/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/variance.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_scale/aom_scale.h" #include "aom_scale/yv12config.h" #include "aom_util/aom_pthread.h" #include "av1/common/entropymv.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" // av1_setup_dst_planes() #include "av1/common/reconintra.h" #include "av1/common/txb_common.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/block.h" #include "av1/encoder/dwt.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/encode_strategy.h" #include "av1/encoder/ethread.h" #include "av1/encoder/extend.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/rd.h" #include "av1/encoder/reconinter_enc.h" #define OUTPUT_FPF 0 #define FIRST_PASS_Q 10.0 #define INTRA_MODE_PENALTY 1024 #define NEW_MV_MODE_PENALTY 32 #define DARK_THRESH 64 #define NCOUNT_INTRA_THRESH 8192 #define NCOUNT_INTRA_FACTOR 3 #define INVALID_FP_STATS_TO_PREDICT_FLAT_GOP -1 static AOM_INLINE void output_stats(FIRSTPASS_STATS *stats, struct aom_codec_pkt_list *pktlist) { struct aom_codec_cx_pkt pkt; pkt.kind = AOM_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); if (pktlist != NULL) aom_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n", stats->frame, stats->weight, stats->intra_error, stats->coded_error, stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } void av1_twopass_zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->weight = 0.0; section->intra_error = 0.0; section->frame_avg_wavelet_energy = 0.0; section->coded_error = 0.0; section->log_intra_error = 0.0; section->log_coded_error = 0.0; section->sr_coded_error = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->intra_skip_pct = 0.0; section->inactive_zone_rows = 0.0; section->inactive_zone_cols = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; section->is_flash = 0; section->noise_var = 0; section->cor_coeff = 1.0; } void av1_accumulate_stats(FIRSTPASS_STATS *section, const FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->weight += frame->weight; section->intra_error += frame->intra_error; section->log_intra_error += log1p(frame->intra_error); section->log_coded_error += log1p(frame->coded_error); section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy; section->coded_error += frame->coded_error; section->sr_coded_error += frame->sr_coded_error; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->intra_skip_pct += frame->intra_skip_pct; section->inactive_zone_rows += frame->inactive_zone_rows; section->inactive_zone_cols += frame->inactive_zone_cols; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static int get_unit_rows(const BLOCK_SIZE fp_block_size, const int mb_rows) { const int height_mi_log2 = mi_size_high_log2[fp_block_size]; const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16]; if (height_mi_log2 > mb_height_mi_log2) { return mb_rows >> (height_mi_log2 - mb_height_mi_log2); } return mb_rows << (mb_height_mi_log2 - height_mi_log2); } static int get_unit_cols(const BLOCK_SIZE fp_block_size, const int mb_cols) { const int width_mi_log2 = mi_size_wide_log2[fp_block_size]; const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16]; if (width_mi_log2 > mb_width_mi_log2) { return mb_cols >> (width_mi_log2 - mb_width_mi_log2); } return mb_cols << (mb_width_mi_log2 - width_mi_log2); } // TODO(chengchen): can we simplify it even if resize has to be considered? static int get_num_mbs(const BLOCK_SIZE fp_block_size, const int num_mbs_16X16) { const int width_mi_log2 = mi_size_wide_log2[fp_block_size]; const int height_mi_log2 = mi_size_high_log2[fp_block_size]; const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16]; const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16]; // TODO(chengchen): Now this function assumes a square block is used. // It does not support rectangular block sizes. assert(width_mi_log2 == height_mi_log2); if (width_mi_log2 > mb_width_mi_log2) { return num_mbs_16X16 >> ((width_mi_log2 - mb_width_mi_log2) + (height_mi_log2 - mb_height_mi_log2)); } return num_mbs_16X16 << ((mb_width_mi_log2 - width_mi_log2) + (mb_height_mi_log2 - height_mi_log2)); } void av1_end_first_pass(AV1_COMP *cpi) { if (cpi->ppi->twopass.stats_buf_ctx->total_stats && !cpi->ppi->lap_enabled) output_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats, cpi->ppi->output_pkt_list); } static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { switch (bsize) { case BLOCK_8X8: return aom_mse8x8; case BLOCK_16X8: return aom_mse16x8; case BLOCK_8X16: return aom_mse8x16; default: return aom_mse16x16; } } static unsigned int get_prediction_error(BLOCK_SIZE bsize, const struct buf_2d *src, const struct buf_2d *ref) { unsigned int sse; const aom_variance_fn_t fn = get_block_variance_fn(bsize); fn(src->buf, src->stride, ref->buf, ref->stride, &sse); return sse; } #if CONFIG_AV1_HIGHBITDEPTH static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, int bd) { switch (bd) { default: switch (bsize) { case BLOCK_8X8: return aom_highbd_8_mse8x8; case BLOCK_16X8: return aom_highbd_8_mse16x8; case BLOCK_8X16: return aom_highbd_8_mse8x16; default: return aom_highbd_8_mse16x16; } case 10: switch (bsize) { case BLOCK_8X8: return aom_highbd_10_mse8x8; case BLOCK_16X8: return aom_highbd_10_mse16x8; case BLOCK_8X16: return aom_highbd_10_mse8x16; default: return aom_highbd_10_mse16x16; } case 12: switch (bsize) { case BLOCK_8X8: return aom_highbd_12_mse8x8; case BLOCK_16X8: return aom_highbd_12_mse16x8; case BLOCK_8X16: return aom_highbd_12_mse8x16; default: return aom_highbd_12_mse16x16; } } } static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, const struct buf_2d *src, const struct buf_2d *ref, int bd) { unsigned int sse; const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); fn(src->buf, src->stride, ref->buf, ref->stride, &sse); return sse; } #endif // CONFIG_AV1_HIGHBITDEPTH // Refine the motion search range according to the frame dimension // for first pass test. static int get_search_range(int width, int height) { int sr = 0; const int dim = AOMMIN(width, height); while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; return sr; } static AOM_INLINE const search_site_config * av1_get_first_pass_search_site_config(const AV1_COMP *cpi, MACROBLOCK *x, SEARCH_METHODS search_method) { const int ref_stride = x->e_mbd.plane[0].pre[0].stride; // For AVIF applications, even the source frames can have changing resolution, // so we need to manually check for the strides :( // AV1_COMP::mv_search_params.search_site_config is a compressor level cache // that's shared by multiple threads. In most cases where all frames have the // same resolution, the cache contains the search site config that we need. const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params; if (ref_stride == mv_search_params->search_site_cfg[SS_CFG_FPF]->stride) { return mv_search_params->search_site_cfg[SS_CFG_FPF]; } // If the cache does not contain the correct stride, then we will need to rely // on the thread level config MACROBLOCK::search_site_cfg_buf. If even the // thread level config doesn't match, then we need to update it. search_method = search_method_lookup[search_method]; assert(search_method_lookup[search_method] == search_method && "The search_method_lookup table should be idempotent."); if (ref_stride != x->search_site_cfg_buf[search_method].stride) { av1_refresh_search_site_config(x->search_site_cfg_buf, search_method, ref_stride); } return x->search_site_cfg_buf; } static AOM_INLINE void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x, const MV *ref_mv, FULLPEL_MV *best_mv, int *best_motion_err) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv); int tmp_err; const BLOCK_SIZE bsize = xd->mi[0]->bsize; const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; const int sr = get_search_range(cm->width, cm->height); const int step_param = cpi->sf.fp_sf.reduce_mv_step_param + sr; const search_site_config *first_pass_search_sites = av1_get_first_pass_search_site_config(cpi, x, NSTEP); const int fine_search_interval = cpi->is_screen_content_type && cm->features.allow_intrabc; FULLPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_fullpel_ms_params(&ms_params, cpi, x, bsize, ref_mv, start_mv, first_pass_search_sites, NSTEP, fine_search_interval); FULLPEL_MV this_best_mv; FULLPEL_MV_STATS best_mv_stats; tmp_err = av1_full_pixel_search(start_mv, &ms_params, step_param, NULL, &this_best_mv, &best_mv_stats, NULL); if (tmp_err < INT_MAX) { aom_variance_fn_ptr_t v_fn_ptr = cpi->ppi->fn_ptr[bsize]; const MSBuffers *ms_buffers = &ms_params.ms_buffers; tmp_err = av1_get_mvpred_sse(&ms_params.mv_cost_params, this_best_mv, &v_fn_ptr, ms_buffers->src, ms_buffers->ref) + new_mv_mode_penalty; } if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; *best_mv = this_best_mv; } } static BLOCK_SIZE get_bsize(const CommonModeInfoParams *const mi_params, const BLOCK_SIZE fp_block_size, const int unit_row, const int unit_col) { const int unit_width = mi_size_wide[fp_block_size]; const int unit_height = mi_size_high[fp_block_size]; const int is_half_width = unit_width * unit_col + unit_width / 2 >= mi_params->mi_cols; const int is_half_height = unit_height * unit_row + unit_height / 2 >= mi_params->mi_rows; const int max_dimension = AOMMAX(block_size_wide[fp_block_size], block_size_high[fp_block_size]); int square_block_size = 0; // 4X4, 8X8, 16X16, 32X32, 64X64, 128X128 switch (max_dimension) { case 4: square_block_size = 0; break; case 8: square_block_size = 1; break; case 16: square_block_size = 2; break; case 32: square_block_size = 3; break; case 64: square_block_size = 4; break; case 128: square_block_size = 5; break; default: assert(0 && "First pass block size is not supported!"); break; } if (is_half_width && is_half_height) { return subsize_lookup[PARTITION_SPLIT][square_block_size]; } else if (is_half_width) { return subsize_lookup[PARTITION_VERT][square_block_size]; } else if (is_half_height) { return subsize_lookup[PARTITION_HORZ][square_block_size]; } else { return fp_block_size; } } static int find_fp_qindex(aom_bit_depth_t bit_depth) { return av1_find_qindex(FIRST_PASS_Q, bit_depth, 0, QINDEX_RANGE - 1); } static double raw_motion_error_stdev(int *raw_motion_err_list, int raw_motion_err_counts) { int64_t sum_raw_err = 0; double raw_err_avg = 0; double raw_err_stdev = 0; if (raw_motion_err_counts == 0) return 0; int i; for (i = 0; i < raw_motion_err_counts; i++) { sum_raw_err += raw_motion_err_list[i]; } raw_err_avg = (double)sum_raw_err / raw_motion_err_counts; for (i = 0; i < raw_motion_err_counts; i++) { raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) * (raw_motion_err_list[i] - raw_err_avg); } // Calculate the standard deviation for the motion error of all the inter // blocks of the 0,0 motion using the last source // frame as the reference. raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts); return raw_err_stdev; } static AOM_INLINE int calc_wavelet_energy(const AV1EncoderConfig *oxcf) { return oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL; } typedef struct intra_pred_block_pass1_args { const SequenceHeader *seq_params; MACROBLOCK *x; } intra_pred_block_pass1_args; static INLINE void copy_rect(uint8_t *dst, int dstride, const uint8_t *src, int sstride, int width, int height, int use_hbd) { #if CONFIG_AV1_HIGHBITDEPTH if (use_hbd) { aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), sstride, CONVERT_TO_SHORTPTR(dst), dstride, width, height); } else { aom_convolve_copy(src, sstride, dst, dstride, width, height); } #else (void)use_hbd; aom_convolve_copy(src, sstride, dst, dstride, width, height); #endif } static void first_pass_intra_pred_and_calc_diff(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { (void)block; struct intra_pred_block_pass1_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; MACROBLOCK_PLANE *const p = &x->plane[plane]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; const MB_MODE_INFO *const mbmi = xd->mi[0]; const SequenceHeader *seq_params = args->seq_params; const int src_stride = p->src.stride; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2]; av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width, pd->height, tx_size, mbmi->mode, 0, 0, FILTER_INTRA_MODES, src, src_stride, dst, dst_stride, blk_col, blk_row, plane); av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); } static void first_pass_predict_intra_block_for_luma_plane( const SequenceHeader *seq_params, MACROBLOCK *x, BLOCK_SIZE bsize) { assert(bsize < BLOCK_SIZES_ALL); const MACROBLOCKD *const xd = &x->e_mbd; const int plane = AOM_PLANE_Y; const MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); const int dst_stride = pd->dst.stride; uint8_t *dst = pd->dst.buf; const MACROBLOCK_PLANE *const p = &x->plane[plane]; const int src_stride = p->src.stride; const uint8_t *src = p->src.buf; intra_pred_block_pass1_args args = { seq_params, x }; av1_foreach_transformed_block_in_plane( xd, plane_bsize, plane, first_pass_intra_pred_and_calc_diff, &args); // copy source data to recon buffer, as the recon buffer will be used as a // reference frame subsequently. copy_rect(dst, dst_stride, src, src_stride, block_size_wide[bsize], block_size_high[bsize], seq_params->use_highbitdepth); } #define UL_INTRA_THRESH 50 #define INVALID_ROW -1 // Computes and returns the intra pred error of a block. // intra pred error: sum of squared error of the intra predicted residual. // Inputs: // cpi: the encoder setting. Only a few params in it will be used. // this_frame: the current frame buffer. // tile: tile information (not used in first pass, already init to zero) // unit_row: row index in the unit of first pass block size. // unit_col: column index in the unit of first pass block size. // y_offset: the offset of y frame buffer, indicating the starting point of // the current block. // uv_offset: the offset of u and v frame buffer, indicating the starting // point of the current block. // fp_block_size: first pass block size. // qindex: quantization step size to encode the frame. // stats: frame encoding stats. // Modifies: // stats->intra_skip_count // stats->image_data_start_row // stats->intra_factor // stats->brightness_factor // stats->intra_error // stats->frame_avg_wavelet_energy // Returns: // this_intra_error. static int firstpass_intra_prediction( AV1_COMP *cpi, ThreadData *td, YV12_BUFFER_CONFIG *const this_frame, const TileInfo *const tile, const int unit_row, const int unit_col, const int y_offset, const int uv_offset, const BLOCK_SIZE fp_block_size, const int qindex, FRAME_STATS *const stats) { const AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const SequenceHeader *const seq_params = cm->seq_params; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int unit_scale = mi_size_wide[fp_block_size]; const int num_planes = av1_num_planes(cm); const BLOCK_SIZE bsize = get_bsize(mi_params, fp_block_size, unit_row, unit_col); set_mi_offsets(mi_params, xd, unit_row * unit_scale, unit_col * unit_scale); xd->plane[0].dst.buf = this_frame->y_buffer + y_offset; if (num_planes > 1) { xd->plane[1].dst.buf = this_frame->u_buffer + uv_offset; xd->plane[2].dst.buf = this_frame->v_buffer + uv_offset; } xd->left_available = (unit_col != 0); xd->mi[0]->bsize = bsize; xd->mi[0]->ref_frame[0] = INTRA_FRAME; set_mi_row_col(xd, tile, unit_row * unit_scale, mi_size_high[bsize], unit_col * unit_scale, mi_size_wide[bsize], mi_params->mi_rows, mi_params->mi_cols); set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes); xd->mi[0]->segment_id = 0; xd->lossless[xd->mi[0]->segment_id] = (qindex == 0); xd->mi[0]->mode = DC_PRED; xd->mi[0]->tx_size = TX_4X4; if (cpi->sf.fp_sf.disable_recon) first_pass_predict_intra_block_for_luma_plane(seq_params, x, bsize); else av1_encode_intra_block_plane(cpi, x, bsize, 0, DRY_RUN_NORMAL, 0); int this_intra_error = aom_get_mb_ss(x->plane[0].src_diff); if (seq_params->use_highbitdepth) { switch (seq_params->bit_depth) { case AOM_BITS_8: break; case AOM_BITS_10: this_intra_error >>= 4; break; case AOM_BITS_12: this_intra_error >>= 8; break; default: assert(0 && "seq_params->bit_depth should be AOM_BITS_8, " "AOM_BITS_10 or AOM_BITS_12"); return -1; } } if (this_intra_error < UL_INTRA_THRESH) { ++stats->intra_skip_count; } else if ((unit_col > 0) && (stats->image_data_start_row == INVALID_ROW)) { stats->image_data_start_row = unit_row; } double log_intra = log1p(this_intra_error); if (log_intra < 10.0) { stats->intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); } else { stats->intra_factor += 1.0; } int level_sample; if (seq_params->use_highbitdepth) { level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; } else { level_sample = x->plane[0].src.buf[0]; } if (seq_params->use_highbitdepth) { switch (seq_params->bit_depth) { case AOM_BITS_8: break; case AOM_BITS_10: level_sample >>= 2; break; case AOM_BITS_12: level_sample >>= 4; break; default: assert(0 && "seq_params->bit_depth should be AOM_BITS_8, " "AOM_BITS_10 or AOM_BITS_12"); return -1; } } if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) { stats->brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); } else { stats->brightness_factor += 1.0; } // Intrapenalty below deals with situations where the intra and inter // error scores are very low (e.g. a plain black frame). // We do not have special cases in first pass for 0,0 and nearest etc so // all inter modes carry an overhead cost estimate for the mv. // When the error score is very low this causes us to pick all or lots of // INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_intra_error += INTRA_MODE_PENALTY; // Accumulate the intra error. stats->intra_error += (int64_t)this_intra_error; // Stats based on wavelet energy is used in the following cases : // 1. ML model which predicts if a flat structure (golden-frame only structure // without ALT-REF and Internal-ARFs) is better. This ML model is enabled in // constant quality mode under certain conditions. // 2. Delta qindex mode is set as DELTA_Q_PERCEPTUAL. // Thus, wavelet energy calculation is enabled for the above cases. if (calc_wavelet_energy(&cpi->oxcf)) { const int hbd = is_cur_buf_hbd(xd); const int stride = x->plane[0].src.stride; const int num_8x8_rows = block_size_high[fp_block_size] / 8; const int num_8x8_cols = block_size_wide[fp_block_size] / 8; const uint8_t *buf = x->plane[0].src.buf; stats->frame_avg_wavelet_energy += av1_haar_ac_sad_mxn_uint8_input( buf, stride, hbd, num_8x8_rows, num_8x8_cols); } else { stats->frame_avg_wavelet_energy = INVALID_FP_STATS_TO_PREDICT_FLAT_GOP; } return this_intra_error; } // Returns the sum of square error between source and reference blocks. static int get_prediction_error_bitdepth(const int is_high_bitdepth, const int bitdepth, const BLOCK_SIZE block_size, const struct buf_2d *src, const struct buf_2d *ref) { (void)is_high_bitdepth; (void)bitdepth; #if CONFIG_AV1_HIGHBITDEPTH if (is_high_bitdepth) { return highbd_get_prediction_error(block_size, src, ref, bitdepth); } #endif // CONFIG_AV1_HIGHBITDEPTH return get_prediction_error(block_size, src, ref); } // Accumulates motion vector stats. // Modifies member variables of "stats". static void accumulate_mv_stats(const MV best_mv, const FULLPEL_MV mv, const int mb_row, const int mb_col, const int mb_rows, const int mb_cols, MV *last_non_zero_mv, FRAME_STATS *stats) { if (is_zero_mv(&best_mv)) return; ++stats->mv_count; // Non-zero vector, was it different from the last non zero vector? if (!is_equal_mv(&best_mv, last_non_zero_mv)) ++stats->new_mv_count; *last_non_zero_mv = best_mv; // Does the row vector point inwards or outwards? if (mb_row < mb_rows / 2) { if (mv.row > 0) { --stats->sum_in_vectors; } else if (mv.row < 0) { ++stats->sum_in_vectors; } } else if (mb_row > mb_rows / 2) { if (mv.row > 0) { ++stats->sum_in_vectors; } else if (mv.row < 0) { --stats->sum_in_vectors; } } // Does the col vector point inwards or outwards? if (mb_col < mb_cols / 2) { if (mv.col > 0) { --stats->sum_in_vectors; } else if (mv.col < 0) { ++stats->sum_in_vectors; } } else if (mb_col > mb_cols / 2) { if (mv.col > 0) { ++stats->sum_in_vectors; } else if (mv.col < 0) { --stats->sum_in_vectors; } } } // Computes and returns the inter prediction error from the last frame. // Computes inter prediction errors from the golden and alt ref frams and // Updates stats accordingly. // Inputs: // cpi: the encoder setting. Only a few params in it will be used. // last_frame: the frame buffer of the last frame. // golden_frame: the frame buffer of the golden frame. // unit_row: row index in the unit of first pass block size. // unit_col: column index in the unit of first pass block size. // recon_yoffset: the y offset of the reconstructed frame buffer, // indicating the starting point of the current block. // recont_uvoffset: the u/v offset of the reconstructed frame buffer, // indicating the starting point of the current block. // src_yoffset: the y offset of the source frame buffer. // fp_block_size: first pass block size. // this_intra_error: the intra prediction error of this block. // raw_motion_err_counts: the count of raw motion vectors. // raw_motion_err_list: the array that records the raw motion error. // ref_mv: the reference used to start the motion search // best_mv: the best mv found // last_non_zero_mv: the last non zero mv found in this tile row. // stats: frame encoding stats. // Modifies: // raw_motion_err_list // best_ref_mv // last_mv // stats: many member params in it. // Returns: // this_inter_error static int firstpass_inter_prediction( AV1_COMP *cpi, ThreadData *td, const YV12_BUFFER_CONFIG *const last_frame, const YV12_BUFFER_CONFIG *const golden_frame, const int unit_row, const int unit_col, const int recon_yoffset, const int recon_uvoffset, const int src_yoffset, const BLOCK_SIZE fp_block_size, const int this_intra_error, const int raw_motion_err_counts, int *raw_motion_err_list, const MV ref_mv, MV *best_mv, MV *last_non_zero_mv, FRAME_STATS *stats) { int this_inter_error = this_intra_error; AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; CurrentFrame *const current_frame = &cm->current_frame; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int is_high_bitdepth = is_cur_buf_hbd(xd); const int bitdepth = xd->bd; const int unit_scale = mi_size_wide[fp_block_size]; const BLOCK_SIZE bsize = get_bsize(mi_params, fp_block_size, unit_row, unit_col); const int fp_block_size_height = block_size_wide[fp_block_size]; const int unit_width = mi_size_wide[fp_block_size]; const int unit_rows = get_unit_rows(fp_block_size, mi_params->mb_rows); const int unit_cols = get_unit_cols(fp_block_size, mi_params->mb_cols); // Assume 0,0 motion with no mv overhead. FULLPEL_MV mv = kZeroFullMv; xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset; // Set up limit values for motion vectors to prevent them extending // outside the UMV borders. av1_set_mv_col_limits(mi_params, &x->mv_limits, unit_col * unit_width, fp_block_size_height >> MI_SIZE_LOG2, cpi->oxcf.border_in_pixels); int motion_error = get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize, &x->plane[0].src, &xd->plane[0].pre[0]); // Compute the motion error of the 0,0 motion using the last source // frame as the reference. Skip the further motion search on // reconstructed frame if this error is small. // TODO(chiyotsai): The unscaled last source might be different dimension // as the current source. See BUG=aomedia:3413 struct buf_2d unscaled_last_source_buf_2d; unscaled_last_source_buf_2d.buf = cpi->unscaled_last_source->y_buffer + src_yoffset; unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride; const int raw_motion_error = get_prediction_error_bitdepth( is_high_bitdepth, bitdepth, bsize, &x->plane[0].src, &unscaled_last_source_buf_2d); raw_motion_err_list[raw_motion_err_counts] = raw_motion_error; const FIRST_PASS_SPEED_FEATURES *const fp_sf = &cpi->sf.fp_sf; if (raw_motion_error > fp_sf->skip_motion_search_threshold) { // Test last reference frame using the previous best mv as the // starting point (best reference) for the search. first_pass_motion_search(cpi, x, &ref_mv, &mv, &motion_error); // If the current best reference mv is not centered on 0,0 then do a // 0,0 based search as well. if ((fp_sf->skip_zeromv_motion_search == 0) && !is_zero_mv(&ref_mv)) { FULLPEL_MV tmp_mv = kZeroFullMv; int tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err); if (tmp_err < motion_error) { motion_error = tmp_err; mv = tmp_mv; } } } // Motion search in 2nd reference frame. int gf_motion_error = motion_error; if ((current_frame->frame_number > 1) && golden_frame != NULL) { FULLPEL_MV tmp_mv = kZeroFullMv; // Assume 0,0 motion with no mv overhead. av1_setup_pre_planes(xd, 0, golden_frame, 0, 0, NULL, 1); xd->plane[0].pre[0].buf += recon_yoffset; gf_motion_error = get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize, &x->plane[0].src, &xd->plane[0].pre[0]); first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &gf_motion_error); } if (gf_motion_error < motion_error && gf_motion_error < this_intra_error) { ++stats->second_ref_count; } // In accumulating a score for the 2nd reference frame take the // best of the motion predicted score and the intra coded error // (just as will be done for) accumulation of "coded_error" for // the last frame. if ((current_frame->frame_number > 1) && golden_frame != NULL) { stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error); } else { // TODO(chengchen): I believe logically this should also be changed to // stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error). stats->sr_coded_error += motion_error; } // Reset to last frame as reference buffer. xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset; if (av1_num_planes(&cpi->common) > 1) { xd->plane[1].pre[0].buf = last_frame->u_buffer + recon_uvoffset; xd->plane[2].pre[0].buf = last_frame->v_buffer + recon_uvoffset; } // Start by assuming that intra mode is best. *best_mv = kZeroMv; if (motion_error <= this_intra_error) { // Keep a count of cases where the inter and intra were very close // and very low. This helps with scene cut detection for example in // cropped clips with black bars at the sides or top and bottom. if (((this_intra_error - INTRA_MODE_PENALTY) * 9 <= motion_error * 10) && (this_intra_error < (2 * INTRA_MODE_PENALTY))) { stats->neutral_count += 1.0; // Also track cases where the intra is not much worse than the inter // and use this in limiting the GF/arf group length. } else if ((this_intra_error > NCOUNT_INTRA_THRESH) && (this_intra_error < (NCOUNT_INTRA_FACTOR * motion_error))) { stats->neutral_count += (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_intra_error); } *best_mv = get_mv_from_fullmv(&mv); this_inter_error = motion_error; xd->mi[0]->mode = NEWMV; xd->mi[0]->mv[0].as_mv = *best_mv; xd->mi[0]->tx_size = TX_4X4; xd->mi[0]->ref_frame[0] = LAST_FRAME; xd->mi[0]->ref_frame[1] = NONE_FRAME; if (fp_sf->disable_recon == 0) { av1_enc_build_inter_predictor(cm, xd, unit_row * unit_scale, unit_col * unit_scale, NULL, bsize, AOM_PLANE_Y, AOM_PLANE_Y); av1_encode_sby_pass1(cpi, x, bsize); } stats->sum_mvr += best_mv->row; stats->sum_mvr_abs += abs(best_mv->row); stats->sum_mvc += best_mv->col; stats->sum_mvc_abs += abs(best_mv->col); stats->sum_mvrs += best_mv->row * best_mv->row; stats->sum_mvcs += best_mv->col * best_mv->col; ++stats->inter_count; accumulate_mv_stats(*best_mv, mv, unit_row, unit_col, unit_rows, unit_cols, last_non_zero_mv, stats); } return this_inter_error; } // Normalize the first pass stats. // Error / counters are normalized to each MB. // MVs are normalized to the width/height of the frame. static void normalize_firstpass_stats(FIRSTPASS_STATS *fps, double num_mbs_16x16, double f_w, double f_h) { fps->coded_error /= num_mbs_16x16; fps->sr_coded_error /= num_mbs_16x16; fps->intra_error /= num_mbs_16x16; fps->frame_avg_wavelet_energy /= num_mbs_16x16; fps->log_coded_error = log1p(fps->coded_error); fps->log_intra_error = log1p(fps->intra_error); fps->MVr /= f_h; fps->mvr_abs /= f_h; fps->MVc /= f_w; fps->mvc_abs /= f_w; fps->MVrv /= (f_h * f_h); fps->MVcv /= (f_w * f_w); fps->new_mv_count /= num_mbs_16x16; } // Updates the first pass stats of this frame. // Input: // cpi: the encoder setting. Only a few params in it will be used. // stats: stats accumulated for this frame. // raw_err_stdev: the statndard deviation for the motion error of all the // inter blocks of the (0,0) motion using the last source // frame as the reference. // frame_number: current frame number. // ts_duration: Duration of the frame / collection of frames. // Updates: // twopass->total_stats: the accumulated stats. // twopass->stats_buf_ctx->stats_in_end: the pointer to the current stats, // update its value and its position // in the buffer. static void update_firstpass_stats(AV1_COMP *cpi, const FRAME_STATS *const stats, const double raw_err_stdev, const int frame_number, const int64_t ts_duration, const BLOCK_SIZE fp_block_size) { TWO_PASS *twopass = &cpi->ppi->twopass; AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end; FIRSTPASS_STATS fps; // The minimum error here insures some bit allocation to frames even // in static regions. The allocation per MB declines for larger formats // where the typical "real" energy per MB also falls. // Initial estimate here uses sqrt(mbs) to define the min_err, where the // number of mbs is proportional to the image area. const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) ? cpi->initial_mbs : mi_params->MBs; // Number of actual units used in the first pass, it can be other square // block sizes than 16X16. const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16); const double min_err = 200 * sqrt(num_mbs); fps.weight = stats->intra_factor * stats->brightness_factor; fps.frame = frame_number; fps.coded_error = (double)(stats->coded_error >> 8) + min_err; fps.sr_coded_error = (double)(stats->sr_coded_error >> 8) + min_err; fps.intra_error = (double)(stats->intra_error >> 8) + min_err; fps.frame_avg_wavelet_energy = (double)stats->frame_avg_wavelet_energy; fps.count = 1.0; fps.pcnt_inter = (double)stats->inter_count / num_mbs; fps.pcnt_second_ref = (double)stats->second_ref_count / num_mbs; fps.pcnt_neutral = (double)stats->neutral_count / num_mbs; fps.intra_skip_pct = (double)stats->intra_skip_count / num_mbs; fps.inactive_zone_rows = (double)stats->image_data_start_row; fps.inactive_zone_cols = 0.0; // Placeholder: not currently supported. fps.raw_error_stdev = raw_err_stdev; fps.is_flash = 0; fps.noise_var = 0.0; fps.cor_coeff = 1.0; fps.log_coded_error = 0.0; fps.log_intra_error = 0.0; if (stats->mv_count > 0) { fps.MVr = (double)stats->sum_mvr / stats->mv_count; fps.mvr_abs = (double)stats->sum_mvr_abs / stats->mv_count; fps.MVc = (double)stats->sum_mvc / stats->mv_count; fps.mvc_abs = (double)stats->sum_mvc_abs / stats->mv_count; fps.MVrv = ((double)stats->sum_mvrs - ((double)stats->sum_mvr * stats->sum_mvr / stats->mv_count)) / stats->mv_count; fps.MVcv = ((double)stats->sum_mvcs - ((double)stats->sum_mvc * stats->sum_mvc / stats->mv_count)) / stats->mv_count; fps.mv_in_out_count = (double)stats->sum_in_vectors / (stats->mv_count * 2); fps.new_mv_count = stats->new_mv_count; fps.pcnt_motion = (double)stats->mv_count / num_mbs; } else { fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.new_mv_count = 0.0; fps.pcnt_motion = 0.0; } // TODO(paulwilkins): Handle the case when duration is set to 0, or // something less than the full time between subsequent values of // cpi->source_time_stamp. fps.duration = (double)ts_duration; normalize_firstpass_stats(&fps, num_mbs_16X16, cm->width, cm->height); // We will store the stats inside the persistent twopass struct (and NOT the // local variable 'fps'), and then cpi->output_pkt_list will point to it. *this_frame_stats = fps; if (!cpi->ppi->lap_enabled) { output_stats(this_frame_stats, cpi->ppi->output_pkt_list); } else { av1_firstpass_info_push(&twopass->firstpass_info, this_frame_stats); } if (cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL) { av1_accumulate_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats, &fps); } twopass->stats_buf_ctx->stats_in_end++; // When ducky encode is on, we always use linear buffer for stats_buf_ctx. if (cpi->use_ducky_encode == 0) { // TODO(angiebird): Figure out why first pass uses circular buffer. /* In the case of two pass, first pass uses it as a circular buffer, * when LAP is enabled it is used as a linear buffer*/ if ((cpi->oxcf.pass == AOM_RC_FIRST_PASS) && (twopass->stats_buf_ctx->stats_in_end >= twopass->stats_buf_ctx->stats_in_buf_end)) { twopass->stats_buf_ctx->stats_in_end = twopass->stats_buf_ctx->stats_in_start; } } } static void print_reconstruction_frame( const YV12_BUFFER_CONFIG *const last_frame, int frame_number, int do_print) { if (!do_print) return; char filename[512]; FILE *recon_file; snprintf(filename, sizeof(filename), "enc%04d.yuv", frame_number); if (frame_number == 0) { recon_file = fopen(filename, "wb"); } else { recon_file = fopen(filename, "ab"); } fwrite(last_frame->buffer_alloc, last_frame->frame_size, 1, recon_file); fclose(recon_file); } static FRAME_STATS accumulate_frame_stats(FRAME_STATS *mb_stats, int mb_rows, int mb_cols) { FRAME_STATS stats = { 0 }; int i, j; stats.image_data_start_row = INVALID_ROW; for (j = 0; j < mb_rows; j++) { for (i = 0; i < mb_cols; i++) { FRAME_STATS mb_stat = mb_stats[j * mb_cols + i]; stats.brightness_factor += mb_stat.brightness_factor; stats.coded_error += mb_stat.coded_error; stats.frame_avg_wavelet_energy += mb_stat.frame_avg_wavelet_energy; if (stats.image_data_start_row == INVALID_ROW && mb_stat.image_data_start_row != INVALID_ROW) { stats.image_data_start_row = mb_stat.image_data_start_row; } stats.inter_count += mb_stat.inter_count; stats.intra_error += mb_stat.intra_error; stats.intra_factor += mb_stat.intra_factor; stats.intra_skip_count += mb_stat.intra_skip_count; stats.mv_count += mb_stat.mv_count; stats.neutral_count += mb_stat.neutral_count; stats.new_mv_count += mb_stat.new_mv_count; stats.second_ref_count += mb_stat.second_ref_count; stats.sr_coded_error += mb_stat.sr_coded_error; stats.sum_in_vectors += mb_stat.sum_in_vectors; stats.sum_mvc += mb_stat.sum_mvc; stats.sum_mvc_abs += mb_stat.sum_mvc_abs; stats.sum_mvcs += mb_stat.sum_mvcs; stats.sum_mvr += mb_stat.sum_mvr; stats.sum_mvr_abs += mb_stat.sum_mvr_abs; stats.sum_mvrs += mb_stat.sum_mvrs; } } return stats; } static void setup_firstpass_data(AV1_COMMON *const cm, FirstPassData *firstpass_data, const int unit_rows, const int unit_cols) { CHECK_MEM_ERROR(cm, firstpass_data->raw_motion_err_list, aom_calloc(unit_rows * unit_cols, sizeof(*firstpass_data->raw_motion_err_list))); CHECK_MEM_ERROR( cm, firstpass_data->mb_stats, aom_calloc(unit_rows * unit_cols, sizeof(*firstpass_data->mb_stats))); for (int j = 0; j < unit_rows; j++) { for (int i = 0; i < unit_cols; i++) { firstpass_data->mb_stats[j * unit_cols + i].image_data_start_row = INVALID_ROW; } } } void av1_free_firstpass_data(FirstPassData *firstpass_data) { aom_free(firstpass_data->raw_motion_err_list); firstpass_data->raw_motion_err_list = NULL; aom_free(firstpass_data->mb_stats); firstpass_data->mb_stats = NULL; } int av1_get_unit_rows_in_tile(const TileInfo *tile, const BLOCK_SIZE fp_block_size) { const int unit_height_log2 = mi_size_high_log2[fp_block_size]; const int mi_rows = tile->mi_row_end - tile->mi_row_start; const int unit_rows = CEIL_POWER_OF_TWO(mi_rows, unit_height_log2); return unit_rows; } int av1_get_unit_cols_in_tile(const TileInfo *tile, const BLOCK_SIZE fp_block_size) { const int unit_width_log2 = mi_size_wide_log2[fp_block_size]; const int mi_cols = tile->mi_col_end - tile->mi_col_start; const int unit_cols = CEIL_POWER_OF_TWO(mi_cols, unit_width_log2); return unit_cols; } #define FIRST_PASS_ALT_REF_DISTANCE 16 static void first_pass_tile(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, const BLOCK_SIZE fp_block_size) { TileInfo *tile = &tile_data->tile_info; const int unit_height = mi_size_high[fp_block_size]; const int unit_height_log2 = mi_size_high_log2[fp_block_size]; for (int mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += unit_height) { av1_first_pass_row(cpi, td, tile_data, mi_row >> unit_height_log2, fp_block_size); } } static void first_pass_tiles(AV1_COMP *cpi, const BLOCK_SIZE fp_block_size) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; av1_alloc_src_diff_buf(cm, &cpi->td.mb); for (int tile_row = 0; tile_row < tile_rows; ++tile_row) { for (int tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; first_pass_tile(cpi, &cpi->td, tile_data, fp_block_size); } } } void av1_first_pass_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, const int unit_row, const BLOCK_SIZE fp_block_size) { MACROBLOCK *const x = &td->mb; AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const SequenceHeader *const seq_params = cm->seq_params; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; TileInfo *tile = &tile_data->tile_info; const int qindex = find_fp_qindex(seq_params->bit_depth); const int fp_block_size_width = block_size_high[fp_block_size]; const int fp_block_size_height = block_size_wide[fp_block_size]; const int unit_width = mi_size_wide[fp_block_size]; const int unit_width_log2 = mi_size_wide_log2[fp_block_size]; const int unit_height_log2 = mi_size_high_log2[fp_block_size]; const int unit_cols = mi_params->mb_cols * 4 / unit_width; int raw_motion_err_counts = 0; int unit_row_in_tile = unit_row - (tile->mi_row_start >> unit_height_log2); int unit_col_start = tile->mi_col_start >> unit_width_log2; int unit_cols_in_tile = av1_get_unit_cols_in_tile(tile, fp_block_size); MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; const YV12_BUFFER_CONFIG *last_frame = av1_get_scaled_ref_frame(cpi, LAST_FRAME); if (!last_frame) { last_frame = get_ref_frame_yv12_buf(cm, LAST_FRAME); } const YV12_BUFFER_CONFIG *golden_frame = av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME); if (!golden_frame) { golden_frame = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); } YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf; PICK_MODE_CONTEXT *ctx = td->firstpass_ctx; FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats + unit_row * unit_cols + unit_col_start; int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list + unit_row * unit_cols + unit_col_start; MV *first_top_mv = &tile_data->firstpass_top_mv; for (int i = 0; i < num_planes; ++i) { x->plane[i].coeff = ctx->coeff[i]; x->plane[i].qcoeff = ctx->qcoeff[i]; x->plane[i].eobs = ctx->eobs[i]; x->plane[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; x->plane[i].dqcoeff = ctx->dqcoeff[i]; } const int src_y_stride = cpi->source->y_stride; const int recon_y_stride = this_frame->y_stride; const int recon_uv_stride = this_frame->uv_stride; const int uv_mb_height = fp_block_size_height >> (this_frame->y_height > this_frame->uv_height); MV best_ref_mv = kZeroMv; MV last_mv; // Reset above block coeffs. xd->up_available = (unit_row_in_tile != 0); int recon_yoffset = (unit_row * recon_y_stride * fp_block_size_height) + (unit_col_start * fp_block_size_width); int src_yoffset = (unit_row * src_y_stride * fp_block_size_height) + (unit_col_start * fp_block_size_width); int recon_uvoffset = (unit_row * recon_uv_stride * uv_mb_height) + (unit_col_start * uv_mb_height); // Set up limit values for motion vectors to prevent them extending // outside the UMV borders. av1_set_mv_row_limits( mi_params, &x->mv_limits, (unit_row << unit_height_log2), (fp_block_size_height >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels); av1_setup_src_planes(x, cpi->source, unit_row << unit_height_log2, tile->mi_col_start, num_planes, fp_block_size); // Fix - zero the 16x16 block first. This ensures correct this_intra_error for // block sizes smaller than 16x16. av1_zero_array(x->plane[0].src_diff, 256); for (int unit_col_in_tile = 0; unit_col_in_tile < unit_cols_in_tile; unit_col_in_tile++) { const int unit_col = unit_col_start + unit_col_in_tile; enc_row_mt->sync_read_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile); #if CONFIG_MULTITHREAD if (cpi->ppi->p_mt_info.num_workers > 1) { pthread_mutex_lock(enc_row_mt->mutex_); bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit; pthread_mutex_unlock(enc_row_mt->mutex_); // Exit in case any worker has encountered an error. if (firstpass_mt_exit) return; } #endif if (unit_col_in_tile == 0) { last_mv = *first_top_mv; } int this_intra_error = firstpass_intra_prediction( cpi, td, this_frame, tile, unit_row, unit_col, recon_yoffset, recon_uvoffset, fp_block_size, qindex, mb_stats); if (!frame_is_intra_only(cm)) { const int this_inter_error = firstpass_inter_prediction( cpi, td, last_frame, golden_frame, unit_row, unit_col, recon_yoffset, recon_uvoffset, src_yoffset, fp_block_size, this_intra_error, raw_motion_err_counts, raw_motion_err_list, best_ref_mv, &best_ref_mv, &last_mv, mb_stats); if (unit_col_in_tile == 0) { *first_top_mv = last_mv; } mb_stats->coded_error += this_inter_error; ++raw_motion_err_counts; } else { mb_stats->sr_coded_error += this_intra_error; mb_stats->coded_error += this_intra_error; } // Adjust to the next column of MBs. x->plane[0].src.buf += fp_block_size_width; if (num_planes > 1) { x->plane[1].src.buf += uv_mb_height; x->plane[2].src.buf += uv_mb_height; } recon_yoffset += fp_block_size_width; src_yoffset += fp_block_size_width; recon_uvoffset += uv_mb_height; mb_stats++; enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile, unit_cols_in_tile); } } void av1_noop_first_pass_frame(AV1_COMP *cpi, const int64_t ts_duration) { AV1_COMMON *const cm = &cpi->common; CurrentFrame *const current_frame = &cm->current_frame; const CommonModeInfoParams *const mi_params = &cm->mi_params; int max_mb_rows = mi_params->mb_rows; int max_mb_cols = mi_params->mb_cols; if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) { int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width); max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2); } if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) { int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height); max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2); } const int unit_rows = get_unit_rows(BLOCK_16X16, max_mb_rows); const int unit_cols = get_unit_cols(BLOCK_16X16, max_mb_cols); setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols); FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats; FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols); av1_free_firstpass_data(&cpi->firstpass_data); update_firstpass_stats(cpi, &stats, 1.0, current_frame->frame_number, ts_duration, BLOCK_16X16); } void av1_first_pass(AV1_COMP *cpi, const int64_t ts_duration) { MACROBLOCK *const x = &cpi->td.mb; AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; CurrentFrame *const current_frame = &cm->current_frame; const SequenceHeader *const seq_params = cm->seq_params; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; const int qindex = find_fp_qindex(seq_params->bit_depth); const int ref_frame_flags_backup = cpi->ref_frame_flags; cpi->ref_frame_flags = av1_ref_frame_flag_list[LAST_FRAME] | av1_ref_frame_flag_list[GOLDEN_FRAME]; // Detect if the key frame is screen content type. if (frame_is_intra_only(cm)) { FeatureFlags *const features = &cm->features; assert(cpi->source != NULL); xd->cur_buf = cpi->source; av1_set_screen_content_options(cpi, features); } // Prepare the speed features av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed); // Unit size for the first pass encoding. const BLOCK_SIZE fp_block_size = get_fp_block_size(cpi->is_screen_content_type); int max_mb_rows = mi_params->mb_rows; int max_mb_cols = mi_params->mb_cols; if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) { int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width); max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2); } if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) { int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height); max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2); } // Number of rows in the unit size. // Note max_mb_rows and max_mb_cols are in the unit of 16x16. const int unit_rows = get_unit_rows(fp_block_size, max_mb_rows); const int unit_cols = get_unit_cols(fp_block_size, max_mb_cols); // Set fp_block_size, for the convenience of multi-thread usage. cpi->fp_block_size = fp_block_size; setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols); int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list; FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats; // multi threading info MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; if (cpi->allocated_tiles < tile_cols * tile_rows) { av1_alloc_tile_data(cpi); } av1_init_tile_data(cpi); const YV12_BUFFER_CONFIG *last_frame = NULL; const YV12_BUFFER_CONFIG *golden_frame = NULL; if (!frame_is_intra_only(cm)) { av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0); last_frame = av1_is_scaled(get_ref_scale_factors_const(cm, LAST_FRAME)) ? av1_get_scaled_ref_frame(cpi, LAST_FRAME) : get_ref_frame_yv12_buf(cm, LAST_FRAME); golden_frame = av1_is_scaled(get_ref_scale_factors_const(cm, GOLDEN_FRAME)) ? av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME) : get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); } YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf; // First pass code requires valid last and new frame buffers. assert(this_frame != NULL); assert(frame_is_intra_only(cm) || (last_frame != NULL)); av1_setup_frame_size(cpi); av1_set_mv_search_params(cpi); set_mi_offsets(mi_params, xd, 0, 0); xd->mi[0]->bsize = fp_block_size; // Do not use periodic key frames. cpi->rc.frames_to_key = INT_MAX; av1_set_quantizer( cm, cpi->oxcf.q_cfg.qm_minlevel, cpi->oxcf.q_cfg.qm_maxlevel, qindex, cpi->oxcf.q_cfg.enable_chroma_deltaq, cpi->oxcf.q_cfg.enable_hdr_deltaq); av1_setup_block_planes(xd, seq_params->subsampling_x, seq_params->subsampling_y, num_planes); av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, fp_block_size); av1_setup_dst_planes(xd->plane, seq_params->sb_size, this_frame, 0, 0, 0, num_planes); if (!frame_is_intra_only(cm)) { av1_setup_pre_planes(xd, 0, last_frame, 0, 0, NULL, num_planes); } set_mi_offsets(mi_params, xd, 0, 0); // Don't store luma on the fist pass since chroma is not computed xd->cfl.store_y = 0; av1_frame_init_quantizer(cpi); av1_default_coef_probs(cm); av1_init_mode_probs(cm->fc); av1_init_mv_probs(cm); av1_initialize_rd_consts(cpi); enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; if (mt_info->num_workers > 1) { enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; av1_fp_encode_tiles_row_mt(cpi); } else { first_pass_tiles(cpi, fp_block_size); } FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols); int total_raw_motion_err_count = frame_is_intra_only(cm) ? 0 : unit_rows * unit_cols; const double raw_err_stdev = raw_motion_error_stdev(raw_motion_err_list, total_raw_motion_err_count); av1_free_firstpass_data(&cpi->firstpass_data); av1_dealloc_src_diff_buf(&cpi->td.mb, av1_num_planes(cm)); // Clamp the image start to rows/2. This number of rows is discarded top // and bottom as dead data so rows / 2 means the frame is blank. if ((stats.image_data_start_row > unit_rows / 2) || (stats.image_data_start_row == INVALID_ROW)) { stats.image_data_start_row = unit_rows / 2; } // Exclude any image dead zone if (stats.image_data_start_row > 0) { stats.intra_skip_count = AOMMAX(0, stats.intra_skip_count - (stats.image_data_start_row * unit_cols * 2)); } TWO_PASS *twopass = &cpi->ppi->twopass; const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) ? cpi->initial_mbs : mi_params->MBs; // Number of actual units used in the first pass, it can be other square // block sizes than 16X16. const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16); stats.intra_factor = stats.intra_factor / (double)num_mbs; stats.brightness_factor = stats.brightness_factor / (double)num_mbs; FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end; update_firstpass_stats(cpi, &stats, raw_err_stdev, current_frame->frame_number, ts_duration, fp_block_size); // Copy the previous Last Frame back into gf buffer if the prediction is good // enough... but also don't allow it to lag too far. if ((twopass->sr_update_lag > 3) || ((current_frame->frame_number > 0) && (this_frame_stats->pcnt_inter > 0.20) && ((this_frame_stats->intra_error / DOUBLE_DIVIDE_CHECK(this_frame_stats->coded_error)) > 2.0))) { if (golden_frame != NULL) { assign_frame_buffer_p( &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)], cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]); } twopass->sr_update_lag = 1; } else { ++twopass->sr_update_lag; } aom_extend_frame_borders(this_frame, num_planes); // The frame we just compressed now becomes the last frame. assign_frame_buffer_p( &cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)], cm->cur_frame); // Special case for the first frame. Copy into the GF buffer as a second // reference. if (current_frame->frame_number == 0 && get_ref_frame_map_idx(cm, GOLDEN_FRAME) != INVALID_IDX) { assign_frame_buffer_p( &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)], cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]); } print_reconstruction_frame(last_frame, current_frame->frame_number, /*do_print=*/0); ++current_frame->frame_number; cpi->ref_frame_flags = ref_frame_flags_backup; if (!frame_is_intra_only(cm)) { release_scaled_references(cpi); } } aom_codec_err_t av1_firstpass_info_init(FIRSTPASS_INFO *firstpass_info, FIRSTPASS_STATS *ext_stats_buf, int ext_stats_buf_size) { assert(IMPLIES(ext_stats_buf == NULL, ext_stats_buf_size == 0)); if (ext_stats_buf == NULL) { firstpass_info->stats_buf = firstpass_info->static_stats_buf; firstpass_info->stats_buf_size = sizeof(firstpass_info->static_stats_buf) / sizeof(firstpass_info->static_stats_buf[0]); firstpass_info->start_index = 0; firstpass_info->cur_index = 0; firstpass_info->stats_count = 0; firstpass_info->future_stats_count = 0; firstpass_info->past_stats_count = 0; av1_zero(firstpass_info->total_stats); if (ext_stats_buf_size == 0) { return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } else { firstpass_info->stats_buf = ext_stats_buf; firstpass_info->stats_buf_size = ext_stats_buf_size; firstpass_info->start_index = 0; firstpass_info->cur_index = 0; firstpass_info->stats_count = firstpass_info->stats_buf_size; firstpass_info->future_stats_count = firstpass_info->stats_count; firstpass_info->past_stats_count = 0; av1_zero(firstpass_info->total_stats); for (int i = 0; i < firstpass_info->stats_count; ++i) { av1_accumulate_stats(&firstpass_info->total_stats, &firstpass_info->stats_buf[i]); } } return AOM_CODEC_OK; } aom_codec_err_t av1_firstpass_info_move_cur_index( FIRSTPASS_INFO *firstpass_info) { assert(firstpass_info->future_stats_count + firstpass_info->past_stats_count == firstpass_info->stats_count); if (firstpass_info->future_stats_count > 1) { firstpass_info->cur_index = (firstpass_info->cur_index + 1) % firstpass_info->stats_buf_size; --firstpass_info->future_stats_count; ++firstpass_info->past_stats_count; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } aom_codec_err_t av1_firstpass_info_pop(FIRSTPASS_INFO *firstpass_info) { if (firstpass_info->stats_count > 0 && firstpass_info->past_stats_count > 0) { const int next_start = (firstpass_info->start_index + 1) % firstpass_info->stats_buf_size; firstpass_info->start_index = next_start; --firstpass_info->stats_count; --firstpass_info->past_stats_count; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } aom_codec_err_t av1_firstpass_info_move_cur_index_and_pop( FIRSTPASS_INFO *firstpass_info) { aom_codec_err_t ret = av1_firstpass_info_move_cur_index(firstpass_info); if (ret != AOM_CODEC_OK) return ret; ret = av1_firstpass_info_pop(firstpass_info); return ret; } aom_codec_err_t av1_firstpass_info_push(FIRSTPASS_INFO *firstpass_info, const FIRSTPASS_STATS *input_stats) { if (firstpass_info->stats_count < firstpass_info->stats_buf_size) { const int next_index = (firstpass_info->start_index + firstpass_info->stats_count) % firstpass_info->stats_buf_size; firstpass_info->stats_buf[next_index] = *input_stats; ++firstpass_info->stats_count; ++firstpass_info->future_stats_count; av1_accumulate_stats(&firstpass_info->total_stats, input_stats); return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } const FIRSTPASS_STATS *av1_firstpass_info_peek( const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) { if (offset_from_cur >= -firstpass_info->past_stats_count && offset_from_cur < firstpass_info->future_stats_count) { const int index = (firstpass_info->cur_index + offset_from_cur) % firstpass_info->stats_buf_size; return &firstpass_info->stats_buf[index]; } else { return NULL; } } int av1_firstpass_info_future_count(const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) { if (offset_from_cur < firstpass_info->future_stats_count) { return firstpass_info->future_stats_count - offset_from_cur; } return 0; } int av1_firstpass_info_past_count(const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) { if (offset_from_cur >= -firstpass_info->past_stats_count) { return offset_from_cur + firstpass_info->past_stats_count; } return 0; }