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; uint32_t tile_size = 0; if (pack_bs_params->new_tg) { curr_tg_start = dst + *total_size; curr_tg_data_size = pack_bs_params->curr_tg_hdr_size; *tile_data_start += pack_bs_params->curr_tg_hdr_size; *obu_header_size = pack_bs_params->obu_header_size; } curr_tg_data_size += pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4); if (pack_bs_params->buf.size > *max_tile_size) { *largest_tile_id = tile_idx; *max_tile_size = (unsigned int)pack_bs_params->buf.size; } tile_size += (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size; // Pack all the chunks of tile bitstreams together if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size); if (pack_bs_params->is_last_tile_in_tg) av1_write_last_tile_info( cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size, curr_tg_start, &tile_size, tile_data_start, largest_tile_id, &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header); src_offset += pack_bs_params->tile_buf_size; dst_offset += tile_size; *total_size += tile_size; } // Accumulate thread data MultiThreadInfo *const mt_info = &cpi->mt_info; for (int idx = num_workers - 1; idx >= 0; idx--) { ThreadData const *td = mt_info->tile_thr_data[idx].td; av1_accumulate_pack_bs_thread_data(cpi, td); } } void av1_write_tile_obu_mt( AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size, struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header, const FrameHeaderInfo *fh_info, int *const largest_tile_id, unsigned int *max_tile_size, uint32_t *const obu_header_size, uint8_t **tile_data_start, const int num_workers) { MultiThreadInfo *const mt_info = &cpi->mt_info; PackBSParams pack_bs_params[MAX_TILES]; uint32_t tile_size[MAX_TILES] = { 0 }; for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++) pack_bs_params[tile_idx].total_size = &tile_size[tile_idx]; init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header); prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook, num_workers); launch_workers(mt_info, num_workers); sync_enc_workers(mt_info, &cpi->common, num_workers); accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info, largest_tile_id, max_tile_size, obu_header_size, tile_data_start, num_workers); } // Deallocate memory for CDEF search multi-thread synchronization. void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) { (void)cdef_sync; assert(cdef_sync != NULL); #if CONFIG_MULTITHREAD if (cdef_sync->mutex_ != NULL) { pthread_mutex_destroy(cdef_sync->mutex_); aom_free(cdef_sync->mutex_); } #endif // CONFIG_MULTITHREAD } // Updates the row and column indices of the next job to be processed. // Also updates end_of_frame flag when the processing of all blocks is complete. static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) { cdef_sync->fbc++; if (cdef_sync->fbc == nhfb) { cdef_sync->fbr++; if (cdef_sync->fbr == nvfb) { cdef_sync->end_of_frame = 1; } else { cdef_sync->fbc = 0; } } } // Initializes cdef_sync parameters. static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) { #if CONFIG_MULTITHREAD if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); #endif // CONFIG_MULTITHREAD cdef_sync->end_of_frame = 0; cdef_sync->fbr = 0; cdef_sync->fbc = 0; cdef_sync->cdef_mt_exit = false; } // Checks if a job is available. If job is available, // populates next job information and returns 1, else returns 0. static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync, CdefSearchCtx *cdef_search_ctx, volatile int *cur_fbr, volatile int *cur_fbc, volatile int *sb_count) { #if CONFIG_MULTITHREAD pthread_mutex_lock(cdef_sync->mutex_); #endif // CONFIG_MULTITHREAD int do_next_block = 0; const int nvfb = cdef_search_ctx->nvfb; const int nhfb = cdef_search_ctx->nhfb; // If a block is skip, do not process the block and // check the skip condition for the next block. while (!cdef_sync->cdef_mt_exit && !cdef_sync->end_of_frame && cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr, cdef_sync->fbc)) { update_next_job_info(cdef_sync, nvfb, nhfb); } // Populates information needed for current job and update the row, // column indices of the next block to be processed. if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) { do_next_block = 1; *cur_fbr = cdef_sync->fbr; *cur_fbc = cdef_sync->fbc; *sb_count = cdef_search_ctx->sb_count; cdef_search_ctx->sb_count++; update_next_job_info(cdef_sync, nvfb, nhfb); } #if CONFIG_MULTITHREAD pthread_mutex_unlock(cdef_sync->mutex_); #endif // CONFIG_MULTITHREAD return do_next_block; } // Hook function for each thread in CDEF search multi-threading. static int cdef_filter_block_worker_hook(void *arg1, void *arg2) { EncWorkerData *thread_data = (EncWorkerData *)arg1; AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg2; #if CONFIG_MULTITHREAD pthread_mutex_t *cdef_mutex_ = cdef_sync->mutex_; #endif struct aom_internal_error_info *const error_info = &thread_data->error_info; CdefSearchCtx *cdef_search_ctx = thread_data->cpi->cdef_search_ctx; // The jmp_buf is valid only for the duration of the function that calls // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 // before it returns. if (setjmp(error_info->jmp)) { error_info->setjmp = 0; #if CONFIG_MULTITHREAD pthread_mutex_lock(cdef_mutex_); cdef_sync->cdef_mt_exit = true; pthread_mutex_unlock(cdef_mutex_); #endif return 0; } error_info->setjmp = 1; volatile int cur_fbr, cur_fbc, sb_count; while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc, &sb_count)) { av1_cdef_mse_calc_block(cdef_search_ctx, error_info, cur_fbr, cur_fbc, sb_count); } error_info->setjmp = 0; return 1; } // Assigns CDEF search hook function and thread data to each worker. static void prepare_cdef_workers(AV1_COMP *cpi, AVxWorkerHook hook, int num_workers) { MultiThreadInfo *mt_info = &cpi->mt_info; for (int i = num_workers - 1; i >= 0; i--) { AVxWorker *worker = &mt_info->workers[i]; EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; thread_data->cpi = cpi; worker->hook = hook; worker->data1 = thread_data; worker->data2 = &mt_info->cdef_sync; } } // Implements multi-threading for CDEF search. void av1_cdef_mse_calc_frame_mt(AV1_COMP *cpi) { MultiThreadInfo *mt_info = &cpi->mt_info; AV1CdefSync *cdef_sync = &mt_info->cdef_sync; const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH]; cdef_reset_job_info(cdef_sync); prepare_cdef_workers(cpi, cdef_filter_block_worker_hook, num_workers); launch_workers(mt_info, num_workers); sync_enc_workers(mt_info, &cpi->common, num_workers); } // Computes num_workers for temporal filter multi-threading. static AOM_INLINE int compute_num_tf_workers(const AV1_COMP *cpi) { // For single-pass encode, using no. of workers as per tf block size was not // found to improve speed. Hence the thread assignment for single-pass encode // is kept based on compute_num_enc_workers(). if (cpi->oxcf.pass < AOM_RC_SECOND_PASS) return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads)); if (cpi->oxcf.max_threads <= 1) return 1; const int frame_height = cpi->common.height; const BLOCK_SIZE block_size = TF_BLOCK_SIZE; const int mb_height = block_size_high[block_size]; const int mb_rows = get_num_blocks(frame_height, mb_height); return AOMMIN(cpi->oxcf.max_threads, mb_rows); } // Computes num_workers for tpl multi-threading. static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) { return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); } // Computes num_workers for loop filter multi-threading. static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) { return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); } // Computes num_workers for cdef multi-threading. static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) { return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); } // Computes num_workers for loop-restoration multi-threading. static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) { return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); } // Computes num_workers for pack bitstream multi-threading. static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) { if (cpi->oxcf.max_threads <= 1) return 1; return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads); } // Computes num_workers for all intra multi-threading. static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) { if (cpi->oxcf.max_threads <= 1) return 1; // The multi-threading implementation of deltaq-mode = 3 in allintra // mode is based on row multi threading. if (!cpi->oxcf.row_mt) return 1; cpi->weber_bsize = BLOCK_8X8; const BLOCK_SIZE bsize = cpi->weber_bsize; const int mb_step = mi_size_wide[bsize]; const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step; return AOMMIN(num_mb_rows, cpi->oxcf.max_threads); } static int compute_num_mod_workers(AV1_COMP *cpi, MULTI_THREADED_MODULES mod_name) { int num_mod_workers = 0; switch (mod_name) { case MOD_FP: if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS) num_mod_workers = 0; else num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); break; case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break; case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break; case MOD_GME: num_mod_workers = 1; break; case MOD_ENC: num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); break; case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break; case MOD_CDEF_SEARCH: num_mod_workers = compute_num_cdef_workers(cpi); break; case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break; case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break; case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break; case MOD_FRAME_ENC: num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC]; break; case MOD_AI: if (cpi->oxcf.pass == AOM_RC_ONE_PASS) { num_mod_workers = compute_num_ai_workers(cpi); } else { num_mod_workers = 0; } break; default: assert(0); break; } return (num_mod_workers); } // Computes the number of workers for each MT modules in the encoder void av1_compute_num_workers_for_mt(AV1_COMP *cpi) { for (int i = MOD_FP; i < NUM_MT_MODULES; i++) { cpi->ppi->p_mt_info.num_mod_workers[i] = compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i); } }